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Abstract

Galileo97 is a statically{scoped functional conceptual language. Functions are �rst
class values which can be passed as parameters, returned as values and embedded in data
structures.

Galileo97 is an interactive language. A session is a dialogue of questions and answers
with the Galileo97 system.

Galileo97 is a statically and strongly typed language. Every expression has a type,
which is determined statically. The type of an expression is usually automatically inferred
by the system, without needing of type de�nitions. The Galileo97 type system guarantees
that any expression that can be typed will not generate type errors at run{time.

Galileo97 has a rich collection of data types and type constructors. Moreover, the user
can de�ne new abstract data types, which are indistinguishable from system prede�ned
types.

Galileo97 has subtyping. If a type T is a subtype of a type T', then a value of T can be
used as an argument of any operation de�ned for values of T', but not vice versa because
the subtype relation is a partial order.

Galileo97 has parametric polymorphismand bounded parametric polymorphism. Poly-
morphism is the ability of a function to handle values of many types.

Galileo97 has control mechanism for exceptions and their handling.
Galileo97 is a database programming language and supports the abstraction mecha-

nisms of object databases.
This manual describes a main memory implementation of Galileo97 running on Mac-

intosh and PC-Windows.
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1 Introduction

Galileo 97 is an expression language: each construct is applied to values to return a value.
Galileo 97 is an interactive language: the system repeatedly prompts for inputs and reports

the results of computations; this interaction is said to happen at the top level of evaluation.
At the top level one can evaluate expressions or perform declarations. This feature allows the
interactive use of Galileo 97 without a separate query language.

Galileo 97 is an higher order language, in that functions are denotable and expressible
values of the language. Therefore, a function can be embedded in data structures, passed as
a parameter and returned as a value.

Galileo 97 is a safe language. Each denotable value of the language possesses a type.
Besides prede�ned types, type constructors exist to de�ne new types, from prede�ned or
previously de�ned types. They are: pairs, tuple, sequence, discriminated union, function
and semi-abstract types. When de�ning semi-abstract types, the set of possible values can
be restricted with assertions. In general, any expression has a type that can be statically
determined, so that every type violation can be detected by textual inspection (static type
checking). Although any statically detectable error could also be detected at run{time, the
language has been designed to be statically type checkable for the following basic reasons:
�rstly, programs can be safely executed disregarding any information about types; secondly,
the language o�ers considerable bene�ts in testing and debugging applications, since the type-
checker detects a large class of common programming errors without the need to execute
programs, while errors at run{time could be detected only by providing test data that cause
the error to be raised.

Galileo 97 has subtyping. If a type T is a subtype of a type T', then a value of T can be
used as an argument of any operation de�ned for values of T', but not vice versa because the
subtype relation is a partial order.

Galileo 97 has parametric polymorphism and bounded parametric polymorphism. Poly-
morphism is the ability of a function to handle values of many types. Bounded parametric
polymorphism has the e�ect of integrating parametric polymorphism with subtyping, and it
provide more expressive power than either notion taken separately.

Galileo 97 has an exception-trap mechanism, which allows programs to handle system and
user generated exceptions uniformly. Exceptions can be selectively trapped, and exception
handlers can be speci�ed.

Galileo 97 supports the abstraction mechanisms of an object data model. Classes are the
mechanism to represent a database by means of modi�able sequences of interrelated objects,
which are the computer representation of certain facts of entities of the world that is being
modeled. Prede�ned assertions on classes are provided and the operators for including or
eliminating elements in a class are automatically de�ned.

This manual describes the current main memory implementation of Galileo 97 running on
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Macintosh and PC-Windows.
The next sections show an example of a session with the system. The transcript of the

interaction is shown enclosed in solid lines.
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2 Getting started

The next sections explain how to install Galileo 97 under Macintosh V7 or MS-Windows.
The two versions are the same as far as the language is concerned, but they o�er di�erent
functionalities.

2.1 Installing Galileo 97 on a Macintosh

At least the following are required to use the application:

� System 7;

� 2MB of RAM. If there is more RAM installed, setting the Application Memory Size to
a larger amount allows the application to store more information in the memory at one
time and makes the application faster.

The Galileo 97 disk contains:

� the application code Galileo;

� the application Starter to use the �rst time;

� a folder with examples.

To install the application copy the Galileo disk onto the hard disk and double-click the
Starter to generate six �les (with a pre�x SG) needed by the Galileo application. Once the
application Starter has been executed, it can be removed.

2.2 Installing Galileo 97 on a PC

At least the following are required to use the application:

� a processor 386;

� Windows 3.1 or 95;

� 2MB of RAM and 4MB of swap �le.

The Galileo disk contains:

� the application code Galileo.exe;

� the application Starter.exe to use the �rst time;
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� the �le Galileo.res

� a folder with examples.

To install the application:

� create a folder on the disk;

� copy the �les into the folder;

� execute the application Starter.exe to generate six �les with a pre�x SG in the appli-
cation folder. Once the application Starter has been executed, it can be removed.

2.3 Interacting with the system

The Galileo 97 application is opened with a double-click on its icon.
The Windows version opens a window with the title Galileo97 and a menu bar. To

execute a text, open a window on the �le, select the text and choose Execute from the
Galileo 97 menu (command-e).

The Macintosh version opens one special "Galileo97 Session" window. An expression
terminated by a \;" is executed by hitting the Esc key. Several expressions can be typed, and
the system will execute them after the Esc key is pressed.

Once the system is loaded, the user types phrases, which can be expressions, top-level
declarations or commands , and the system prints back a result in the case of an expression,
and an acknowledgment in the other cases. This cycle is repeated over and over, until the
system is exited.

Every top{level phrase is terminated by a semicolon. A phrase can be distributed on
several lines by breaking it at any position where a blank character is accepted. Several
phrases can also be written on the same line.

3*2+7;

13 : int

it+1;

14 : int

let x := 2*3;

> x = 6 : int
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The previous phrases are numerical expressions. When an expression is evaluated, the system
responds with the value of the expression, a \:", and the type of the expression. If the value
is a functional value, then the value is substituted by the string fun.

The variable it is always bound to the value of the last expression evaluated, and is not
a�ected by declarations or by computations which for some reason fail to terminate. The it
variable is useful in an interaction, when used to access values which have \fallen on the oor"
because they have been computed as expressions but have not been bound to any variable.

The phrase let x:= e is an example of a top-level declaration: it binds the identi�er x
to the value of e in the global environment. From this moment, unless x is rede�ned, every
occurrence of x will be substituted by the associated value.

Currently, there is no provision in the Galileo 97 system for editing and storing programs
or de�nitions given during a session.1 For this reason Galileo 97 schemas are usually prepared
in text �les and then loaded and tested interactively.

A Galileo 97 source �le looks like a set of top{level phrases, terminated by a semicolon.
A �le containing Galileo 97 expressions can be loaded by the command load "Name". The
�le must be in the application folder , unless the command is given through the corresponding
menu entry.

With the command outputoff the system prints only the result of an expression, but
not the e�ects of declarations. The command outputon restores the normal system behavior.
Finally, with the command :TypeIde the system prints the de�nition of the user de�ned
TypeIde.

1With the Mac version the user can save the current state at any time with the command dump "Name",
and restore it later in the same or a following session with the command restore "Name".
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3 Lexical Matters

The following lexical entities are recognized: identi�ers, keywords, numbers, strings, delim-
iters , and comments . See Appendix I for a de�nition of their syntax.

An identi�er is a sequence of letters, numbers, and underscores that do not start with a
digit.

Keywords are lexically like identi�ers, but they are reserved and cannot be used for pro-
gram variables. The keywords are listed in Appendix B.

Numbers are integers or reals. Integers are sequences of digits. The form of real numbers
is described in Section 4.5.

Strings are sequences of characters delimited by a string quote ".
Delimiters are one{character punctuation marks like "," and ";" which never stick to any

other character. No space is ever needed around them. Left parentheses are (, [, and f; right
parentheses are ), ] and g. Moreover, some characters stick to the inner side of parentheses
to form compound parentheses like (| and |). See Appendix I for details.

Any sequence of legal characters enclosed between % is a comment .
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4 Expressions

Galileo 97 is an expression{based language. Expressions denote values, and have a type which
is statically determined.2 All standard programming constructs (conditionals, declarations,
functions, etc.), are packaged into expressions yielding values. Strictly speaking there are
no statements: even side{e�ecting operations return values. All these di�erent kinds of
expressions are described in this section.

It is always meaningful to supply arbitrary expressions as arguments to functions (when
the type constraints are satis�ed), or to combine them to form larger expressions in the same
way that simple constants can be combined.

4.1 Unknown

The expression unknown denotes the only value of the language, of type none, which belongs
to any type. It can be used as an expression of any type to denote an unknown value of
that type. The value "unknown" is returned when this value is used by an operator which
tries to extract some information from it. For instance, the expression unknown + 3 returns
unknown:int. The operator:

isunknown : any -> bool

returns false for any value di�erent from unknown, true otherwise.3

The equality operator returns true if both the operands are unknown, false otherwise;
any other comparison operator returns unknown if one of its operands is unknown.

4.2 Nil

The expression nil denotes the only value, besides unknown, of type null. The only operator
on nil is the equality operator.

4.3 Booleans

The prede�ned constants true, false denote the respective Boolean values. Boolean oper-
ators are:

Not :bool -> bool

And, Or :(bool # bool) -> bool (infixes)

And and Or evaluate only one argument when it is su�cient to determine the result. If an
argument is unknown the result is unknown.

2More precisely, expressions have a set of types, as discussed in 7.
3Any Galileo 97 value has type any.
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4.4 Integers

Operations on integers are:

~2,~1,0,1,2, :int (constants)

~ :int -> int

+, -, *, div, mod :int # int -> int (infixes)

>, >=, <=, <, <> :int # int -> bool (infixes)

Negative integers are written ~3, where ~ is the complement function, while - is the di�erence.
Integers assume values in the range ~maxint to maxint, where maxint = +2,147,483,647;
when an integer operation produces a number outside this interval, the exception "integer

overflow" is generated. Moreover, exceptions can be generated by integer division div and
module mod, which fail with string "division by zero" when their second argument is zero.

4.5 Real Numbers

Real numbers can assume values in the range ~maxreal to maxreal, where maxreal = 1:7�
1038.

syntax: RealNum ::=

Integer"."[Integer]["e"("+" | "-")Integer].

Real numbers have the type real.
Operations on real numbers are:

~2.,~1.,0.,1.1 :real (constants)

~ :real -> real

+, -, *, / :real # real -> real (infixes)

>, >=, <=, <, <> :real # real -> bool (infixes)

intofreal :real -> int

intofreal converts a real number to the nearest integer. If the absolute value of its argument
is greater then maxint, it returns maxint

4.6 Strings

A string constant is a sequence of characters enclosed in quotes. By characters we mean full
8-bit codes in the range 0..255. Operations on string are:

8



"this is a string" :string (constants)

& :string # string -> string (infix)

stringlength :string -> int

extract :string # int # int -> string (defined)

explode :string -> seq string

implode :seq string -> string

explodeascii :string -> seq int

implodeascii :seq int -> string

intofstring :string -> int

realofstring :string -> real

stringofint :int -> string

match :string # string -> bool (defined)

printstring :string -> null

&

maps two strings into a string which is their concatenation.

stringlength

returns the length of a string.

extract

extracts a substring from a string: the �rst argument is the source string, the second
argument is the starting position of the substring in the string (the �rst character in a
string is at position 1), and the third argument is the length of the substring. It fails
with string "extract" if the numeric arguments are out of range. extract is a library
function (see Section 12.1).

explode

maps a string into the list of its characters, each one being a 1-character string.

implode maps a sequence of strings into a string which is their concatenation.

explodeascii

is like explode, but produces a list of the integer representations of the characters
contained in the string.

implodeascii

maps a list of integers onto a string containing the corresponding characters. It fails
with the string "implodeascii" if the integers are negatives or greater than 255.
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intofstring

converts a numeric string into the corresponding integer number; negative numbers start
with ~. It fails with string "intofstring" if the string is not numeric.

realofstring

converts a numeric string into the corresponding real number, negative numbers start
with ~. It fails with string "realofstring" if the string is not numeric.

stringofint

converts an integer into a string representation of the length needed; negative numbers
start with ~.

match

returns true if the �rst argument is equal to the second argument, the latter can contain
special characters: ? is about to any character; * refers to any string of characters; #
refers to any numeric character; @ refers to any alphabetic character. match is a library
function (see Section 12.1).

4.7 Updatable References

Assignment operations act on reference cells. A reference value is an updatable pointer to
another value. References are, together with classes, the only data which can be side e�ected;
they can be inserted anywhere an update operation is needed in variables or data structures.
Side e�ects on embedded references are reected in all the structures which share them.

References are created by the operator var, updated by <- and dereferenced by at. The
assignment operator always returns nil. Reference values have type var T, where T is the
type of the value contained in the reference.

var : a* -> var a* (constructor)

at : var a* -> a*

<- : var a* # a* -> null (infix)

The function at is an example of a polymorphic function, i.e., a function that works uniformly
over a class of arguments of di�erent types. The type of at contains a type variable a*,
indicating that any kind of value can be used. A type containing type variables is called
polymorphic, otherwise it is called monomorphic. Several type variables can appear in a
type, and every variable can appear several times, expressing contextual dependencies among
values of that type.

Here is a simple example of the use of references. A reference to the number 3 is created
and updated to contain 5, and its content is then examined.
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let a := var 3;

> a = var 3 : var int

a <- 5;

nil : null

at a;

5 : int

4.8 Pairs

A pair is a heterogeneous list of two values. The type of a pair is the cartesian product,
denoted by the symbol #. Two pairs are equal if the elements are of the same type and the
elements in the same position are equal.

syntax: E1,E2

typing rule: if E1: t1 and E2 : t2

then (E1,E2) : t1 # t2

The operations on pairs are:

, :a*, b* -> (a* # b*) (infix)

fst :(a* # b*) -> a*

snd :(a* # b*) -> b*

Parentheses can be used to express non{at cartesian products. In the following example,
the second expression is a pair, whose �rst component is a pair:

1,true;

(1,true) : (int # bool)

(1,true),3;

((1,true),3) : ((int # bool) # int)

11



snd(it);

3 : int

4.9 Records

A record is an unordered set of (identi�er (attribute or label), denotable value) pairs. A
record type is an unordered set of (identi�er, type) pairs. Two record types are equal if the
�elds with equal labels have equal values. The special brackets [, and ] are used to construct
records and record types.

syntax: [Id1 := E1; ...; Idn := En ] n >= 0

typing rule: if E1: T1 And ... And En : Tn

then [ Id1 := E1; ...; Idn := En ] :

[ Id1 : T1; ...; Idn : Tn ]

The empty record [ ] has type [ ].
Records are equipped with the dot operator: R.Exp returns the value of Exp evaluated

in the current environment extended with the set of pairs (identi�er, value) of the record R.
When Exp is an identi�er Id of R, the dot operator is the standard extraction operator which
returns the value associated with an identi�er Id from a record R.4 Here there is an example
of construction of a two component record and uses of the dot operator:

let r := [ Name := "Paul"; Surname := "Brown" ];

> r = [ Name := "Paul"; Surname := "Brown" ]

: [Name : string; Surname : string ]

r.Name;

"Paul" : string

r.(Name & "_" & Surname);

"Paul_Brown" : string

In addition to the operator that extracts the value of an identi�er from a record, the following
operators are provided to construct new records:

4In general, to parse R.Exp correctly, it must be written as R.(Exp).
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� project extracts from a record R a subset of the (identi�er, value) pairs:

R project [A1 :S1; ...; An :Sn]

where A1, . . . , An are labels of R with types T1 � S1, . . .Tn � Sn.

The result is the record [A1 := E1; ...; An := En] with type [A1 :S1; ...; An
:Sn].

� rename changes the names of the identi�ers; the unchanged identi�ers and the new ones
must all be di�erent:

R rename (A1 => A'1; ...; An => A'n)

A label Ai may be a path A1i.A
2
i .....A

ni
i ; if R.A

1
i.A

2
i.....A

ni
i :T for some type T , then

(R rename (A1i.A
2
i .....A

ni
i => A'i)).A'i :T .

� extend adds a new set of pairs (identi�er, value) to a record R; if an identi�er Ai is
present in R, extend replaces its value with one of a possibly unrelated type:

R extend [Ai := Expi; ...; An := Expn]

An expression Expi associated with a label may contain the pseudo-variable me, which
denotes, recursively, the new record after it has been extended. If Expi is not a function,
the type Ti of Expi must be speci�ed as Ai:Ti := Expi.

� times concatenates the pairs (identi�er, value) of two records R1 and R2 without common
identi�ers:

R1 times R2

[ Name := "Paul"; Surname := "Brown" ] project [Name];

[ Name := "Paul" ] : [Name : string ]

let R := [ Name := "Paul"] extend

[BirthYear := 1950;

Age := fun(CurrentYear:int):int is
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CurrentYear - me.BirthYear] ;

> R := [ Name := "Paul"; BirthYear := 1950; Age := fun ] :

[ Name :string; BirthYear :int; Age :int -> int ]

R.Age(1997);

47 : int

[ Name := "Paul"; Surname := "Brown" ]

rename ( Name => Nome; Surname => Cognome );

[ Nome := "Paul"; Cognome := "Brown" ] :

[Nome : string; Cognome : string ]

[ Name := "Paul" ] times [ Surname := "Smith"];

[ Name := "Paul"; Surname := "Smith"] :

[Name : string; Surname : string]

4.10 Variants

The strong typing rules of Galileo 97 do not directly allow one to write functions which
return di�erent kinds of values, e.g. integers and booleans. Similarly, sequences have to
be homogeneous and cannot contain, say, strings and integers at the same time. These
restrictions can be relaxed by using values of variant types.

Variants and records can be considered as complementary concepts: a record type is a
labeled product of types, while a variant type is a labeled sum (disjoint union) of types. A
variant type consists of a set of alternative values. It is di�erent from the mathematical union
of sets in that each value retains an inspectable tag (or label), indicating the alternative to
which it belongs. Hence testing the label of a variant value is like testing its type from a �nite
set of possibilities. The special brackets (| and |) are used to delimit variants and variant
types.

syntax: (| Id := E |)

typing rule: if E : T

then (| Id := E |) :(| Id : T |)

Two variant types are equal if the set of their pairs (tag, type) are equal.

14



Two basic operators are de�ned on variants: is tests the label of a variant value, and as

returns the value contained in the variant.
Here there is an example of construction and operation on two variant values. The type

of the �rst variant is inferred by the system, while the type of the second variant is speci�ed
by the user.

(|Integer := 3|);

(|Integer := 3|) : (|Integer : int|)

it as Integer;

3 : int

(|Integer := 6|) : (| Integer : int or Token : string|);

(|Integer := 6|) : (| Integer : int or Token : string|)

it is Integer;

true : bool

A very useful abbreviation concerning variants is the following: whenever we have a variant
type with a �eld a :null, we can abbreviate that �eld speci�cation to a, and whenever
we have a variant value (| a := nil |), we can abbreviate it to (| a |). This is very
convenient when de�ning enumeration types, which are variant types where only the labels
are relevant and the types associated with them are not used. Below is an example of an
enumeration value.

(|red|) : (|red or green or yellow|);

(|red|) : (|red or green or yellow|)

The type optional T is an abbreviation for type (|bound :T or unbound |).

4.11 Sequences

A sequence is a �nite ordered collection of homogeneous elements, i.e. values with the same
type. Sequences di�er from sets in the ordering and multiplicity of elements. Sequences are
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enclosed in square brackets and their elements are separated by semicolons. The empty list
is f g.

syntax: {E1; E2; ... ; En} n >= 0

typing rule if E1: T And ... And En : T

then {E1; E2; ... ; En} :seq T

Sequences of any type can be created, e.g. sequences of strings, sequences of sequences of
integers, sequences of functions, etc. Since each expression must have a type that is statically
determinable, when an empty sequence is created, the type of the sequence must be speci�ed,
e.g. \f g:seq int".

Two sequences are equal if the elements are of the same type, the cardinality of the
sequences are equal, and the elements in the same position are equal.

The prede�ned operators on sequences are:

append :seq a* # seq a* -> seq a* (infix)

avg :seq int -> real

avg :seq real -> real

count :seq a* -> int

difference :seq a* # seq a* -> seq a* (infix)

emptyseq :seq a* -> bool

first :seq a* -> a*

flatten :seq seq a* -> seq a*

get :seq a* -> a*

intersection :seq a* # seq a* -> seq a* (infix)

isin :a* # seq a* -> bool (infix)

known :seq a* -> seq a*

max :seq int -> int

max :seq real -> real

min :seq int -> int

min :seq real -> real

nth :seq a* # int -> a*

pick :seq a* -> a*

rest :seq a* -> seq a*

reverse :seq a* -> seq a*

setof :seq a* -> seq a*

sort :seq a* # (a* # a* -> bool) -> seq a*

sum :seq int -> int

sum :seq real -> real
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union :seq a* # seq a* -> seq a* (infix)

:: :a* # seq a* -> seq a* (infix)

append

appends the elements of its left argument to the head of a sequence (its right argument).

avg, min, max, sum

can be applied to not empty sequences of numbers and return, the sum, minimum,
maximum, average, of the numbers, respectively. If the parameter is a sequence with
unknown values, the functions return the value unknown. The function known it is useful
to ignore the unknown values.

count

returns the length of a sequence.

emptyseq tests whether the sequence is empty.

first

returns the �rst element of a non{empty sequence; it fails when applied to an empty
sequence.

flatten

takes as its argument a sequence of sequences and combines all the elements in these
sequences to form a single sequence. For instance, flatten(ff1;2g;f3;4gg) returns
f1; 2; 3; 4g.

get

returns the element of a sequence with one element;

intersection, difference, union

are an extension of the usual set operators on sequences: if the arguments have du-
plicates, the result is ordered according to the order of the �rst argument, and the
duplicate elements are di�erentiated according to their position in the sequence. For
instance:

{1; 1; 2; 1} intersection {1; 2; 1} gives {1; 1; 2}, and not {1; 2; 1}, in fact
it is like
{1'; 1''; 2; 1'''} intersection {1'; 2; 1''}.
{1; 1; 2; 1; 3} difference {1; 2; 1} gives {1; 3}.
{1; 1; 2; 1; 3} union {1; 2; 1} gives {1; 1; 2; 1; 3}.
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isin

tests whether an element is in a sequence.

known

returns the given sequence without the unknown elements.

nth

returns the n-th element in the sequence; it fails if the value of the second argoment is
out of range.

rest

returns the given sequence without its �rst element; it fails when applied to an empty
sequence;

setof

returns a sequence without duplicates.

set

tests whether a sequence has no duplicates.

reverse

returns a new sequence which contains the elements of the argument in the reverse
order.

sort

takes a list and a binary predicate and returns a new list obtained by sorting its �rst
argument according to the predicate.

::

(cons) adds an element to a list (e.g. 1::f2;3g is the same as f1;2;3g).

The following constructs are available on sequences:

I In Q

TS where B

select E from TS

TS groupby [Id1 := E1; ...; Idn := En]

TS .* Q

each TS with B

some TS with B
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TS project* [ I1 [:T1]; ...; In [:Tn] ]

TS extend* [ I1 [:T1] := Exp1; ...; In [:Tn] := Expn ]

TS rename* ( I1 => I'1; ...; In => I'n )

TS times* TS'

loop TS do E

where:

� I, I1, I2 are identi�ers;

� Q is a sequence of value of type TQ;

� B is a boolean expression;

� TS is a sequence of records, or objects, with type TTS ;

� E is an expression with type TE .

I In Q

returns a sequence of records with a unique �eld named I, associated with the value of
the corresponding element in Q. The expression has type seq [I :TQ].

TS where B

returns the sequence of the values that satisfy the boolean expression B. The expression
has type seq TTS .

select E from TS

returns the sequence of the values of the expression E evaluated for each element in a
sequence TS. The expression has type seq TE .

TS groupby [Id1 := E1; ...; Idn := En]

returns a sequence with type

seq [Id1 :TE1
; ...; Idn :TEn

; partition:seq TTS]

The elements of partition are those of TS with the same value of [Id1 := E1; ...;

Idn := En], which is evaluated for each element e of TS in the current environment
extended with the components (attribute, value) of e.

The result is evaluated as follows:
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1. for each element e of TS the record [Id1 := E1; ...; Idn := En] is evaluated
in the current environment extended with the components (attribute, value) of e
to produce a sequence W of pairs (e, [Id1 := v1; ...; Idn := vn]);

2. the elements of W are partitioned in subsequences with the same value of [Id1
:= v1; ...; Idn := vn]. Let feig the sequence of the �rst component of the
elements of a partition;

3. for each partition an element of the groupby result is produced with components
[Id1 := v1; ...; Idn := vn; partition:= feig].

TS .* Q

is equivalent to flatten(select Q from TS).

each TS with B

tests whether every element in TS satis�es B.

some TS with B

tests whether at least one element in TS satis�es B.

project*

returns the sequence of values obtained by applying the operator project to each
element in TS.

extend*

returns the sequence of values obtained by applying the operator extend to each element
in TS.

rename*

returns the sequence of values obtained by applying the operator rename to each element
in TS.

times*

returns the sequence of values obtained by concatenating with the operator times each
element in TS to all the elements in TS'.

loop

iterates on the elements in a sequence of tuples or objects to cause side-e�ects. It returns
nil. The iteration can be halted with an exception or with the expression exit.
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When the above constructs are used as part of an expression, to avoid parsing ambiguities,
the construct should be enclosed in parenthesis. For instance:

let x:= (get Persons where Name = "Smith")

iffails failwith "Unknown person";

Here are some simple examples of the use of sequences:

{2; 10; 9; 2; 5};

{2; 10; 9; 2; 5} :seq int

x In {2; 10; 9; 2; 5} where x > 5;

{10; 9} :seq int

select x + 1

from x In {10; 9}

where x > 5 ;

{11; 10} :seq int

select if x > 10 then x - 1 else x + 1

from x In {8;9;10;11;12} ;

{9; 10; 11; 10; 11} :seq int

first ({1; 2} append {3; 4});

1 : int

sort({(1,2);(5,6);(3,4);(1,3)},

fun(x:(int#int),y:(int#int)) :bool is

fst(x) <= fst(y) And snd(x) <= snd(y));

{(1,2);(1,3);(3,4);(5,6)} :seq (int#int)

{[a:=1];[a:=2];[a:=1];[a:=3]} groupby [SameA:= a];

{[SameA := 1; partition := {[a:=1];[a:=1]}];

[SameA := 2; partition := {[a:=2]}];

[SameA := 3; partition := {[a:=3]}]}

:seq [SameA :int; partition :seq [a:int]]
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{[a:=1];[a:=2];[a:=1];[a:=3]}

groupby [Less2:= a<2; Greater2 := a>2];

{[Less2:=true; Greater2:=false; partition :={[a:=1];

[a:=1]}];

[Less2:=false; Greater2:=false; partition :={[a:=2]}];

[Less2:=false; Greater2:=true; partition :={[a:=3]}]}

:seq [Less2 :bool;Greater2 :bool; partition :seq [a:int]]

{[a:=1];[a:=2];[a:=1];[a:=3]} .* {a};

{1; 2; 1; 3} :seq int

{[a:= 1; b:={[b1:= "a"; b2:= "b"]}];

[a:= 2; b:={[b1:= "c"; b2:= "d"]}]} .* b .* {b1};

{ "a"; "c" } :seq string

4.12 Functions

Functions are usually de�ned as follows

syntax: let Id := fun(Id1:T1, ...,Idn:Tn) : T is E

typing rule: if Id1:T1 And ... And Idn:Tn And E : T

then Id : (T1 # ... # Tn) -> T

but they can also be introduced in isolation by the use of fun(lambda){notation.
A fun-expression, like the one above, denotes an unnamed function; it has a binder,

preceded by fun, and a body, preceded by is. The binder is the formal parameter of the
function. The body is an expression, and its value is the result of the function.

Functions can be constructed and applied to their arguments. They cannot be printed.

let Succ:= fun(x : int) : int is x+1;

> Succ = fun : int -> int

Succ(3);

4 : int
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% ApplyPositive takes a function as a parameter and returns a new

function %

let ApplyPositive := fun(f: int->int): int->int is

fun(x:int) : int is

if x <= 0 then failwith "Negative argument"

else f(x);

> ApplyPositive = fun : (int -> int) -> (int -> int)

% This is an example of a function embedded in a data structure

which is later applied %

let Natural := [ Predecessor := var 0; Next := Succ ];

> Natural = [ Predecessor := var 0; Next := fun ] :

[ Predecessor: var int; Next: int->int ]

Natural.Next(at Natural.Predecessor);

1 : int

4.12.1 Polymorphic Functions

Polymorphic functions are functions whose operands (actual parameters) can have more than
one type. The fact that a given functional form is the same for all types is expressed by
universal quanti�cation.

syntax: let Id := fun[X1; ...;Xn](Id1:X1, ...,Idn:Xn)

: T is E n > 0

typing rule: if X1 ... Xn are distinct And E : T

then Id : all[X1; ...;Xn](X1 # ... # Xn) -> T

Here is the polymorphic identity function:

let Id := fun[T](a:T) : T is a;

> Id = fun : all [T <: any] T -> T
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In this de�nition of Id, T is a type variable and [T] provides type abstraction for T so that
Id is the identity function for all types. Type parameters are enclosed in square brackets,
while typed arguments are enclosed in parentheses.

In order to apply this identity function to an argument of a speci�c type, we must �rst
supply the type as parmeter and then the argument of the given type:

Id[int](3);

3 : int

Another interesting example is the polymorphic function twice, which can double the
e�ect of any function:

let twice := fun[T](f:T->T, x:T):T is f(f(x));

> twice = fun : all [T <: any] ( T -> T # T ) -> T

let succ := fun(x:int):int is x + 1;

> succ = fun : int -> int

let SuccSucc := twice[int];

> SuccSucc = fun : ( int -> int # int ) -> int

SuccSucc(succ, 3);

5 : int

Another example is a polymorphic function to sort sequences of values:

let rec

QuickSort := fun [X] (s: seq X, less:(X # X) -> bool): seq X is

if emptyseq(s)

then s

else use

p := first(s) and

r := rest(s)

in QuickSort[X](
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(select x from x In r where less(x, p)),

less)

append {p}

append QuickSort[X](

(select x from x In r where Not less(x, p)),

less);

let LessThan := fun(x:int, y :int):bool is x < y;

QuickSort [int] ({2;4;3;1;9;5}, LessThan);

For another kind of polymorphism, see Section 6.3.

4.13 Conditional

The syntactic form for a conditional expression is:

syntax: if E1 then E2 else E3

typing rule: if E1:bool And E2:T And E3:T

then if E1 then E2 else E3: T

the expression E1 is evaluated to obtain a boolean value. If the result is true then E2 is
evaluated; if the result is false or unknown then E3 is evaluated. The else branch must
always be present.

The typing rule for the conditional states that the if branch must be a boolean, and that
the then and else branches must have equal types.

4.14 Sequencing

When several side-e�ecting operations have to be executed in sequence, it is useful to use
sequencing :

syntax: (E1; ...; En) n >=1

typing rule: if En : T then (E1; ...; En) : T

(the parentheses are needed), which evaluates E1; ...; En in turn and returns the value of En.
The type of a sequencing expression is the type of En.
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4.15 While

The while construct can be used for iterative computations. The while construct has two
parts: a test, preceded by the keyword while and a body, preceded by the keyword do. If
the test evaluates to true then the body is executed, otherwise nil is returned. This process
is repeated until the test yields false (if ever), an exception occurs or exit is evaluated.

syntax: while E1 do E2

The result of a terminating while construct is always?nil, hence it is only useful for its side
e�ects.

typing rule: if E1 : bool And E2 : T

then (while E1 do E2) : null

As an example, here is an alternative iterative de�nition of factorial:

let factorial := fun(n :int) :int is

use count := var n

and result := var 1

in (while Not(at count = 0) do

(result <- at count * at result;

count <- at count - 1);

at result) ;

> factorial = fun : int -> int

4.16 Case

The case construct provides a systematic way of structuring programs based on variant types.
It is very common for a function to take an argument of some variant type and to do di�erent
things according to the variant label. The case construct is a convenient form to test the
label of a variant and to bind the value to a local identi�er.

syntax: case E when

(| Id1 := Id1'. E1

or Id2 := Id2'. E2

...

or Idn := Idn'. En |)
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typing rule: if E : (| Id1 : T1 or ... or Idn : Tn |)

And for each label Idi' : Ti

imply that Ei : T

then (case E when (| ... |) ) : T

This says that every E1 must have the same type, and if E has label Idi, then Idi' is bound
to E as Idi and it can be used during the evaluation of Ei. In other words, Ei is evaluated
as use Idi' := (E as Idi) in Ei.

The function alltoint converts the argument, of type (| Integer :int or Token :string|),
to an integer:

let alltoint := fun(x: (|Integer: int or Token: string|)): int is

case x when

(| Integer := i. i

or Token:= t. intofstring(t) |);

> alltoint = fun : (|Integer: int or Token: string|) -> int

4.17 Scope Blocks

A scope block is a control structure which introduces new identi�ers and delimits their scope.
Scope blocks have the same function as begin-end constructs in Pascal{like languages, but
they are di�erent due to the fact that they are expressions returning values.

syntax: use D in E

typing rule: if E : T

then (use D in E) : T

The use construct introduces new bindings in the declaration part which can be used in the
exp part (and there alone). Newly introduced identi�ers hide externally declared identi�ers
that have the same name for the scope of exp; the externally declared identi�ers remain
accessible outside exp.

The value returned by a scope block is the value of its expression part. Likewise, the type
of a scope block is the type of its exp part. The various kinds of declarations are described
in Section 6.

A truncated form of a scope block can be used at the top-level (i.e. it cannot be nested
inside other expressions):

syntax: let declaration;
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This has the e�ect of binding at the top{level the identi�ers de�ned in declaration; the scope
of these identi�ers is the whole history of interaction after that point, until those identi�ers are
rede�ned. When top{level identi�ers are rede�ned, they become totally inaccessible, however
their values might still be reachable by other paths.

4.18 Exceptions and Traps

An exception (also called a failure) can be raised by a system primitive or by a user program.
When an exception is raised, the execution of the current expression is abandoned, and an
exception string is propagated outward, tracing back along the history of function calls and
expression evaluations which led to the exception. If the exception is allowed to propagate
up to the top{level, the exception string is printed as a failure message:

exception: Failure: string

Note that the exception string is not the value of a failing expression: failing expressions have
no value, and exception strings are manipulated by mechanisms which are independent of the
usual value manipulation constructs. The exception string is often the name of the system
primitive or user function which raised the exception.

User exceptions can be raised by the failwith and fail constructs:

syntax: failwith E

The expression E above must evaluate to a string, which is the exception string. fail is equiv-
alent to failwith "fail". The expression failwith E has type none, which is compatible
with every type, i.e. a failure can be generated without regard to the expected value of the
expression which contains it.

The propagation of exceptions can only be stopped by one of the two trap constructs:

syntax: TrapExpression::=

E iffails E"

E casefails E' E"

The result of the evaluation of E iffails E" is normally the result of E, unless it raises an
exception, in which case it is the result of E". The result of the evaluation of E casefails E'

E" (where E' evaluates to a sequence of strings ss) is normally E, unless E raises an exception,
in which case it is the result of E" whenever the exception string is one of the strings in ss;
otherwise the exception is propagated.

Note that in the current implementation of Galileo 97, when an expression fails its side{
e�ects are not undone, i.e. transactions are not implemented.
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The rule for the trap constructs states that the exception handler must have the same
type as the possibly failing expression, so that the resulting type is the same whether the
exception is raised or not.

typing rule: if E : T And E" : T And E' :seq string

then (E iffails E") : T

And (E casefails E' E") : T

5 Type Expressions

A type expression is either a basic type or the application of a type operator to a sequence of
type expressions. Type operators are usually su�xes, except for #, and, ;, or and ->, which
are in�xes.

5.1 Type Operators

The prede�ned type operators are:

null Null type Nonfix

none Least general type Nonfix

any Most general type Nonfix

bool Boolean type Nonfix

int Integer type Nonfix

real Real type Nonfix

string String type Nonfix

# Pair type Infix

; Record type Infix

or Variant type Infix

-> Function type Infix

seq Sequence type Prefix

var Reference type Prefix

6 Declarations

Declarations are used in scope blocks to establish a set of bindings of identi�ers to values,
called an environment (see section 4.17); in this section scope blocks are frequently used to
illustrate the use of declarations.

Every declaration is said to import some identi�ers, and to export other identi�ers. The
imported identi�ers are the ones which are used in the declaration, and are usually de�ned
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outside the declaration (except in recursive declarations). The exported identi�ers are the
ones de�ned in the declaration, and that are accessible outside the declaration.

A declaration can be a type binding , a value binding , a class binding , a parallel declaration,
a recursive declaration, or a sequential declaration.

syntax: Declaration ::=

TypeBinding

ValueBinding

ClassBinding

SubclassBinding

ParallelDeclaration

RecursiveDeclaration

SequentialDeclaration

6.1 Type Bindings

Type bindings de�ne types:

syntax: TypeBinding ::=

SimpleTypeBinding

SemiAbstractTypeBinding

ObjectTypeBinding

ViewTypeBinding

ParallelTypeBinding

RecursiveTypeBinding

6.1.1 Simple Type Bindings

This simplest form of type de�nition introduces a name which stands for the associated type.

syntax SimpleTypeBinding ::=

type TypeIde := TypeExp

For instance, in the following example the types Date and [Day: int; Month: int; Year:

int] are the same type.

let type Date:= [Day: int; Month: int; Year: int ];

> type Date = [Day: int; Month: int; Year: int ]
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let ADate := [Day := 3; Month := 8; Year:= 1985];

> ADate = [Day := 3; Month := 8; Year := 1985]: Date

ADate:Date;

[Day := 3; Month := 8; Year := 1985]: Date

6.1.2 Semi-abstract Type Bindings

The type of the values presented so far depends only on the structure of the values, i.e.
a structural equivalence rule is adopted. In contrast, a user-de�ned semi-abstract type is
always di�erent from all other concrete or semi-abstract types; in addition, it di�ers from its
representation type. New semi-abstract types are introduced with the following declaration:

syntax: SemiAbstractTypeBinding ::=

type Id <-> RepType

[BeforeMK] [BeforeDrop]

BeforeMK ::= "before" "mk" "(" Ide ")"

{"if" BoolExp "do" Exp}1.

BeforeDrop ::= "before" "drop" "(" Ide ")"

{"if" BoolExp "do" Exp}1.

The BeforeMK, and the BeforeDrop parts can be omitted. This declaration introduces the
following bindings:

1. Id is bound to a new abstract type whose domain is isomorphic to the domain of the
representation type RepType, which must be a concrete type, and may be restricted by
the assertion BoolExp;

2. the identi�ers mkId, and repId are bound to two primitive functions, automatically
declared, to map values of the representation type into the abstract type and vice versa;

3. the identi�er dropId is bound to a primitive function to remove the type Id from a
value of type Id. This function is useful to deal with object that can acquire and lose
dynamically types, as described in the next section.

mkId : RepType -> Id

repId : Id -> RepType

dropId : Id -> null
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The clauses BeforeMK, and BeforeDrop de�ne triggers to invoke an action before the execution
of the functions mkId, and dropId If the BeforeMK clause is present, BoolExp is a boolean
expression on the values of RepType (denoted by the argument Ide of mk), which imposes a
constraint on the values of the abstract type. The constraint is controlled at execution time,
before executing the mkId operation. If the BoolExp is true, then the Exp of the do clause is
evaluated.

If the BeforeDrop clause is present, BoolExp is controlled before executing the dropId

operation. If the BoolExp is true, then the Exp of the do clause is evaluated.
The following is the declaration of an abstract record type for dates. The identi�er this

in mk(this) is bound to the argument of mkId.

let type Date <->

[ Day : int; Month : int; Year : int ]

before mk(this)

if Not

(use D := this.Day

and M := this.Month

and Y := this.Year

in M >= 1 And M <= 12 And Y >= 1983 And Y <= 2000

And D <= if M= 2

then if Y mod 4 = 0 then 29 else 28

else if M isin{4;6;9;11}

then 30 else 31 )

do failwith "Illegal Date";

> type Date = -

| mkDate = fun: [Day:int; Month:int; Year:int ] -> Date

| repDate = fun : Date -> [Day :int; Month :int; Year :int ]

| repDate = fun : Date -> null

Note that the representation type and the values of an abstract data type are printed as -.
Once de�ned, new abstract types have the same status as primitive types like int or bool:

indeed, primitive types can be consistently regarded as prede�ned abstract types provided by
the language.

Operator Overloading

An abstract type imports all the primitive operators of the representation type. The set of
imported operators on type Id depends on the representation type (see Appendix D).

The system overloads these operators which also work with values of the new type Id.
For instance, consider the following abstract type for weights:
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let type Weight <-> int

before mk(this)

if Not this >= 0

do failwith "Weight must be >= 0";

As a consequence of this declaration, the new type Weight inherits the operators on integers,
in the sense that identi�ers such as - and + are bound to two di�erent functions: e.g., - is
bound both to the primitive integer subtraction (- :int # int -> int) and to the over-
loaded weight subtraction (- :Weight # Weight -> Weight), which has been automatically
declared by the system as follows:

- := fun(x: Weight, y: Weight) : Weight is

mkWeight(repWeight(x) - repWeight(y))

Notice that the weight subtraction is de�ned in terms of the original integer subtraction, but
it also controls the trigger on weights, thus guaranteeing that weight subtraction yields proper
weight values. Therefore, the expression:

use x := mkWeight(4)

and y := mkWeight(5)

in x - y;

yields a run{time failure, since weights have to be non negative. In the application of over-
loaded identi�ers, the type checker can to choose the right operator according to the type of
the arguments: in the example above, the weight subtraction is chosen, since the identi�er -
is applied to a weight pair.

To de�ne abstract types with a hidden representation and user-de�ned operations, objects
types with private attributes must be used, as shown below.

6.1.3 Object Type Bindings

Objects are entities with an immutable identity, organized as acyclic graphs of roles . A role is
an entry to access the object it belongs to, and is a �rst-class value of the language. Roles have
both a behavior and a mutable state, which can be encapsulated to be queried and updated
only by sending messages to the role. Role types are organized into an inclusion hierarchy
with simple inheritance. Operators are de�ned to test for the existence of a certain role and
to extend objects with new roles. As a �rst approximation, those familiar with objects can
think of a role as an object of their favorite object-oriented language.
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Roles are modeled using the so-called \object as record" analogy, adopted initially in Sim-
ula, and usually used in object database systems: Roles are essentially records with possibly
special functional components meth to model methods; message passing is implemented as
�eld selection.

The operator <-> is used to de�ne a new role type. Role types are represented as records,
and methods can access the �elds of a role using the prede�ned identi�er self, if the role
type is de�ned in a recursive environment.

A role type can have attributes de�ned as Ide := Exp (computed attributes). The value
of the attribute Ide is the value of Exp evaluated at the time of the construction of the role
value. In Exp the prede�ned identi�er self cannot be used.

The operator <-> is a generative type constructor, i.e. each role type de�nition produces
a new type, di�erent from any other type previously de�ned.

The signature +T of an object type T is the set of label-type pairs of the messages which
can be sent to its instances.

The following example shows the de�nition of the role type Person, with a method
WhoAreYou:

let rec

type Person <->

[ Code :string;

Name :string;

BirthYear :int;

WhoAreYou:= meth() :string is

"My name is " & self.Name ];

The de�nition of a role type T introduces the function mkT to construct values of type T :
the function parameter is a record type which is the representation type of T without the
components describing methods or computed attributes.

An example of a construction of a role of type Person is:

let John := mkPerson ([ Name := "John Smith";

Code := "jhnsmt23h67";

BirthYear := 1967 ] );

Each application of the constructor mkT gives a value of type T with a di�erent identity.
Here is an example of role type with a computed attribute:

let TimeStamp :=

use Stamp := var 0

in fun () :int is (Stamp <- at Stamp + 1; at Stamp);
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let type Order <->

[ Code := TimeStamp();

Product: [Code: int; Price: int];

Customer: [Name: string; Address: string];

Quantity: int];

Public and private properties

Methods and attributes, i.e. the properties of an object type, may be either public or private.
A private property is accessible only inside the type de�nition. A public property may be
used anywhere in the application. Properties are always public unless speci�cally declared
private by placing the keyword private before the property name.

let rec

type Rectangle <->

[ private base :int;

private height :int;

perimeter := meth() :int is

(self.height + self.base)*2;

getBase := meth() :int is self.base;

getHeight := meth() :int is self.height

]

before mk(this)

if Not this.base > 0 And this.height > 0

do failwith "height and base must be > 0" ;

Since the constraint de�ned with the clause before is checked before the object construction,
in the assertion the private attributes are accessible.

The parameter of the function mkT , to construct values of type T , is a record with
attributes and types which are those of the representation type of T , de�ned both public and
private. For example:

let r := mkRectangle( [base := 20; height := 50 ] );

Role Type De�nition by Inheritance

Inheritance means any mechanism which allows something to be de�ned, typically an object
type, by only describing how it di�ers from a previously de�ned one. Inheritance should not be
confused with subtyping: subtyping is a relation between types such that when T � U , then
any operation which can be applied to any value of type U can also be applied to any value
of type T . The two notions are sometimes confused because, in object oriented languages,
inheritance is usually only used to de�ne object subtypes, and object subtypes can only be
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de�ned by inheritance. However, we will keep the two terms distinct and will use each of
them with its proper meaning.

In Galileo 97 a role type T can be de�ned by inheritance from another role type T 0 as
follows:

type T <-> is T 0 and H
[BeforeMK] [BeforeIn] [BeforeDrop]

BeforeIn ::= "before" "in" "(" Ide ["," Ide ] ")"

"if" BoolExp "do" Exp1.

Type T inherits the T 0 attributes, i.e. both its instance variables and methods, as speci�ed
before: when an attribute is selected from an object role of type T it is �rst looked up inside
the T role and then it is looked up in T 0, so that any T 0 attribute can be selected from a T
type value.

Galileo 97 allows strict inheritance only: a T 0 attribute Ai, with type Hi, may be rede�ned
in T only by specializing its type, that is the new type H0

i of Ai must be a subtype of Hi.
For this reason, the inheritance mechanism in Galileo 97 always produces an object subtype,
i.e. in our example we will have T � T 0.

Moreover, the following restrictions hold on private properties:

� in the type de�nition T , public or private properties cannot be de�ned with the same
name as private properties of the supertype T 0. This constraint implies that (a) private
properties of the supertype cannot be rede�ned in a subtype, and (b) a private property
of the supertype cannot be rede�ned public in a subtype;

� in the type de�nition T , a private property cannot be de�ned with the same name as a
public property of the supertype T 0. This constraint implies that a public property of
the supertype cannot be rede�ned private in a subtype.

Another advantage of inheritance is that the a method of the subtype can be de�ned using
the de�nition given for it in the supertype. The pseudo-variable super is statically bound,
i.e. the method search for a message sent to super begins with the supertype of the type
where the method is de�ned.

Here is an example of a role type de�ned by inheritance:

let rec

type Student <->

is Person and

[ StudentNumber :string;

Faculty :string;

WhoAreYou := meth() :string is
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super.WhoAreYou &

" I am a student of " &

self.Faculty ];

let rec

type Square <-> is Rectangle and

[ perimeter := meth() :int is

self.getBase * 4

]

before mk(this)

if Not this.base = this.height

do failwith "base and height of a square must be equal";

A subtype inherits the triggers of the super-type T 0, so the constructor mkT of values of type
T raises both the trigger de�ned in the supertype T 0 and the one de�ned in the subtype T .

Moreover the parameter of the constructor mkT is a record with the attributes de�ned
both public and private in T and T 0. For this reason in the trigger de�ned in T both the
private attributes of T and T 0 are accessible (see the trigger on type Square).

Finally, when a supertype method is rede�ned in a type T , a value of type T uses the
method given in T to answer a request to execute the method (dynamic binding).5

An Operator to Extend Objects with New Roles

When a role type T 0 is de�ned by inheritance from a type T , besides the constructor mkT 0,
the function inT 0 is also automatically generated, which extends an object from T to T 0,
thus preserving its identity.

The function inT 0 has two parameters: the value of the object O to be extended, and a
record which gives the attribute values of T 0 which are not inherited from T .

If an attribute A of type Ti is rede�ned in the subtype with type Ti', the function inT 0

checks that the value given for that attribute in the second parameter is a subvalue of the
corresponding one in the �rst parameter, according to the following rule: A:Ti = A:Ti' (see
Section 8).

If the BeforeIn clause is present, BoolExp is controlled before executing the inT 0 opera-
tion. If the BoolExp is true, then the Exp of the do clause is evaluated, and �nally the inT 0

operation is executed.
For example, the object John with type Person may be extended with the type Student

as follows:

let JohnAsStudent :=

5Galileo does not support multiple inheritance.
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inStudent(John, [ StudentNumber := "0123";

Faculty := "Science"

]);

Let us assume now that the following type is de�ned as well:

let rec

type Athlete <->

is Person and

[ Number:int;

Sport: string;

WhoAreYou:= meth() :string is

super.WhoAreYou &

". I practice " &

self.Sport ];

We assume that an object can be extended with independent subroles and exhibit a di�erent
behavior according to the role through which it is accessed.

Let the object John be extended with the role type Athlete:

let AthleteJohn :=

inAthlete(John, [Number := 245;

Sport := "tennis" ]);

The answer to the message Number sent to StudentJohn is a string, while the answer to the
same message sent to AthleteJohn is an integer, likewise, there will be di�erent answers to
the message WhoAreYou sent to StudentJohn or to AthleteJohn. We say that John, Student-
John and AthleteJohn are three di�erent roles of the same object, of type Person, Student
and Athlete respectively.

When an object is extended with new sub-roles which rede�ne a method of the super-role,
a message can be sent to the super-role with two di�erent notations to request a di�erent
search technique for the method to be used for answering the message:

� if the message is sent with the dot notation, the method is looked for in the receiving
role and in its ancestors (upward lookup);

� if the message is sent with the ! notation, the method is �rst looked for in all the
descendants of the receiving role, visited in reverse temporal order, then in the receiving
role, and �nally in its ancestors (double lookup).

For example, the answer to the message WhoAreYou sent to John changes once the object has
been extended with the role type Student, and once again after its extension with the role
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type Athlete. To receive from John always the same answer, irrespective of what extensions
have occurred, the message must be sent with the notation John!WhoAreYou.

Other operators de�ned on objects and roles are:

� dropT(Expr), to remove the role with type T and all the sub-roles of the object denoted
by the expression Expr. If the object is still accessible by one of the removed roles,
because the role has been previously bound to an identi�er or because it has been used
as a component of another value, a run{time failure will be generated when a message
is sent to it.

The function dropT(Expr), like mkT and inT', is automatically declared when a subrole
type is de�ned.

� Expr isalso T, to test whether an object with the role denoted by the expression Expr

has also the role type T; for example both the expressions John isalso Athlete and
StudentJohn isalso Athlete are true.

� Expr As T, to coerce an object with the role denoted by the expression Expr to one of
its possible roles T; for example AthleteJohn As Student returns the role with type
Student of the object with role AthleteJohn.

� Expr isexactly T, to test the run{time role type of the role denoted by the expression
Expr; for example John isexactly Athlete is false while AthleteJohn isexactly

Athlete is true.

Note that the predicates isalso, isexactly, and the operator As do not generate a run{time
failure if Exp denotes a dropped role of an object. For example, after a dropAthlete(Athlete-
John), AthleteJohn isalso Athlete returns false.

The operator As and message passing with the "!" notation are useful to de�ne a role
type where a method must inherit the method de�ned in the supertype (see the de�nition of
method WhoAreYou in types Student and Athlete).

Finally, note that upward and double lookup are two di�erent forms of dynamic binding,
i.e. in both cases the method which is activated by the message cannot be determined generally
at compile time, while static binding to the method of type T can be obtained through the
(obj As T)!msg idiom. Let us consider the following function:

let foo := fun(x:Person) :seq string is

{x.WhoAreYou;

x!WhoAreYou;

(x As Person)!WhoAreYou};
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Let JohnAsStudent be bound to a value of type Student, which has been later extended with a
role of type ForeignStudent, a subtype of Student which rede�nes the method WhoAreYou.
The value returned by foo(JohnAsStudent) is a sequence of three answers produced by
the methods de�ned in type ForeignStudent (dynamic binding with double lookup), by the
method de�ned in type Student (dynamic binding with upward lookup), and by the method
de�ned in type Person (static binding).

Method Lookup

When a message m is sent to an object O, two questions must be answered: (a) which method
is used to answer the message? and (b) which is the semantics of the pseudo-variable self

used in the method selected to answer the message m?
In traditional object-oriented languages, with objects that cannot change dynamically

their type, the type T of an object O is �xed at creation time. When a message is sent to O,
the method is searched �rst in the type T. If none is found, the method is searched in the
supertype of T, and then the search continues up the supertype chain until the root type.
The search will certainly stop because static typechecking ensures that the method has been
de�ned in one of the super-types.

When a method contains a message to self, the search for the method for that message
begins in the instance's type O, regardless of which type contains the method containing self.

For instance, let us consider the following object types and the object instances p1 and
p2:

let CurrentYear := 1997;

let rec

type Person <->

[Name :string;

BirthYear :int;

Age := meth():int is

CurrentYear - self.BirthYear;

StringOf := meth():string is

"Name is " & self.Name &

". Age is " & stringofint(self.Age) ]

and

type DeadPerson <-> is Person and

[DeadYear :int;

Age := meth():int is

CurrentYear - self.DeadYear;

StringOf := meth():string is

super.StringOf &
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". Dead year is " & stringofint(self.DeadYear) ];

let p1:= mkPerson([Name:= "Bob"; BirthYear:= 1950]);

let p2:= mkDeadPerson([Name:= "Jim";

BirthYear:= 1950;

DeadYear:= 1970]);

The results of evaluating the following expressions are:

p1.StringOf; returns "Name is Jim. Age is 47"

p2.StringOf; returns "Name is Jim. Age is 27. Dead year is 1970"

The expressions p1.StringOf and p2.StringOf show the e�ect of sending a message to self:
both invoke the same method StringOf, which is found in the type Person, but they produce
di�erent results because of the message self.Age in method StringOf of Person. In the �rst
case the result is the value of Age in p1, while in the second case the result is the value of Age
in p2.

Galileo 97 supports objects which can dynamically acquire new types and exhibit plurality
of behaviors, and the rules to select the method to be used for answering the message are
those described previously: if the message is sent with the dot notation, the method is found
with a double lookup, if it is sent with the exclamation mark notation, the method is found
with a upward lookup.

When the method selected by a role r to answer a message m contains a message whose
receiver is self, the interpretation of the self-reference depends on how the method has been
found:

� if the method has been found in the downward lookup phase, hence in a type T which
is a subtype of the type of r, then self is bound to the r As T role;

� if the method was found by a search in the supertype chain, then self is bound to the
r role.

As an example of the self interpretation rule, let us consider the following de�nitions (see
Fig. 1):

let rec type W1 <-> [ s := meth() :int is 3;

r := meth() :int is self.s ];

let type W11 <-> is W1 and [ s := meth() :int is 4 ];

let rec type W12 <-> is W1 and [ s := meth() :int is 5;

r := meth() :int is

2*(self.s) ];
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Figure 1: An example of type hierarchy

Let us construct a value v1 of type W11, and send it the message v1.r:

let v1 := mkW11([ ]);

vi.r; returns 4

vi.r returns 4 because the method for r is inherited from W1; here self is assigned type W11
(dynamic binding), hence self.s returns 4.

Let us extend v1 with the type W12, and send it again the message v1.r:

let v2 := inW12(v1,[ ]);

v1.r; returns 10

This time the method for r is found in W12 by history search, hence self is statically bound
to type W12, hence self.s returns 2*5.

6.1.4 View Type Bindings

The operators on objects presented so far allow objects to be built, and roles to be added and
dropped without a�ecting object identity. These operators allow one to model the dynamic
behavior of real-world entities, and are also useful for dealing with the most common kind
of schema evolution, i.e. attribute addition or specialization. In this situation, in fact, it is
possible to introduce a new subtype of the old type and to extend the old values with the
new information. The type correctness of the preexisting applications and data structures
will not be a�ected, and it is even possible to decide to partially modify the behavior of an
old application by specializing the behavior of some methods.6

6More precisely, a preexisting application is a�ected by method specialization only if the application exploits
the double lookup (obj.msg) form of message passing.
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However, the role mechanism cannot cope with the related problem of giving di�erent
views of the same object without a�ecting its behavior. This is because object extension
actually modi�es the object, and object extension can only modify an object in a very limited
way (only �eld addition and specialization). If we call \real objects" those that have been
explicitly constructed using the mkT or inT functions, what is needed is the possibility to
de�ne \virtual objects" by starting with objects and changing their interface while preserving
their identity.

The virtual object mechanism we are going to describe has the following features:

� a virtual object has the same identity as the object (or objects) it is based on;

� a virtual object can add, remove, and rename �elds of its base object; moreover, a
virtual object can have its own instance variable, which is accessed by its own methods;

� a virtual object can be based on more than one base object;

� the behavior of an object is not a�ected by the existence of a related virtual object;

� a virtual object can be used exactly like a real object and vice versa, at least as long as
the type rules described later on are satis�ed;

� virtual objects allow one to update those components of the state of the real object
which the virtual object allows one to view;

� a message to a virtual object to execute a method imported from an object returns an
answer which is the same as if the message were directly sent to the object.

We will now show how virtual objects are de�ned, and discuss their types and how these
types are related to object and tuple types.

Virtual object types

A virtual object role, which for the sake of simplicity we will sometimes call virtual object
or virtual role, can be seen as a pair formed by the base object role and a mapping which
may hide, rename, combine, or even add some �elds (even state components) with respect to
the original object role. More precisely, a virtual object role can generally be based on a set
of base objects, with a mapping which manipulates their components and gives the external
impression of a unique virtual entity.

Virtual object roles are typed thanks to a new type constructor, called view:

<T 1,...,T m> view [A1:S1;...;An:Sn]
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where: T 1; : : : ; T m are role types; and A1; : : : ;An are labels; Si are types. As a syntactic
abbreviation, the type Si of a label Ai can be omitted and it is assumed that it is the type of
label Ai in one of the types T 1; : : : ; T m, considered in the order.

Intuitively, the statement:

O: <T 1,...,T m> view [A1:S1;...;An:Sn]

means that O is a virtual object based on m object roles with types T 1; : : : ; T m, whose
signature is [A1:S1;...;An:Sn]. As for object roles, the signature of a virtual object role is
a sequence of label-type pairs which determines all its components, both proper and inherited,
i.e. the messages which can be sent to the object (when the type is a functional type), and
the components of its state (non functional types).

For this reason, for any object role type T with signature +T , the following type equiva-
lence holds:

<T > view [+T ] � T

where T �S means that T �S and S�T , i.e. that values of each type can be considered as if
they were values of the other one. The subtype relationship among real and virtual object
types will be de�ned in Section 7.

Virtual object constructors

The operators to build virtual objects are: project, rename, extend and times.
These operators can be applied to sequences of objects using the notation project*,

rename*, extend* and times*.

Project

project is used to hide properties from an object role.

O project [A1:S1;...;An:Sn]

returns the object O with components A1,. . . ,An only. More precisely, if O is an object role
with type

<T 1,...,T m> view [A1:S'1;...;An:S'n; B1:R1;...;Bl:Rl],

and if each S'i is a subtype of Si, then O project [A1:S1;...;An:Sn] returns the same
object role O seen through type

<T 1,...,T m> view [A1:S1;...;An:Sn].
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The type Si of a label Ai can be omitted, and it is then assumed to be the type T i of Ai in O.
Notice that, even if project is formally de�ned on virtual objects alone, it can also be

applied to real objects too, thanks to the type equivalence

<T > view [+T ] � T ;

the same observation holds for all the other virtual object operators that will be presented,
which can all be applied in the same way to real and virtual objects to produce virtual objects.

Example 1 Let us consider the following de�nitions:

let type

AnAddress := [ Street: var string;

City: var string;

Zip: var string;

Country: var string ];

let rec type

Person <->

[ Name: string;

Income: var int;

Address: AnAddress;

BirthYear: int;

Parents: [Father: optional Person;

Mother: optional Person ];

WhoAreYou:= meth() :string is

"My name is " & self.Name

];

let rec type

Employee <-> is Person and

[ Salary: var int;

Company: Company;

WhoAreYou:= meth() :string is

super.WhoAreYou &

"I work with company" &

self.Company.Name

]

and type

Company <-> [ Name: string;

Location: string;

Revenue: string ];

let type PersonView :=
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<Person> view [ Name;

Address: [Street: var string;

City: var string ];

WhoAreYou ];

Let John be an object role of type Person, JohnView a virtual role of type PersonView, Foo
and Goo two functions de�ned as follows:

let JohnView :=

John project [ Name;

Address: [Street: var string;

City: var string

];

WhoAreYou];

let Foo := fun (x: Person) ...

let Goo := fun(x: PersonView):int is

if x isalso Employee

then at (x As Employee).Salary

else at (x As Person).Income;

The following considerations apply:

� By projecting Address to the indicated subtype of the original type, its Zip and Country

components are hidden;

� John = JohnView returns true since the two identi�ers denote the same object, even if
John is seen through a view;

� John.WhoAreYou = JohnView.WhoAreYou returns true since the method executed to an-
swer the message WhoAreYou sent to JohnView is the method de�ned for John;

� the component Street of the Address of JohnView can be updated and this will also
e�ect John. Likewise, an update of John will have the same e�ect on JohnView;

� as will be explained in Section 7, Person is a subtype of PersonView, but not vice versa,
hence Goo(John) would be typed, while Foo(JohnView) would not;

� let us assume that John has been extended with the role type Employee. The following
virtual object:

let JohnEmplView :=

(John As Employee)

project [ Name;
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Company: [Name: string;

Location: string ];

WhoAreYou];

has a type which is a supertype of Employee, but it is not comparable with either Person

or PersonView.

2

Extend

extend is used to rede�ne an object structure and behavior by adding new �elds with a
computed value.

O extend [A1:S1:=Expr1;...;An:Sn:=Exprn; An+1:=Methn+1;... ]

returns the object O extended with new �elds whose value is speci�ed by the expressions Expri
or by the methods Methi. If a label Ai is present in O, extend overrides Ai with a value of a
possibly unrelated type. More precisely, if O has type

<T 1,...,T m> view [B1:R1;...;Bl:Rl;A�(1):S�(1);...;A�(k):S�(k)]

then the extension expression above has type:

<T 1,...,T m> view [B1:R1;...;Bl:Rl;A1:S1;...;An:Sn].

Note that this rule allows one to extend both real and virtual objects.
extend can be used to add both new �elds and new methods, which belong to the virtual

part of the object. To this aim, the expression associated with a label may contain the
pseudo-variable me, which denotes, recursively, the whole virtual object after it has been
extended. This me variable can be used much the same as self in the real object, but there is
a di�erence. When a method de�ned in a role R but activated by inheritance by a message
sent to a subrole S, sends a message msg to self, then method lookup for msg starts from
role S. When any expression, message passing included, is applied to me, then me denotes the
virtual object that has been created by the extend operation it is bound to, hence method
lookup for me.msg starts from the virtual object where the method invoking me.msg is found.
Technically, we say that self is dynamically bound to the role that receives the message,
while me is statically bound to the virtual object that is created by the extend expression
which me is bound to.
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Example 2 The following example shows how to rede�ne the structure and behavior of a
person object; note that, in the de�nition of �elds Mother and Father, using me or John

makes no di�erence, while me is essential to access �eld Age inside WhoAreYou.

let CurrentYear := 1997;

let rec AnotherJohnView :=

(John extend [ Age := meth() :int is

CurrentYear - me.BirthYear;

Mother:optional Person := me.Parents.Mother;

Father:optional Person := me.Parents.Father;

WhoAreYou := meth() :string is

(me As Person)!WhoAreYou &

"I am " & stringofint(me.Age) &

" years old"

]

) project [Name; Age; Mother; Father; WhoAreYou];

2

Rename

rename is used to change the name of properties of an object. If O has the labels A1,. . . ,An,B1,. . . ,Bl,

O rename (A1 => A'1; : : :; An => A'n)

returns O with the labels A'1, . . . , A'n, B1, . . . , Bl, which must all be di�erent. A label Ai
may also be a path expression A1i .A

2
i.....A

ni
i .

More precisely, if no Ai is a path expression and O has type:

<T 1,...,T m> view [B1:R1; ...; Bl:Rl; A1:S1; ...; An:Sn]

and A'1, . . . , A'n, B1, . . . , Bl, contains no duplicate, then the renaming expression above has
type:

<T 1,...,T m> view [B1:R1; ...; Bl:Rl; A'1:S1; ...; A'n:Sn].

More generally, when an Ai is a path expression, then it is required that O.A1i .A
2
i.....A

ni
i :T

for some T , and, in this case,

O rename (A1i.A
2
i .....A

ni
i => A'i).A

1
i.A

2
i .....A'i: T .

It is required that, after renaming, no duplicate labels exist in the value O.A1i.A
2
i.....A

ni�1
i .
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Example 3 The following de�nition gives a view of a person object for Italian users:

let rec

type UnIndirizzo := [ Via : var string;

Citta : var string]

and

JohnViewForItalians :=

((JohnView extend [ Indirizzo :UnIndirizzo :=

[ Via := me.Address.Street;

Citta := me.Address.City ];

Presentati := meth() :string is

"Mi chiamo " & me.Name

]

) rename (Name => Nome)

) project [Nome; Indirizzo; Presentati];

2

It may appear that rename is an operator that can be de�ned in terms of extend and project;
for example; let O be an object with an attribute Ai:

let r := O rename ( Ai => Ai' );

let r' := (O extend [ Ai' := meth() :... is me.Ai ])

project [ <all attributes except Ai> ];

Actually, the two expressions above have a di�erent meaning, since both r'.A'i and r'!A'i
are equivalent to O.Ai, while r.A'i and r!A'i are generally di�erent since r keeps upward and
double lookup distinct.

For instance, let us assume that John has the type Person, and it has been extended
with the type Student, where the method WhoAreYou has been rede�ned. Then the message
John.WhoAreYou is answered using the method de�ned in Student, while John!WhoAreYou is
answered using the method de�ned in Person. Now let us de�ne two views:

let JohnViewOne:= John rename (WhoAreYou => IntroduceYourself);

let JohnViewTwo:= (John extend [ IntroduceYourself :=

meth() :string is me.WhoAreYou ]

) project [ <all attributes except WhoAreYou> ];

While the e�ect of JohnViewOne.IntroduceYourself and JohnViewOne!IntroduceYourself
is di�erent as it was for John, JohnViewTwo.IntroduceYourself and JohnViewTwo!Introduce-
Yourself return the same value as John.WhoAreYou.
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Times

times is used to create a virtual object by starting from two objects whose component names
are all di�erent.

O times O'

returns an object which contains the identities of both O and O', and has the �elds of O and
O'.

More precisely, if:

O: <T 1,...,T m> view [A1:S1;...;An:Sn]
O': <T '1,...,T 'l> view [B1:R1;...;Bk:Rk]

then O times O' has type:

<T 1,...,T m,T '1,...,T 'l> view [A1:S1;...;An:Sn;B1:R1;...;Bk:Rk].

For example, if T and T ' are two real object role types with no common component names,
then

O times O': <T ,T '> view [+T ;+T '].

This type indicates that the virtual object (a) can answer all the +T , +T ' messages, and (b)
contains both a T and a T ' object role, which can be recovered with the obj As T operator
previously de�ned.

Example 4 Let us consider the following object type de�nitions:

let rec type

Person <->

[ Name: string;

BirthYear: int;

WhoAreYou:= meth() :string is

"My name is " & self.Name

];

let rec type

Student <->

is Person and

[ SNumber: string;

Faculty: string;

WhoAreYou := meth() :string is

super.WhoAreYou &
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". I am a student of " &

self.Faculty

];

let rec type

Athlete <->

is Person and

[ Code: int;

Sport: string;

WhoAreYou := meth() :string is

super.WhoAreYou &

". I practice " &

self.Sport

];

Let s be an object with role types Student and Athlete. The following de�nition de�nes a
virtual object which is a subtype of both the type Student and the type Athlete.

let AStudentAthlete :=

( (s project [Name; BirthYear; SNumber; Faculty] )

times

((s As Athlete) project [Code; Sport] )

) extend [ WhoAreYou:= meth() :string is

(me As Student).WhoAreYou &

". I practice " & me.Sport

];

2

6.1.5 Parallel Type Bindings

A set of type bindings can be introduced with the multiple type declaration D1 and D2. This
construct exports the bindings exported by D1 and by D2. It is illegal to declare the same
type identi�er both in D1 and D2.

syntax: ParallelTypeBinding ::=

TypeBinding and TypeBinding

let type Color := (| red or green or white |)

and type CardSymbol := (| hearth or club or diamond or spade |);

> type Color = (| red or green or white |)

| type CardSymbol = (| hearth or club or diamond or spade |)
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6.1.6 Recursive Type Bindings

The operator rec is used to de�ne recursive and mutually de�ned abstract types. Concrete
types cannot be de�ned recursively . The binding rec TypeBinding exports the identi�ers
exported by TypeBinding , and imports the identi�ers imported by TypeBinding and the
identi�er exported by TypeBinding .

syntax: RecursiveTypeBinding ::=

rec TypeBinding

let rec type

Person <->

[ Age:= meth() :int is

CurrentYear - self.BirthDate.Year;

BirthDate: Date;

Name: string;

Children: var seq Person];

mkPerson(

[Name := "Smith";

BirthDate:=

mkDate([Year:=1945; Month:= 3; Day:= 1]);

Children := var({ } :seq Person)] );

- : Person

A method can be de�ned in terms of the value of other attributes, using the identi�er self
to denote the current object value. In this case, the type de�nition must be recursive.

6.2 Value Bindings

Value bindings de�ne values:

syntax: ValueBinding ::=

[private] Ide := Exp

[private] Ide := derived Exp
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The �rst declaration Ide := Exp import the identi�ers used in Exp and export the identi�er
Ide.

Ide := derived Exp returns an environment where the only binding is between Ide and
a \virtual" value, obtained by evaluating Exp whenever Ide is evaluated.

In a recursive or sequential declaration a value binding can be declared private (see Sec-
tion 6.8).

let x := 3;

> x = 3 : int

let v := derived x*x;

> v = - : int

v;

9 : int

6.3 Bounded Polymorphic Functions

syntax: let Id := fun[X1<:W1; ...;Xn<:Wn]

(Id1:X1, ...,Idn:Xn): T is E n > 0

typing rule: if X1 ... Xn are distinct And E : T

then Id : all[X1<:W1; ...;Xn<:Wn]

(X1 # ... # Xn) -> T

We have seen the usefulness of subtyping and parametric polymorphism in di�erent con-
text, we now show that it is useful, and sometimes necessary, to merge them.

Let us consider the following identity function PersonId:

let PersonId := fun(p :Person):Person is p;

PersonId (Bob);

- : Person

when PersonId is applied to an object Bob of type Student, a subtype of Person, it returns
a value of type Person and so we lose information.
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This problem can be solved by de�ning PersonId as polymorphic in the subtypes of
Person; it takes a type which is any subtype of Person, then a value of that type, and
returns a value of that type. For example, let John of type Person, Bob of type Student, and
Jim of type Athlete, with Student and Athlete subtypes of Person:

let PersonId := fun[X <: Person](p :X):X is p;

PersonId [Person] (John);

- : Person

PersonId [Student] (Bob);

- : Student

PersonId [Athlete] (Jim);

- : Athlete

Another example is the function QuickSortOnK to order sequences s with elements of type
record X which have at least one attribute k of any type, using the function QuickSort de�ned
previously in Section 4.12.1: In this case, the bounded parametric polymorphism allows one
to express the condition that the elements of s can have any record type X which contains a
�eld k of the type Y expected by the comparison function less. Note that the comparison
function to pass to QuickSort can be created \on the y" using the construct fun ...is

....

let rec

QuickSortOnK := fun [Y<:any; X<:[k:Y]]

(s: seq X, less:(Y#Y) -> bool): seq X is

QuickSort[X](s,

fun(x:X, y:X):bool is less(x.k,y.k)) ;

> QuickSortOnK = fun

| : all [Y <: any; X <: [ k :Y ] ] ( seq X # ( Y # Y ) -> bool )

-> seq X

let LessThan := fun(x:int, y :int):bool is x < y;

> LessThan = fun

| : ( int # int ) -> bool
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let rec

StrLessThan:= fun(x:string, y:string):bool is

use rec lessThanAscii:= fun(x:seq int, y:seq int):bool is

if emptyseq(x) then true

else if emptyseq(y) then false

else if first(x) = first(y)

then lessThanAscii(rest(x), rest(y))

else if first(x) < first(y)

then true

else false

in lessThanAscii(explodeascii(x), explodeascii(y));

> StrLessThan = fun

| : ( string # string ) -> bool

QuickSortOnK [int; [k:int; v:string]]

({[k := 4; v := "a"];

[k := 2; v := "b"];

[k := 3; v := "c"]}, LessThan);

{ [ k := 2; v := "b" ] ;

[ k := 3; v := "c" ] ;

[ k := 4; v := "a" ] }

: seq [ k :int; v :string ]

QuickSortOnK [string; [v:int; k:string]]

({[v := 4; k := "a"];

[v := 2; k := "b"];

[v := 3; k := "c"]}, StrLessThan);

{ [ v := 4; k := "a" ] ;

[ v := 2; k := "b" ] ;

[ v := 3; k := "c" ] }

: seq [ v :int; k :string ]

In an object type de�nition a method can be de�ned polymorpic, as it is shown in the
following trivial example:

let rec

Persons class

Person <->

[Name :string;
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Homonym := meth[X<:Person](a:X):bool

is a.Name = self.Name];

6.4 Class Bindings

The word \class" is usually used with the meaning of \type" in object-oriented languages,
but here it will be used with a di�erent meaning. A class is a modi�able sequence of elements
and a class de�nition has two di�erent e�ects:

� it introduces the de�nition of the type T of its elements, which must be de�ned with the
<-> constructor, therefore two elements of di�erent classes have always di�erent types
although they may be de�ned with the same representation type (intensional aspect);

� it supplies a name to denote the modi�able sequence of the elements of type T currently
in existence in the database (extensional aspect).

Classes provide a mechanism to represent a data base by means of modi�able collections of
interrelated objects. An element of a class is an object which is the computer representation
of certain facts of an entity of the world that is being modeled. Associations among entities
are modeled by relating the corresponding objects, and not through the use of keys or other
external references.

Besides abstract types values characteristics, elements of classes can be destroyed, and
can be constrained to be uniquely identi�ed by certain attributes (keys).

Each class can be a base class or a subclass . A base class is de�ned independently of other
classes; subclasses combine the class concept with that of type hierarchies and will be treated
in the next section.

A class is introduced with the following declaration:

syntax: ClassBinding::=

Id1 class

Id2 <-> Type

[BeforeMk] [BeforeDrop]

[key (Ide, ...,Ide)]

The BeforeMk, BeforeDrop, and key parts can be omitted. The declaration introduces the
following bindings:

1. Id2 is bound to a new semi-abstract type;

2. Id1is bound to a modi�able sequence of value of type Id2;
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3. the identi�ers mkId2 and repId2 are bound to two primitive functions similar to those
for semi-abstract types with the di�erence that the function mkId2 also inserts the
constructed element into the modi�able sequence bound to the name of the class. When
a value loses the type Id2 it is also removed from the corresponding class.

The key constraint asserts that elements in a class must di�er in the value of certain constant
attributes. Note that if the key constraint is not speci�ed, the insertion will be made even
though the values of the attributes are equal to those of another object already present in
the class. That is, elements in classes are always distinct objects, but the construction of an
element will fail when the constraints are violated.

Since the name of a class denotes a sequence of all the elements of the class member type
in the database, all the operators on sequences can be applied to classes.

let rec

Persons class

Person <->

[ Name: string;

BirthYear : int;

Address: [PermanentAddress: string ];

Age:= meth() :int is

CurrentYear - self.BirthYear ]

key (Name);

mkPerson([Name:="Smith"; BirthYear:=1964;

Address:=[PermanentAddress:="14 St, New York"] ]);

- : Person

6.5 Subclass Bindings

Classes can be organized into a subset hierarchy. Let C2 be a subclass, with member type T2,
de�ned in terms of C1, with member type T1. C1 can be either a base class or a subclass.

The following constraints hold:

1. Structural constraint : T2 is de�ned by inheritance from T1, consequently T2 � T1.

2. Extensional constraint : If c is an element in C2 then c is also an element in C1.

3. Integrity constraint : C2 inherits the triggers and the key constraint in C1.
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syntax: SubClassBinding ::=

Id1 subset of Id2 class

Id3 <-> is Id4 and [ NewAttributes ]

[BeforeMk] [BeforeDrop] [BeforeIn]

[key (Ide, ..., Ide)]

[ NewAttributes ] may be the empty record [ ].
The declaration introduces the same bindings as for base classes with the following di�er-

ences:

1. To satisfy the extensional constraint, mkId3 inserts the created value both in the subclass
Id1 and in the superclass Id2. In the current implementation mkId3, evaluates mkId4
�rst, then it checks assertions on the subtype Id3, and �nally inserts the value created in
the superclass by mkId4 in the subclass Id1. If a failure is generated, the value created
in the superclass by the mkId4 is removed.

2. inId3 inserts into the subclass Id1 a value already present in the superclass Id2.

3. When the type T is dropped from a value, the value is removed from the corresponding
class and its subclasses.

let Students subset of Persons class

Student <->

is Person and

[ StudentCode: int;

Address: [PermanentAddress: string;

TemporaryAddress: string] ]

before mkStudent(this)

if Not this.StudentCode > 0

do failwith "StudentCode must be > 0"

key (StudentCode);

inStudent

((get Persons where Name = "Smith"),

[StudentCode := 253;

Address:=

[PermanentAddress := "14 St, New York";

TemporaryAddress := "Walker Road, Berverton" ] ]);

- : Student
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6.6 Parallel Declarations

A set of bindings can be introduced with the multiple declarations D1 and D2: it exports the
bindings of D1 and of D2. The construct is \parallel" in the sense that the bindings of D1

are not imported by D2 and vice versa. It is illegal to declare the same identi�ers both in D1

and D2.

syntax: ParallelDeclaration ::=

Declaration and Declaration

let type PositiveInt <-> int

before mkPositiveInt(this)

if Not this > 0

do failwith "PositiveInt must be > 0"

and Departments class

Department <-> [Name: string; Budget: int];

6.7 Recursive Declarations

The environment operator rec D permits recursive de�nitions: it exports the identi�ers ex-
ported by D, and the bindings of D are imported by D.

syntax: RecursiveDeclaration ::=

rec Declaration

let rec Factorial := fun(x: int): int is

if x = 0 then 1 else x * Factorial(x-1);

> Factorial = fun : int -> int

use x := 10 in Factorial(x);

3628800 : int

Note that if rec were omitted, the identi�er Factorial on the right of := would not refer to
its de�ning occurrence on the left of :=, but to some previously de�ned identi�er (if any) in
the surrounding environment.
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A recursive declaration behaves correctly if used to de�ne functions, classes, abstract
types, and recursive values of abstract types; it cannot be used to de�ned recursive concrete
values and types. For example, let us de�ne a mandatory one-to-one association between two
sets of objects:

let rec

Nations class

Nation <->

[ Name :string;

Capital :Capital]

key(Name)

and

Capitals class

Capital <->

[ Name :string;

Nation :Nation]

key(Nation);

To guarantee the properties of the association, the class elements must be created and elimi-
nated in a single operation by rede�ning the operators mk and drop as follows:

let mkNationCapital:=

fun(NNation:string, NCapital :string)

:Nation # Capital is

use rec

TheNation := mkNation( [ Name := NNation;

Capital := TheCapital ] )

and

TheCapital := mkCapital( [ Name := NCapital;

Nation := TheNation ] )

in (TheNation, TheCapital);

let mkNation := nil;

let mkCapital := nil;

let dropNation :=

fun(x: Nation) :null

is (dropCapital(x.Capital);dropNation(x));

let dropCapital :=

fun(x: Capital) :null

is dropNation(x.Nation);
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Note that a parallel declaration D1 and D2, with D2 a recursive declaration rec D3, must
be written as D1 and f| rec D3 |g, since the binding power of the environment operators is
and > rec.

6.8 Sequential Declarations

Cascaded, or sequential, declarations are provided by the environment operator ext. The
latter di�ers from and in that, in the expression D1 ext D2, D2 is evaluated in the current
environment extended with the bindings of D1. If an identi�er is de�ned both in D1 and D2,
then its value in the resulting environment will be that evaluated in D2.

syntax: SequentialDeclaration ::=

Declaration ext Declaration

let type ABirthYear <-> int

before mk(this)

if Not this>0

do failwith "a birth year must be >0 "

ext rec type Person <->

[ Name: string;

BirthYear: ABirthYear;

Age:= meth() :int is

CurrentYear - self.BirthYear ];

If an identi�er is de�ned as private in D1, then it can be used in D2, but it is unde�ned in
the resulting environment. For example the following de�nition:

let private y := 5

ext x := derived 3 + y

and z := y * y;

introduces in the current environment only the bindings between x and the computed value
3 + y, and z = 25, while the private identi�er y is unde�ned outside the declaration.

The binding power of the environment operators is and > rec > ext.
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7 Type Hierarchies

The Galileo 97 type system supports inclusion polymorphism: i.e. a subtype relation is de�ned
on types such that if a type t is a subtype of u (written also t � u), then any value of type
t can be used where a value of type u is expected; consequently

� Functions with argument of type u also accept a value of type t (substitutability prin-
ciple).

� Control structures with components of type u also accept values of type t (e.g., the
condition of an if expression may have a value whose type is a subtype of bool).

� Control structures which require a set of values of the same type (the values of the
sequence constructor and the branches of conditional and case expressions), also accept
values with a common supertype, if each value has a type comparable to the most
general type of the previous ones. In this case, the resulting type is the most general
type.

Subtyping for concrete types is only determined by the structure of type terms, while for
semi-abstract types it is determined both by the structure of the representation types, and
by an explicit user declaration.

The rules describing when two types are included, are as follows:

� Every type is included in itself.

� Every type is included in any.

� int is a subtype of real.

� The type none is included in every type.

� If r and s are record types, then r � s i� the set of identi�ers of r contains the set of
identi�ers of s, and, if r' and s' are the types of a common identi�er, then r' � s'.
For instance the type

[ Name:string;

Address:[City:string; Street:string ] ]

includes

[ Name:string;

Age:int;

Address:[City:string; Street:string; Country:string ]]
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� If r and s are variant types, then r � s i� the set of identi�ers of r is contained in the set
of identi�ers of s, and, if r' and s' are the types of a common identi�er, then r' � s'.
For instance the type (|Integer:int or Boolean:bool|) includes (|Integer:int|).

� If seq r and seq s are sequence types, then seq r � seq s i� r � s.

� A modi�able type var r is a subtype of another type var var s i� r and s are the same
type.

� If (r -> s) and (r' -> s') are function types, then (r -> s) � (r' -> s') i� r'

� r' and s � s'. For instance the type

seq [Name:string; Age:int] -> [Name:string]

includes

seq [Name:string] -> [Name:string; Count:int].

� if T1 = all[X1; ...;Xn] r -> s and T2 = all[Y1; ...;Yn] r' -> s' are polymor-
phic function types, then T1 � T2 i� (r -> s) � (r' -> s')[Y1 <- X1, ..., Yn <-

Xn], where T[Y <- X] denotes the substitution of X for all the free occurrence of Y in T.

� if T1 = all[X1<:Z1; ...;Xn<:Zn] r -> s and T2 = all[Y1<:W1; ...;Yn<:Wn] r'

-> s' are bounded polymorphic function types, then T1 � T2 i� W1 � Z1, : : :, Wn � Zn

and (r -> s) � (r' -> s')[Y1 <- X1, ..., Yn <- Xn], where T[Y <- X] denotes
the substitution of X for all the free occurrence of Y in T.

� Let T and T' be semi-abstract types. T � T' if the subtype relation is declared explicitly
as follows:

type T <-> is T 0 [NewAssertions]

The assertions on T are those of T' and NewAssertions.

� A type T <-> is T' and Tr NewAssertions, is a subtype of T'. The assertions on T

are those of T' and NewAssertions.

For instance the type

type Thing <-> [Name:string]
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includes

type LivingThing <-> is Thing and [BirthDate:Date]

� A type T <-> Tr is a subtype of Tr. If Tr is a record type with private properties, T
<-> Tr is a subtype of Tr without the private properties. For example:

let rec

type Rectangle <->

[ private base :int;

private height :int;

perimeter := meth() :int is

(self.height + self.base)*2;

getBase := meth() :int is self.base;

getHeight := meth() :int is self.height

]

before mkRectangle(this)

if Not this.base > 0 And this.height > 0

do failwith "height and base must be > 0" ;

is a subtype of

[ perimeter :int;

getBase :int;

getHeight :int

]

� Type hierarchies with view types. A relation T '�T means that any operation which
can be applied to any value of type T can also be applied to any value of type T '. A
virtual object O with type:

T = <T 1,...,T m> view [A1:S1;...;An:Sn]

can be submitted to two kinds of operations:

{ message passing: O.Ai, O!Ai;

{ object extraction: O As T j .

Hence, a type T ' is a subtype of T if it contains enough object identities and components
to be able to deal with every object extraction and message passing operation which is
supported by T . More precisely:
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<T '1,...,T 'm> view [A1:S1;...;An:Sn]
� <T 1,...,T r> view [B1:R1;...;Bs:Rs]

if (a) for each T i exists a T 'i such that T 0

i � T i and (b) for each pair Bi:Ri there is a
pair Aj:Sj such that Ai = Bj and Si � Rj .

The principle that an object view type speci�es the object extraction and message pass-
ing operations which can be applied to a type, implies that the following two equivalences
hold:

T � <T > view [+T ]
[A1:S1;...;An:Sn] � <> view [A1:S1;...;An:Sn]

It should be noted that the types none and any do not represent a relaxation of the strict
typing of Galileo 97, but they can only be used for very particular purposes. In fact, functions
which receive a parameter of type any, can be given any value as an actual parameter, but
cannot extract any information from it, while a function with a parameter of type none can
apply any operation on its parameter, but can receive as an actual value only the value
unknown.
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8 Equality

With object databases that support object identity there are three kinds of equality:

� Identity equality (identical) (\=="). This corresponds to the equality of references or
pointers in conventional languages: two objects are identical if their identities are the
same.

� Shallow equality (\="). Two objects are shallow equal if they have the same run{
time type and their states are identical. That is, it goes one level deep, and compares
corresponding identities of the state components.

� Deep equality (deep equal). This is a purely value-based deep equality: two objects are
deep equal if they have the same run{time type and their states are value-based deep
equal.

In Galileo 97, every type is associated with an equality function, and the equality of two values
is determined using the equality function associated with their static type. More precisely,
a = a' is well typed if the type of a is either a supertype or a subtype of the type of a',
and a and a' are compared using the equality function associated with the supertype. As
a consequence, the same pair of values can be equal or di�erent according to the type it is
accessed through. For example, the following two expressions would evaluate to false and
true, respectively, since the b �eld would be ignored in the second comparison:

[a:=1; b:=2] = [a:=1; b:=3] ==> false

[a:=1; b:=2]:[a:int] = [a:=1; b:=2] ==> true

Equality on concrete data types operands (with the exception of updatable references, and
functions) is structural equality : two values are equal when they are the same atomic object,
or all their components are equal.

Equality on updatable reference values and functions is identity or sameness , i.e. pointer
equality (e.g. var 3 = var 3 is false, because a new location is created every time var is
used).

Equality on semi-abstract data types operands is sameness .
The situation is slightly more complex with view types, which are to some extent inter-

mediate between object and record types. In this case, the rule is that two values O1 and O2

belonging to type

<T 1,...,T m> view [A1:S1;...;An:Sn]

are equal if:
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(O1 As T 1) = (O2 As T 1) And ... And (O1 As T m) = (O2 As T m) And

O1.A1 = O2.A1 And ... And O1.An = O2.An.

Note that:

1. for each Ai �eld the associated equality is used. Hence, methods are compared by
identity (since they are functions), updatable �elds are also compared by identity, and
constant concrete �elds are compared by value;

2. two records are equal in type [ ...] i� they are equal in type <> view [ ...] .

The points above highlight that equality on view values generalizes both role and record
equalities. One may also expect that, whenever T � S, then a : T = b is the same as
a : S = b. However, this is not always true. As a counterexample, consider a pair of role
types S � T . In accordance with the view types subtyping rules, the following equivalence
holds:

<S> view [ ] � <T ,S> view [ ]

Now, let s be a role of type S and t1,t2 be two di�erent roles of type T . Comparing t1

times s with t2 times s gives two di�erent answers in the two types above, since only in
the second case are the two virtual objects also compared with respect to the result of the
operation x As T , which gives two di�erent results.

(t1 times s):<S> view [ ] = (t2 times s) => true

(t1 times s):<T ,S> view [ ] = (t2 times s) => false

The fact that two types that are equivalent with respect to subtyping are not equivalent
with respect to equality is not very satisfactory, but could be avoided by adopting a more
complex notion of equality, where two objects in type <T 1,...,T m> view [ ..] are also
compared with respect to the result of O As S for every supertype S of every T i. Choosing
the best approach is a matter for further research.

Let us consider the following object type de�nitions to show how role comparison depends
on the type used to access the roles:

let rec type

Person <->

[ Name: string;

BirthYear: int;

WhoAreYou:= meth() :string is

"My name is " & self.Name

] ;
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let rec type

Student <-> is Person and

[ SNumber: string;

Faculty: string;

WhoAreYou := meth() :string is

super.WhoAreYou &

". I am a student of " &

self.Faculty

] ;

let rec type

Athlete <-> is Person and

[ Code: int;

Sport: string;

WhoAreYou := meth() :string is

super.WhoAreYou &

". I practice " & self.Sport

];

let John := mkPerson ([ Name := "John Smith";

BirthYear := 1967 ]);

let JohnAsStudent :=

inStudent(John, [ SNumber := "0123";

Faculty := "Science" ]);

let JohnAsAthlete :=

inAthlete(John, [ Code := 123;

Sport := "Soccer" ]);

let NewAthlete := mkAthlete([Name := "John Smith";

BirthYear:= 1967;

Code := 2;

Sport := "Basket" ]);

The following expression

JohnAsStudent = JohnAsAthlete;

is not well typed since JohnAsStudent and JohnAsAthlete are not subtypes of each other.
John and JohnAsAthlete can be compared if they are considered of type Person as follows,

and the equality prdicates returns true:
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(JohnAsStudent:Person) = JohnAsAthlete;

Two virtual objects can be compared by identity using an appropriate view type. For example:

let type IdPerson := <Person> view [] ;

(JohnAsStudent project [SNumber;Name]:IdPerson)

= (JohnAsAthlete project [Code;Name]:IdPerson); is true

Two role values can be compared by ignoring their identity using an appropriate record type,
which allows both the shallow and deep equality to be simulated. For example:

let type PersonRecord :=

[Name:string; BirthYear: int] ;

(JohnAsStudent:PersonRecord)

= (JohnAsAthlete:PersonRecord); is true

(JohnAsStudent:Person)

= NewAthlete; is false

(JohnAsStudent:PersonRecord)

= (NewAthlete:PersonRecord); is true
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9 Input-Output

Input-output is quite simple. There is an idea of an input stream and an output stream
(initially connected to the session window), which are used implicitly by input and output
operations.

The input stream is redirected to a �le by:

infile: string -> bool

returns true if the �le with the speci�ed name exists and it can be opened as an input
�le. If an end-of-�le is found, or if an infile("") is executed, the input is returned to
the stream connected to the session window.

caninput: null -> bool

returns true if the input is from the session window or if there are characters to be
read from a �le. If it returns false, the input is returned to the stream connected to
the session window.

The output stream is redirected to a �le by:

outfile: string -> bool

returns true if the �le with the speci�ed name can be opened as an output �le. If an
outfile("") is executed, the output returns to the stream connected to the session
window.

Output functions are:

printstring :string -> null

writes a string of characters.

printint :int -> null

writes an integer.

printreal :real -> null

writes a real.

blanks :int -> null

writes n blanks.

newlines :int -> null

writes n lines.
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classes :null -> seq string

writes the class and subclass names de�ned in the current environment.

There are two kinds of input operations: bu�ered with echo and unbu�ered without echo.

9.1 Bu�ered Input

getline :null -> string

reads and returns a string of characters delimited by the current read pointer and
terminated with the return key. If there are no characters to read, getline waits until
a new line is typed. Characters are bu�ered until a line is composed (that is until return
key is typed), and the backspace can be used to delete the last character typed.

getchar :null -> char

reads and returns the �rst character available on the input line. If there are no characters
to read, getchar waits until a new line is typed.

Note that the characters written on a new line are consumed one at a time for each
application of getchar.

getint :null -> int

reads and returns the integer value corresponding to the optional sign and digits read. If
there are no digits to read, getint waits until they are typed. If the �rst character after
the optional sign is not a digit, getint fails and does not consume the other characters
in the line.

getreal :null -> real

reads and returns a real value. getreal consumes the maximum input string matching
a legal real number. If there are no characters to read, getreal waits until they are
typed. If the �rst character after the optional sign is not a digit, getint fails and does
not consume the other characters in the line.

The following example shows an application of the above functions:

let rec

Students class

Student <-> [ SNumber: int; BirthYear: int; Name: string;

Print := meth() :string is

implode({ self.Name; " ";

stringofint(self.SNumber); " ";
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stringofint(self.BirthYear)}) ];

let ReadStudent := fun(): Student is

use name := getline()

in if name = " " then failwith "End of data"

else mkStudent( [ Name:= name;

SNumber:= getint();

BirthYear := (getchar();

getint()) ] );

let ReadStudents := fun() :int is

use n := var 0

in ((while caninput() do

(ReadStudent(); n <- (at n) + 1)) iffails nil;

at n);

let ReadStudentsFromWindow := fun(): int is

(newlines(1);

printstring("Insert data as follows:");

newlines(1);

printstring("Name <return> SNumber <blank>");

printstring("BirthYear <return>");

newlines(1);

printstring("To terminate, add a line starting");

printstring(" with a blank.");

newlines(2);

ReadStudents());

let ReadStudentsFromFile := fun(File:string): int is

(if infile(File) then ReadStudents()

else failwith "The file cannot be opened");

let WriteStudents := fun(): null is

loop Students do (printstring(Print); newlines(1));

let WriteStudentsIntoWindow := WriteStudents;

let WriteStudentsIntoFile := fun(File:string): null is

(if outfile(File) then (WriteStudents(); outfile(""); nil)

else failwith "The file cannot be created");
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9.2 Unbu�ered Input

The function

inchar :null -> char

returns the character typed by the user after the function application. The typed character
is not shown at the terminal. It is used to write interactive programs such as those that are
waiting for the selection of an option from a menu. For example:

let f := fun(): null is

(printstring("Type a number between 0 and 9. ");

newlines(2);

use c := inchar()

ext n := first(explodeascii(c)) - first(explodeascii("0"))

in if (n >= 0) And (n <= 9)

then (printstring("The number is "); printint(n))

else printstring("You must type a digit!");

newlines(2));

9.3 The Menu Library

The input/output functions have been used to de�ne the Menu Library to construct and use
two kinds of menu: simple and general (see Section 12.3).

A simple menu is a list of items (sentences) which can be selected by specifying the
associated number. When a menu item is selected, the item number is returned.

A general menu is a list of items (sentences) which can be selected to display another
menu or to apply a function.

Simple Menu

A simple menu is created with the function mkSimpleMenu, whose parameters are the menu
title and the list of menu items; for example:

let myMenu :=

mkSimpleMenu("Select a color", {"Red"; "Yellow"; "Green"});

The number of items is limited to 9.
The menu is displayed using the function simpleInteract:

simpleInteract(myMenu);

Select a color
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1) Red

2) Yellow

3) Green

Type a number

The function simpleInteract returns the selected item number.

General Menu

To de�ne and use a general menu, we will now give an example to show how to use the Menu
library.

Let us assume that we need a menu with the following items:

Main Menu

1) Exit

2) Display submenu

3) Display main menu

Type a number

The submenu has has the following items:

Submenu

1) Exit

2) Print item id

3) Print item name

4) Display main menu

Type a number

First, the menu titles and menu items are de�ned as follows:
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let m1 := mkMenu("Main Menu");

let m2 := mkMenu("Submenu");

The function mkMenu takes a string as its parameter and returns a menu without items, with
title the string passed as a parameter.

The construction of a menu item is made with the function mkItem, which has the following
parameters:

1. the item name;

2. the item id, a number that is di�erent from any other item id;

3. the function to apply when the item is selected; the function parameter is the selected
item (the function can be the no-operation NullOperation when the selection is used
only to display another menu);

4. the �nal action, that is to exit ((|quitMenu|)) or to display another menu ((|enter-
Menu := <anotherMenu>|)).

let i1 := mkItem("Exit",10,

(fun(x:menuItem):null is

(printstring("Ciao");

newlines(1))

),

(|quitMenu|));

let i2 := mkItem("Display submenu",20,

(fun(x:menuItem):null is

printstring("Test submenu")),

(|enterMenu := m2|));

let i3 := mkItem("Display main menu", 30,

NullOperation,

(|enterMenu:=m1|));

let i4 := mkItem("Exit ", 40,

(fun(x:menuItem):null is

(printstring("Ciao");

newlines(1))

),

(|quitMenu|));

let i5 := mkItem("Print item id", 50,
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(fun(x:menuItem):null is

use c := x.id in

(printstring("The item id is ");

printint(c);

newlines(1))),

(|enterMenu := m2|));

let i6 := mkItem("Print item name", 60,

(fun(x:menuItem):null is

use c := x.name in

(printstring("The item name is ");

printstring(c);

newlines(1))),

(|enterMenu := m2|));

The menu method addItem is used to add an item in a certain position (a number between
1 and 9) to a menu.

m1.addItem(i1, 1); m1.addItem(i2,2); m1.addItem(i3,3);

m2.addItem(i4,1); m2.addItem(i5,2);

m2.addItem(i6, 3); m2.addItem(i3, 4);

Once a menu has been constructed, it can be displayed using its method interact:

m1.interact;

A menu item is created as visible and active, but it can change status with the methods
setVisible, setInvisible, setActive, and setInactive. When a menu item is inactive,
it will be displayed but it cannot be selected. For example:

i4.setInactive;

m1.interact;

i4.setActive;

i5.setInvisible;

m1.interact;
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10 Known Bugs and Limitations

The Galileo 97 interpreter presents the following bugs and limitations that will be removed
in a future release:

� Concrete values and types (e.g. a record and a record type) must not be de�ned recur-
sively; however, because of a bug in the type checker, the system does not prevent such
de�nitions, which can enter the interpreter into a non terminating loop. With the other
recursive de�nitions (functions, classes, objects) the system works correctly.

� A �le to be loaded with the command load must be in the same folder as the Galileo
application. The �le content must be terminated with a carriage return.
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11 Galileo 97 Publication List

Galileo 97 is the result of a redesign of the Galileo language [Alb83, ACO85, AGOP88] aimed
at a better integration of an object mechanism into a database programming language.

The role mechanism in Galileo 97 is shaped over the one proposed for Fibonacci [ABGO93,
AGO95].

An implementation technique for objects with roles is discussed in [ADG95].
The operators to construct virtual objects are discussed in [AAG95].
An overview of the language features is given in [AAB+95].
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12 Examples

12.1 Operations on Strings

extract :string # int # int -> string

extracts a substring from a string: the �rst argument is the source string, the second
argument is the starting position of the substring in the string (the �rst character in a
string is at position 1), and the third argument is the length of the substring. It fails
with string "extract" if the numeric arguments are out of range.

match :string # string -> bool

returns true if the �rst argument is equal to the second argument, the latter can contain
special characters: ? is about to any character; * refers to any string of characters; #
refers to any numeric character; @ refers to any alphabetic character.

let extract:=

fun(x:string, f:int, L:int):string is

use s:= explode(x)

ext l:= count(s)

in if l < f Or l < f + L - 1

then failwith "extract"

else use r:= var {nth(s,f)}

and c:= var 1

in if L = 1

then implode(at r)

else (while (at c) <= L - 1 do

(r<- nth(s, (at c) + f) :: (at r);

c <- (at c) + 1 );

implode(reverse(at r))

);

let match := fun(a: string, b:string):bool is

use letters:= explode("qwertyuiopasdfghjklzxcvbnm") append

explode("QWERTYUIOPASDFGHJKLZXCVBNM")

and digits:= explode("1234567890")

ext rec try:= fun(a :seq string, b :seq string):bool is

if emptyseq(a)

then emptyseq(b)

else

if first(a) = "*"

then subsL(rest(a),b)

else

if emptyseq(b)
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then false

else

if first(a) = "#"

then

if first(b) isin digits

then try(rest(a),rest(b))

else false

else

if first(a) = "@"

then

if first(b) isin letters

then try(rest(a),rest(b))

else false

else

if (first(a) = "?")

Or (first(a) = first(b))

then try(rest(a),rest(b))

else false

and subsL:= fun(a :seq string, b :seq string): bool is

if try(a,b)

then true

else

if Not emptyseq(b)

then subsL(a, rest(b))

else false

in try(explode(b), explode(a));
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12.2 Date Library

The object type Date provides the following attributes and methods:

Day :int

Month :int

Year :int

returns the day, month, and year of a date.

Print :string

prints the date with the format dd/mm/yyyy.

IsLeap :bool

tests for leap years.

DateToDays :int

maps dates to integers. DateToDays maps the date 1/1/1 to the integer 1.

LessEqDate :Date -> bool

tests for temporal precedence.

AddDays :int -> Date

adds days to a date.

A value of type Date is constructed with the function:

mkDate :int # int # int -> Date

with parameters a day, a month, and a year.

The object type MyDate is de�ned by inheritance from Date with the rede�nition of the
method Print to print a date with the format Month dd, yyyy.

let rec

type Date <->

[ Day :int;

Month :int;

Year :int;

Print := meth() :string is

implode({stringofint(self.Day);"/";
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stringofint(self.Month);"/";

stringofint(self.Year)});

private Leap := meth(Year :int) :bool is

use isdiv := fun(x :int, y:int) :bool

is (x mod y = 0)

in if isdiv(Year, 100)

then isdiv(Year,400)

else isdiv(Year,4);

IsLeap := meth() :bool is self.Leap(self.Year);

private MonthToDays :=

meth(Month :int, Year :int) :int is

use MonthTable := {0;31;59;90;120;151;181;

212;243;273;304;334;365}

in

nth(MonthTable, Month) +

if (Month > 2) And (self.Leap(Year))

then 1 else 0;

DateToDays := meth() :int is

use PastYears := self.Year - 1

%complete years between 1/1/1 and d%

in PastYears*365 +( PastYears div 4) +

(PastYears div 400) +

self.MonthToDays(self.Month, self.Year) +

self.Day - (PastYears div 100);

LessEqDate := meth(d :Date) :bool is

self.DateToDays <= d.DateToDays;

private DaysToDate := meth(Days :int) :Date is

use Days := var (Days - 1)

and E4Years := 365 * 4 + 1

ext E100Years := E4Years * 25 - 1

ext E400Years := E100Years * 4 + 1

ext year := var (((at Days) div E400Years) * 400 + 1)

in (Days <- (at Days) mod E400Years;

year <- at year + ((at Days) div E100Years) * 100;

Days <- (at Days) mod E100Years;

year <- at year + ((at Days) div E4Years) * 4;

Days <- (at Days) mod E4Years;

year <- at year + ((at Days) div 365);

Days <- ((at Days) mod 365) + 1;

use month := var 0

in (month <- ((at Days) div 30) + 1;

while at Days <= self.MonthToDays(at month,

at year)

do month <- at month - 1;
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Days <- at Days - self.MonthToDays(at month,

at year);

mkDate([Year := at year;

Month := at month;

Day := at Days ])) );

AddDays := meth(Days :int) :Date is

self.DaysToDate(self.DateToDays + Days)

]

before mk(this)

if Not(

use y := this.Year

and m := this.Month

and d := this.Day

and within := fun(V :int, m :int, M :int) :bool is

if V >= m And V <= M

then true

else false

in y >= 0 And

within(m, 1, 12) And

within(d, 1, if m=2

then if y mod 4 = 0

then 28

else 29

else if m isin {4;6;9;11}

then 30

else 31) )

do failwith "wrong values for a data";

let mkDate :=

fun(G:int, M:int, A:int):Date is

mkDate( [Day := G; Month := M; Year := A] );

% Another Date type to print dates with the format

"Month D, Y" %

let rec type

MyDate <->

is Date and

[Print := meth() :string is

use MonthName := {"January";"February";"March";

"April"; "May";"June";"July";

"August";"September";"October";

"November";"December"}

in
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implode({nth(MonthName,self.Month);" ";

stringofint(self.Day);", ";

stringofint(self.Year)});

AddDays := meth(Days :int) :MyDate is

inMyDate( (self As Date)!AddDays(Days), [ ] )

];

let mkMyDate :=

fun(G:int, M:int, A:int):Date is

mkMyDate( [Day := G; Month := M; Year := A] );
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12.3 Menu Library

let rec type menuStruct <->

[ title: string;

items: var seq menuItem;

private display := meth() :int is

use c := var 0 in

(newlines(2);

printstring(self.title);

newlines(1);

loop (at self.items) do display(c);

newlines(1);

printstring("Type a number");

newlines(1);

at(c)

);

interact := meth() :null is

% See the effect of changing getchar with inchar %

use rec noBlanks := fun(x: string):string is

use s := explode(x)

in

if first(s) = " "

then noBlanks(implode(rest(s)))

else x

in

if emptyseq(at self.items) then nil

else

use validItems := self.display

ext char := var first (explodeascii(getchar()))

ext one := first (explodeascii("1"))

ext last := one + validItems - 1

in (while ((at char < one) Or (at char > last)) do

(newlines(1);

printstring

(({"Retry: the digits must be between 1 and " &

noBlanks(stringofint(validItems))}));

newlines(1);

char <- first (explodeascii(getchar())) );

use numHit := var (at char - first (explodeascii("0")))

in loop i In (at self.items) do

(if i.IamNth(numHit) then

(i.operation(i);

if i.tailAction is enterMenu

then (i.tailAction as enterMenu)
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.interact

else nil;

exit)

else nil));

addItem := meth(newItem: menuItem, position:int): menuItem is

use rec addOrd := fun(itemNum:int, itemList: seq menuItem)

: seq menuItem is

if position <= itemNum then newItem :: itemList

else if emptyseq(itemList) then {newItem}

else first(itemList) :: addOrd(itemNum+1,

rest(itemList))

in (if some (at self.items) with id = newItem.id

then failwith "duplicated item id"

else nil;

self.items <- addOrd(1, at(self.items));

newItem);

remItem := meth(itemId: int): null is

self.items <- (at self.items) where Not(id = itemId);

itemWithId := meth(itemId: int): menuItem is

(get x In (at self.items) where (x.id = itemId)).x

iffails failwith "No item with such id";

itemWithName := meth(itemName: string): menuItem is

pick((at self.items) where name = itemName)

iffails failwith "No item with such name"

]

and type menuItem <->

[ name: string;

id: int;

operation: menuItem -> null;

tailAction: (| quitMenu or enterMenu: menuStruct |);

private active: var bool;

private visible: var bool;

setActive := meth() :null is self.active <- true;

setVisible := meth() :null is self.visible <- true;

setInvisible := meth() :null is self.visible <- false;

setInactive := meth() :null is self.active <- false;

IamNth := meth(c:var int): bool is

(if (at self.visible) And (at self.active)

then c <- at c - 1

else nil;

(at c) = 0);

display := meth(c:var int):null is

(if (at self.visible) then
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(newlines(1);

if (at self.active) then

(c <- at c + 1;

printint(at c))

else printstring("-");

printstring(")");

blanks(3);

printstring(self.name);

newlines(1)

)

else nil

)

];

% Redefinition of the constructors %

let mkMenu :=

fun(title:string): menuStruct is

mkmenuStruct ([title := title;

items := var({}:seq menuItem)]);

let mkItem := fun(name: string, id:int, op: menuItem -> null, tail:

(| quitMenu or enterMenu: menuStruct|))

: menuItem is

mkmenuItem([name := name;

id := id;

operation := op;

tailAction := tail;

active := var true;

visible := var true]);

let NullOperation := fun (x:menuItem):null is nil;

% Declarations for the simple menu version %

let private lastIdSelected := var 0

ext

mkSimpleMenu :=

use idOp := fun(i: menuItem): null is lastIdSelected <- i.id

ext mkSimpleItem :=

fun(name: string, id:int): menuItem is

mkmenuItem([name := name;

id := id;
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operation := idOp;

tailAction := (|quitMenu|);

active := var true;

visible := var true])

in fun(title: string, items: seq string): menuStruct is

mkmenuStruct ([title := title;

items := var

(use c := var 0

in select ( c <- (at c) + 1;

mkSimpleItem(i, (at c)))

from i In items

)])

ext

simpleInteract :=

fun(m: menuStruct): int is

(m.interact;

at lastIdSelected);

% Elimination of the standard constructors %

let mkmenuStruct :=

fun(x:[title : string; items : var seq menuItem]): none is

failwith

"To create a menuStruct please use mkSimpleMenu or mkMenu";

let mkmenuItem := fun(

x:[name : string; id: int;

operation: menuItem -> null;

tailAction: (| quitMenu or enterMenu: menuStruct |);

active: var bool; visible: var bool]): none is

failwith "To create a menuItem please use mkItem";
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12.4 Pictures

let type Point := real # real;

let type Tile := Point # Point;

let PrintPoint :=

fun(p :Point) :null is

(printstring("(");

printreal(fst(p));

printstring(",");

printreal(snd(p));

printstring(")") );

let PrintTile :=

fun(t :Tile) :null is

(printstring("(");

PrintPoint(fst(t));

printstring(",");

PrintPoint(snd(t));

printstring(")"));

let rec Pictures class

Picture <->

[ Class:string;

Area:= meth() :real is virtual;

Tile:= meth() :Tile is virtual;

Print := meth() :null is

( newlines(1);

printstring(" Class: ");

printstring(self.Class);

newlines(1);

printstring(" Area: ");

printreal(self.Area);

newlines(1);

printstring(" Tile: ");

PrintTile(self.Tile);

newlines(2))

];

let rec

Rectangles subset of Pictures class

Rectangle <-> is Picture and

[ Class := "RECTANGLE";
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Vertixes :Tile;

Area := meth() :real is

use t := self.Vertixes

in (fst(snd(t))-fst(fst(t))) *

(snd(snd(t))-snd(fst(t)));

Tile := meth() :Tile is

self.Vertixes

];

let rec

Circles subset of Pictures class

Circle <-> is Picture and

[ Class := "CIRCLE";

Center :Point;

Radius :real;

Area := meth() :real is

use r := self.Radius

in r * r * 3.14;

Tile := meth() :Tile is

use cx:= fst(self.Center)

and cy := snd(self.Center)

and r := self.Radius

in ((cx - r, cy - r),(cx + r, cy + r));

Print := meth() :null is

(newlines(1);

(super.Print);

printstring(" Center: ");

PrintPoint(self.Center);

newlines(1);

printstring(" Radius: ");

printreal(self.Radius);

newlines(2))

];

let c := mkCircle([Center := (1.5, 2.5); Radius := 12.]);

let r := mkRectangle([Vertixes:=((2.,3.5),(11.2,17.1)) ]);

select Print

from Pictures ;

Class:RECTANGLE

Area: 125.12000

Tile:((2,3.50000),(11.20000,17.10000))
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Class:CIRCLE

Area: 452.16000

Tile: ((-10.50000,-9.50000),(13.50000, 14.50000))

Center:(1.50000,2.50000)

Radius:12
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12.5 Parts

This is a toy application used in \M. P. Atkinson and O. P. Buneman, Types and Persis-
tence in Database Programming Languages, ACM Computing Surveys , 19(2):105-190, 1987"
to compare di�erent database programming languages. It represents a fragment of a man-
ufacturing company's parts and suppliers database; in particular, the way certain parts are
made of other parts, either composite or base bought outside. The database schema is shown
in Figure 2.

Parts

Base
Parts

Composite
Parts

Suppliers

UsesSupplies

Figure 2: Database schema

let NewCode:=

use Code := var 0

in fun() :int is

(Code <- at Code + 1;

at Code);

let rec Parts class

Part <->

[ Name: string;

Code:= NewCode();

Cost:= meth() :int is virtual;

Mass:= meth() :int is virtual;

UsedIn:= meth() :seq CompositePart is

CompositeParts where

(some x In Components with x.Part = self);

BasePartComponents := meth() :seq BasePart is

if self isalso BasePart

then {self As BasePart}

else use pc:= self As CompositePart

in setof(flatten(

select x.Part.BasePartComponents

from x In pc.Components

)

)

]
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and BaseParts subset of Parts class

BasePart <-> is Part and

[PartCost: int;

PartMass: int;

Cost:= meth() :int is self.PartCost;

Mass:= meth() :int is self.PartMass;

SuppliedBy:= meth() :seq Supplier is

Suppliers

where self isin (at PartsSold) ]

before mk(this)

if Not (this.PartCost > 0) And (this.PartMass > 0)

do failwith "Cost and Mass must be > 0"

and CompositeParts subset of Parts class

CompositePart <-> is Part and

[AssemblyCost :int;

Cost :=

meth() :int is

self.AssemblyCost +

sum(select (Part.Cost) * Quantity

from self.Components );

Mass :=

meth() :int is

sum(select (Part.Mass) * Quantity

from self.Components );

Components: seq [ Part: Part; Quantity: int ] ]

before mk(this)

if Not this.AssemblyCost > 0

do failwith "Assembly cost must be > 0"

and Suppliers class

Supplier <->

[ Name: string;

Address: string;

PartsSold: var seq BasePart

]

before mk(this)

if use isSet := fun(x:seq BasePart):bool is setof(x) = x

in Not(count(at (this.PartsSold)) > 0

And isSet(at (this.PartsSold)) )

do failwith "Parts sold must be at least one and all different"

key(Name) ;
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% ********* Data ********* %

let p1:=mkBasePart([ Name := "Piston";

PartCost := 10000;

PartMass := 1000 ]);

let p2:=mkBasePart([ Name := "Cylinder";

PartCost := 10000;

PartMass := 500 ]);

let p6:=mkBasePart([ Name := "Wheel" ;

PartCost := 2222;

PartMass := 222 ]);

let pc2:=mkCompositePart([ Name := "Piston-Cylinder" ;

AssemblyCost := 1000;

Components:=

{[ Part := p2; Quantity := 1 ];

[ Part := p1; Quantity := 1 ]}]);

let pcc1:=mkCompositePart(

[ Name := "Car" ;

AssemblyCost := 13000 ;

Components:=

{[ Part := pc2; Quantity := 6 ];

[ Part := (p6 As Part); Quantity := 4 ]} ]);

mkSupplier([ Name :="Bendini";

Address := "Via P.Tarditi 154, 11332, Biella";

PartsSold := var {p1; p2} ]);

mkSupplier([ Name :="Landini";

Address := "Via A. Lancia 1, 10121, Torino";

PartsSold := var {p6} ]);

mkSupplier([ Name := "Landocci";

Address := "Via A. Lancia 3, 10121, Torino";

PartsSold := var ({ }:seq BasePart) ]);

% ******* Queries ******* %

% Q1: Find Name, Cost and Mass of the base parts which

cost more than 100 %

select [Name := p.Name;

Cost := p.PartCost;

Mass := p.PartMass ]

from (p In BaseParts)
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where p.PartCost > 100 ;

% Q2: Find the name of base parts of a composite part with

a given name. %

select Name

from (get CompositeParts where Name = "Car").BasePartComponents;

select Name

from (get Parts where Name = "Car").BasePartComponents;

% Q3: Find Mass and Cost of a part with a given name.%

use p := get Parts where Name = "Car"

in [ Cost := p.Cost;

Mass := p.Mass];
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12.6 Library

A library has a set of books (one copy of each book), each identi�ed by a unique \call number".
Books may be loaned to borrowers, who may be faculty members. A book can normally be
borrowed for two weeks and two one week extensions are allowed. Some books may be placed
on restricted loan; these can only be taken out by faculty members for three days and cannot
be renewed. In general, any borrower may have on loan at most �ve books at any time, and
at most one short term loan book. A preliminary database schema is shown in Figure 3.

Publishers

Borrowers Loans

Authors

Books

Figure 3: Database schema

% Load "Date library" %

let ToDay := mkDate(2, 2, 1995);

let type NoRenewals <-> int

before mk(this)

if Not(this >= 0 And this <= 2)

do failwith "A loan may be renewed only twice";

let rec

Authors class

Author <->

[ FirstName: string;

LastName: string;

Nationality :string ]

and

Publishers class

Publisher <->

[ Name :string;

Address :string ]

key(Name)
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and

Books class

Book <->

[ CallN :int;

Publisher :Publisher;

Authors :seq Author;

Title :string;

LoanedTo:= meth(theBorrower: Borrower) :Loan is

(if theBorrower.NOutstandingLoans >= 5

then failwith "to many books on loan"

else if some Loans with Book = self

then failwith "Book not available"

else mkLoan(

[Book := self;

LoanedTo := theBorrower;

DueDate :=

var (ToDay.AddDays(14));

RenewalsLeft :=

var mkNoRenewals(2)

] )

)

]

key(CallN)

and

Borrowers class

Borrower <->

[ Name :string;

Address :var string;

BooksBorrowed := meth() :seq [Book :Book;

DueDate :Date;

RenewalsLeft :NoRenewals] is

select[ Book := Book;

DueDate := at DueDate;

RenewalsLeft := at RenewalsLeft ]

from Loans where LoanedTo = self;

NOutstandingLoans := meth() :int is

count(Loans where LoanedTo = self)

]

and

Loans class

Loan <->

[ Book :Book;

LoanedTo :Borrower;

DueDate :var Date;
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RenewalsLeft : var NoRenewals]

key(Book);

% Data %

let a1 := mkAuthor([FirstName := "joe"; LastName := "stoy";

Nationality := "American"]);

let a2 := mkAuthor([FirstName := "jim"; LastName := "jen";

Nationality := "American"]);

let a3 := mkAuthor([FirstName := "nik"; LastName := "wir";

Nationality := "Swiss"]);

let e1 := mkPublisher( [Name :="sw"; Address := "b" ] );

let e2 := mkPublisher( [Name :="aw"; Address := "nj" ] );

let b1 := mkBook([ CallN := 1; Publisher := e1; Authors := {a2;a3};

Title := "pa" ]);

let b2 := mkBook([ CallN := 2; Publisher := e2; Authors := {a1};

Title := "ds" ]);

let u1 := mkBorrower( [Name :="aa"; Address := var "di"] );

let u2 := mkBorrower( [Name :="rb"; Address := var "di"] );

b1.LoanedTo(u1);

b2.LoanedTo(u2);

The database schema is then re�ned by specialization as shown in Figure 4.

Publishers

Borrowers Loans

Authors

Books

ShortTerm
LoanBooks

Faculty
Members

Science
Publishers

Computer
Books

Figure 4: Database schema re�nement
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% Schema refinement %

let rec

ComputerBooks subset of Books class

ComputerBook <-> is Book and

[ Publisher: SciencePublisher;

CRSubjectCode :seq string]

and

ShortTermLoanBooks subset of Books class

ShortTermLoanBook <-> is Book and

[ ExpiryOfRestriction : Date;

LoanedTo:=

meth(theBorrower: Borrower) :Loan is

if Not theBorrower isalso FacultyMember

then failwith "Loan for FacultyMembers"

else

if (theBorrower As FacultyMember).HasShortLoan

then failwith "One ShortTermLoanBook only is allowed"

else

use ALoan:=

((self As Book)!LoanedTo) (theBorrower)

in (ALoan.RenewalsLeft <- mkNoRenewals(0);

ALoan.DueDate

<- ToDay.AddDays(3);

ALoan

)

]

and

SciencePublishers subset of Publishers class

SciencePublisher <-> is Publisher and [ ]

and

FacultyMembers subset of Borrowers class

FacultyMember <-> is Borrower and

[ Phone : string;

HasShortLoan := meth() :bool is

some x In Loans with (x.LoanedTo = self)

And (x.Book isalso ShortTermLoanBook)

];

let se1:= inSciencePublisher(e1, [ ]);

let sb1:= inComputerBook(b1,[Publisher := se1;

CRSubjectCode :=

{"Programming Language"}

]);
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let d1:= inFacultyMember(u1, [Phone := "887266"]);

let b3:= mkShortTermLoanBook

([ CallN:=3;

Publisher:=

mkPublisher([Name := "Oxford University Press";

Address := "Oxford"]);

Authors := {mkAuthor([FirstName := "A S";

LastName:="Hornby";

Nationality := "English" ]) };

Title := "Oxford Dictionary of Current English";

ExpiryOfRestriction:= mkDate(31, 12, 1996)

]);

b3.LoanedTo(d1);
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A Lexical Classes

Ascii characters are classi�ed into the following categories:

Illegal

Unacceptable in a source program. These characters are ignored, and a warning message
is printed.

Eof

End{of{�le character. It terminates an interactive session, or stops the process of read-
ing a source Galileo �le. A top level control{ D is interpreted as Eof, thereby exiting
the system.

Blank

Characters which are interpreted as a space character \?".

Digit

Digits.

Letter

Letters and other characters which can be used to form identi�ers.

Symbol

A class of characters which can be used to form operators (see Appendix I).

Escape

Escape character in strings. It behaves like a Symbol outside strings.

Quote

String quotation character.

Delim

One{character punctuation marks and parentheses.

Moreover, any sequence of legal characters enclosed between % and % is a comment. Each
comment is considered equivalent to a single space character.
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nul Illegal; soh Illegal; stx Illegal;

etx Illegal; eot Illegal; enq Illegal;

ack Illegal; bel Illegal; bs Illegal;

ht Blank; lf Blank; vt Blank;

ff Blank; cf Blank; so Illegal;

si Illegal; dle Illegal; dc1 Illegal;

dc2 Illegal; dc3 Illegal; dc4 Illegal;

nak Illegal; syn Illegal; etb Illegal;

can Illegal; em Illegal; sub Illegal;

esc Illegal; fs Illegal; gs Illegal;

rs Illegal; us Illegal; `\' Letter;

`!' Letter; `"' Quote; `#' Symbol;

`$' Letter; `%' Symbol; `&' Letter;

`'' Letter; `(' Delim; `)' Delim;

`*' Symbol; `+' Symbol; `,' Delim;

`-' Symbol; `.' Delim; `/' Symbol;

`0' Digit; `1' Digit; `2' Digit;

`3' Digit; `4' Digit; `5' Digit;

`6' Digit; `7' Digit; `8' Digit;

`9' Digit; `:' Symbol; `;' Symbol;

`<' Symbol; `=' Symbol; `>' Symbol;

`?' Letter; `@' Letter; `A' Letter;

`B' Letter; `C' Letter; `D' Letter;

`E' Letter; `F' Letter; `G' Letter;

`H' Letter; `I' Letter; `J' Letter;

`K' Letter; `L' Letter; `M' Letter;

`N' Letter; `O' Letter; `P' Letter;

`Q' Letter; `R' Letter; `S' Letter;

`T' Letter; `U' Letter; `V' Letter;

`W' Letter; `X' Letter; `Y' Letter;

`Z' Letter; `[' Delim;

`]' Delim; `^' Letter; `_' Letter;

`a' Letter; `b' Letter;

`c' Letter; `d' Letter; `e' Letter;

`f' Letter; `g' Letter; `h' Letter;

`i' Letter; `j' Letter; `k' Letter;

`l' Letter; `m' Letter; `n' Letter;

`o' Letter; `p' Letter; `q' Letter;

`r' Letter; `s' Letter; `t' Letter;

`u' Letter; `v' Letter; `w' Letter;

`x' Letter; `y' Letter; `z' Letter;

`{' Delim; `|' Symbol; `}' Symbol;

`~' Symbol;
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B Keywords

and And

any append as

As assert at

before bool

case class casefails

derived div do

drop

each else end

elsefail ext exit

extend extend*

fail failwith from

fun

get groupby

has

if iffails in

In int is

isin isalso isexactly

key

let loop meth

mk mod

none Not null

of optional or

Or

project project*

quit

real rec

rename rename*

seq some string

subset select

times* then type

use

var where

when while with
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C Prede�ned Identi�ers

Costanti

unknown unknown value
nil the only value of type null
true logic true
false logic false

Functions

append sequence append
avg number sequence average
blanks blanks output
caninput test for input
count sequence length
emptyseq test for empty sequence
explode string explosion
explodeascii string to ASCII conversion
first sequence head
fst �rst element in a pair
getchar bu�ered char input
getint bu�ered integer input
getline bu�ered string input
getreal bu�ered real input
implode string implosion
implodeascii ASCII to string conversion
inchar unbu�ered char input
infile to redirect input stream
intofreal real to int conversion
intofstring string to integer conversion
isin sequence membership
isunknown test for unknown
known sequence without unknown elements
min number sequence minimum
max number sequence maximum
newlines lines output
outfile to redirect output stream
printint integer output
printreal real output
printstring string output
realofstring string to real conversion
rest sequence tail
reverse sequence reverse
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snd second element in a pair
sort sequence sorting
stringofint integer to string conversion
stringofreal real to string conversion
sum number sequence total
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D Overloaded Operators

For each primitive or constructed type T', the operators automatically overloaded when de�n-
ing an abstract type T <-> T' are listed in the table. The type of the overloaded operators
is obtained substituting T for T'.

Type Operators

int >, <, =, >=, <=, <>, +, -, *, /, ~, mod, div

real >, <, =, >=, <=, <>, +, -, *, /, ~

bool =, And, Or, Not

string =

null =

any
none
record =, of, ., project, times, extend, rename

variant =, is, as

pair =

function fapplicationg
sequence =, append, isin, ::, some, each

record sequence =, append, isin, ::, some, each, .*

project*, times*, extend*, rename*

difference, intersection, union

locations =, at, <-

E Prede�ned Type Identi�ers

null Null Type
any Most general Type
none Least general Type
bool Boolean Type
int Integer Type
real Real Type
string String Type
-> Function Space In�x
seq Sequence Type Pre�x
var Modi�able Type Pre�x
view View Type In�x
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F Precedence of Operators

Operators are given in order of decreasing precedence, and for the in�x operators the asso-
ciativity is also shown.

{application} left associative

of . .* In left associative

isin isalso As isexactly left associative

is as (suffix)

~ at (prefix)

* / & mod div left associative

+ - left associative

= > < >= <= <> left associative

Not (prefix)

And left associative

Or left associative

:: right associative

append left associative}

difference intersection union left associative

project extend rename times

project* extend* rename* times* left associative

where left associative

get (prefix)

: (suffix)

<- left associative

, right associative

iffails left associative

groupby left associative
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G ASCII Codes

| 0 nul | 1 soh | 2 stx | 3 etx | 4 eot | 5 enq | 6 ack | 7 bel |

| 8 bs | 9 ht | 10 nl | 11 vt | 12 np | 13 cr | 14 so | 15 si |

| 16 dle | 17 dc1 | 18 dc2 | 19 dc3 | 20 dc4 | 21 nak | 22 syn | 23 etb |

| 24 can | 25 em | 26 sub | 27 esc | 28 fs | 29 gs | 30 rs | 31 us |

| 32 sp | 33 ! | 34 " | 35 # | 36 $ | 37 % | 38 & | 39 ' |

| 40 ( | 41 ) | 42 * | 43 + | 44 , | 45 - | 46 . | 47 / |

| 48 0 | 49 1 | 50 2 | 51 3 | 52 4 | 53 5 | 54 6 | 55 7 |

| 56 8 | 57 9 | 58 : | 59 ; | 60 < | 61 = | 62 > | 63 ? |

| 64 @ | 65 A | 66 B | 67 C | 68 D | 69 E | 70 F | 71 G |

| 72 H | 73 I | 74 J | 75 K | 76 L | 77 M | 78 N | 79 O |

| 80 P | 81 Q | 82 R | 83 S | 84 T | 85 U | 86 V | 87 W |

| 88 X | 89 Y | 90 Z | 91 [ | 92 \ | 93 ] | 94 ^ | 95 _ |

| 96 ` | 97 a | 98 b | 99 c |100 d |101 e |102 f |103 g |

|104 h |105 i |106 j |107 k |108 l |109 m |110 n |111 o |

|112 p |113 q |114 r |115 s |116 t |117 u |118 v |119 w |

|120 x |121 y |122 z |123 { |124 | |125 } |126 ~ |127 del |
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H Metasyntax

� Strings between quotes "like this one" are terminals ("" is the empty string).

� Identi�ers are non-terminals.

� X Y means X followed by Y.

� X j Y means X or Y.

� [X] means ("" j X).

� fXg means ("" j X fXg).

� fXgn means a sequence of at least n X.

� fX /";"g means ("" j X j X;X j X; ...; X, that is the empty string, X, or a sequence
of X separated by ;.

� fX/";"gn means a sequence of at least n X separated by ;.

� (X) means X.
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I Syntax of Lexical Entities

Letter ::=

"a" | .. | "z" | "A" | .. | "Z" | "_".

Digit ::=

"0" | .. | "9".

Symbol ::=

"!" | "#" | "%" | "&" | "*" | "+" | "-" | "/" | ":" | "<" |

"=" | ">" | "?" | "@" | "\" | "^" | "`" | "|" | "~" | "$".

Character ::= ... (see Appendix A for a list of legal characters)

Ide ::=

Letter {Letter | Digit}.

Integer ::=

{Digit}1.

Real ::=

{Digit}1 "." [{Digit}] [("e" | "E") ("+" | "-") {Digit}1].

Number ::=

Integer | Real

String ::=

""" {Character} """.
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J Syntax

Syntactic alternatives are in order of decreasing precedence.

Phrase ::=

[Exp | "let" Decl | Command] ";".

Command ::=

"load" String | "quit" | "outputoff" | "outputon" | ":" TypeIde.

SimpleExp ::=

Ide |

Number |

String |

"{" "}" ":" "seq" Type |

"{" {Exp /";"} "}" |

"[" {Ide ":=" Exp / ("and" | ";") } "]" |

"(|" Ide [ ":=" Exp] "|)" |

Exp, Exp |

"(" {Exp /";"}1 ")".

Exp ::=

SimpleExp |

"assert" Exp ["elsefail" Exp] |

Exp "(" {Exp /","} ")" |

Exp "[" {Type /";"} "]" |

Exp "[" {Type /";"} "]" "(" {Exp /","} ")" |

Exp ":" Type |

PrefixOp Exp |

Exp InfixOp Exp |

Ide "In" Exp |

"exit" |

"fail" |

"failwith" Exp |

"if" Exp "then" Exp "else" Exp |

"while" Exp "do" Exp |

"use" Decl "in" Exp |

"case" Exp "when" "(|" {Ide ":=" Ide "." Exp /"or"}1 "|)" |

Exp "iffails" Exp |

Exp "casefails" Exp Exp |

"fun" "("{ Ide ":" Type /","} ")" ":" Type "is" Exp |

"fun" "[" {Ide ["<:" Type] /";"} "]"

"("{ Ide ":" Type /","} ")" ":" Type "is" Exp |

"select" Exp "from" Exp |
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Exp "where" Exp |

"get" Exp |

"some" Exp "with" Exp |

"each" Exp "with" Exp |

Exp"."Ide |

Exp"!"Ide |

"super."Ide |

Exp "isalso" Ide |

Exp "isexactly" Ide |

Exp "As" Ide |

"loop" Exp "do" Exp |

Exp ".*" Exp |

Exp "groupby" "[" {Ide ":=" Exp / ("and" | ";") } "]" |

Exp ("extend" | "extend*")

"[" {Ide [":" Type] ":="

( Exp |

"meth" "("{Ide ":" Type /","} ")"

":" Type "is" Exp ) /";"}

"]" |

Exp ("project" | "project*") "[" {Ide [":" Type] /";"} "]" |

Exp ("times" | "times*") Exp |

Exp ("rename" | "rename*") "(" {Ide[{"."Ide}] "=>" Ide /";"} ")".

Decl ::=

ValBind |

Decl "and" Decl |

"rec" Decl |

"type" TypeBind |

Decl "ext" Decl.

ValBind ::=

["private"] Ide ":=" ( Exp | "derived" Exp) |

%Ide "("{Ide ":" Type}")" ":" Type ":=" Exp |

Ide "class" AbsTypeBind ["key" "(" {Ide / "," } ")" ] |

Ide "subset" "of" Ide "class" SubAbsTypeBind

["key" "(" {Ide /"," } ")" ].

TypeBind ::=

Ide ":=" Type | AbsTypeBind | SubAbsTypeBind.

AbsTypeBind ::=

Ide "<->" [Type | ExtRecordType]

[BeforeMK] [BeforeIn] [BeforeDrop]
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SubAbsTypeBind ::=

Ide "<->" "is" Ide ["and" ExtRecordType]

[BeforeMK] [BeforeIn] [BeforeDrop]

Type ::=

"seq" Type |

"var" Type |

"optional" Type |

"["{Ide ":" Type /";"} "]" |

"(|" {Ide ":" Type /"or"} "|)" |

Ide |

{Type /"#"}2 |

Type "->" Type |

"all" "["{Ide ["<:" Type] /";"} "]" Type "->" Type |

"<" {Type /","} ">" "view" "[" {Ide [":" Type]/";"}"]".

ExtRecordType ::=

"["{["private"] Ide (":" Type |

":=" (Exp |

"meth" "("{Ide ":" Type /","} ")"

":" Type "is" Exp )

) /";"} "]".

BeforeMK ::= "before" "mk" "(" Ide ")"

{"if" Exp "do" Exp}1.

BeforeIn ::= "before" "in" "(" Ide ["," Ide ] ")"

{"if" Exp "do" Exp}1.

BeforeDrop ::= "before" "drop" "(" Ide ")"

{"if" Exp "do" Exp}1.
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