
Reflection support by means of template
metaprogramming

Giuseppe Attardi, Antonio Cisternino

Dipartimento di Informatica, corso Italia 40, I-56125 Pisa, Italy
{attardi,cisterni}@di.unipi.it

Abstract. The C++ language has only a limited runtime type information sys-
tem, which doesn’t provide full reflection capabilities. We present a general
mechanism to support reflection, exploiting template metaprogramming tech-
niques. Two solutions are presented: a static one where metaclass information is
only available at compile time to produce class specific code; and a dynamic
one where metaclass objects exist at runtime. As a case study of technique we
show how to build an object interface to relational database tables. By just an-
notating a class definition with meta information, such as storage attributes or
index properties of fields, a programmer can define objects that can be stored,
fetched or searched in a database table. This approach has been used in building
a high-performance, full text search engine.

1 Introduction

When building generic components, capable of handling a variety of object types, not
yet known, the programmer is faced by a number of possibilities:

1. produce a library totally unaware of the specific kind of objects used by applica-
tions of the library. This is typical of C-based libraries, where parameters are
passed as arrays of raw bytes (i.e. void*). The application programmer must sup-
ply custom code required for converting back and forth the parameters between the
library and the application.

2. provide a multiple variant API, for a certain programming language, which in-
cludes one special function for each basic type, used to inform the component of
each specific supplied parameter [5, 6, 8, 10]. Consider for instance database inter-
faces like ODBC, graphic libraries like OpenGL. The component in this case has
more information available on parameters and can perform optimizations and pro-
vide higher-level services. The programmer must write sequences of invocations
whenever complex parameters are involved.

3. extend the application programming language with ad-hoc primitives for interact-
ing with the component, and supply a code generator or preprocessors which per-
forms source to source code transformations, producing specific code for each ap-
plication. For instance embedded-SQL allows inserting SQL-like statements within
an ordinary program: a preprocessor translates embedded SQL into suitable data-
base system calls.

4. develop a special purpose language for programming the component: e.g. Macro-
media Lingo, PL/SQL [10], etc.

5. exploit reflection [1]. Using reflection the library can inspect the parameter types
and optional traits and determine the proper way to handle them, e.g. converting
them or handling them with the most appropriate specific code.

Reflection is the most advanced and powerful solution, since it does not involve ex-
ternal tools from the programming language, relieves the application programmer
from low level interface coding, and enables a variety of domain optimization by the
component developer. Unfortunately reflection is not generally available in most
programming languages: most notable exceptions are Java, C#, CLOS, Smalltalk.

There are a few proposals for extending C++ with support for reflection. In [14, 15,
16] keywords are added to the language for specifying the location of meta-
information. A preprocessor generates C++ source code containing the appropriate
classes that reflects program's types. In [13] a similar approach is presented which
avoids the use of special keywords but still uses a preprocessor.

OpenC++ instead extends the C++ compiler providing support for reflection during
program compilation [17].

As pointed out in [12] the ability of handle reflective information at compile time
leads to more efficient and usable reflection-oriented programs. Nevertheless the
capability of accessing meta-information at runtime is fundamental for supporting
dynamic binding.

We present how to implement the technique of reflection in C++ by means of tem-
plate metaprogramming, which allows executing code at compile time which accesses
type information without involving a preprocessor. It is supported in standard C++
and can be used with any recent C++ compiler.

While reflection is normally available and used by a program at run time, our ap-
proach provides reflection support also to metaprograms at compile time. This allows
generating a specific version of the program or library, optimized to the special kind
of parameters in the application.

As a case study of the use of reflection, we show how to build an object interface
to a relational database table. The metaclass for objects to be stored in the table can be
annotated with custom information about methods and attributes, useful for instance
to express specialized traits, like indexing properties and size for a database column.

2 C++ Template Metaprogramming

C++ supports generic programming through the template mechanism, which allows
defining parameterized classes and functions. Templates together with other C++
features constitute a Turing-complete, compile-time sublanguage of C++. C++ can be
considered as a two-level language [2] since a C++ program may contain both static
code, which is evaluated at compile time, and dynamic code, which is executed at
runtime. Template meta-programs [2] are the part of a C++ source that is executed
during compilation. Moreover a meta-program can access information about types not
generally available to ordinary programs – with the exception of the limited facilities
provided by the Run Time Type Identification (RTTI) [3].

Template metaprogramming exploits the computation performed by the type
checker to execute code at compile time. This technique is used mostly for code selec-
tion and code generation at compile time. Its applications are mainly code configura-
tion, especially in libraries, and code optimization [2].

Partial evaluation can be used to produce optimized code, specialized for a particu-
lar combination of the arguments, allowing, for example, the development of generic
libraries that are specialized for each particular type used in an application.

In the examples below we use some useful meta-functions for testing types and
perform other common metaprogramming tasks [9], for instance, If<Condition,
Then, Else>, IsClass<T>, IsPointer<T>, IsConst<T>, Equals<T,
U>, IsA<T, U>.

We exploited metaprogramming for providing an introspection facility for C++.

3 C++ Reflection

Throughout the paper we will use the following example of a C++ class, named Do-
cInfo, which contains information about a collection of documents. The class defi-
nition is enriched with meta-information, as follows:

class DocInfo {
char const* name;
char const* title;
char const* type;
int date;

META(DocInfo,
(VARKEY(name, 2048, Field::unique),
VARFIELD(title, 2048),
VARFIELD(type, 32)),
KEY(date));

};

META is a macro which exploits template metaprogramming for creating a metaclass
for the class, as described later. Such annotation is the only effort required to a pro-
grammer for being able to use reflection on a certain class. The type of each attribute
is in fact deduced from the class definition, using template metaprogramming. Macros
VARKEY and VARFIELD allow supplying attribute traits: 2048 and
Field::unique for instance express storage properties of the attribute in our ap-
plication: in particular the maximum byte size and the kind of indexing for the col-
umn.

Using introspection capabilities we can define the template class Table that im-
plements a persistent table containing objects of a specified class:

Table<DocInfo> table("db/table");

The table can be queried through a cursor created on the results of the query, which
behaves essentially like an iterator on a list of objects.

Reflection involves creating a metaclass cointaining information about each class.
We describe how to provide interospection and intercession capabilities both to
metaprograms, through a metaclass type (static reflection), and to programs, through
metaclass objects present at runtime (dynamic reflection).

We limit our discussion to how to handle reflection on attributes of classes: con-
structors and methods may be dealt similarly.

Static reflection

In static reflection, the metaclass of a particular class (Foo), is defined by a corre-
sponding class (MetaFoo). The latter class stores information about the described
class in static members. For instance, let us consider the following class:

class Foo {
int attr1;
char* attr2;

};

The associated metaclass is the following:

struct MetaFoo {
typedef ctype class;
typedef Reflection::End _curr_type0;
static char* const name = "Foo";
// Field attr1
struct attr1_name { static char* const name = "attr1"; };
typedef Reflection::Field<attr1_name, class,
(int)&(((class*)0)->attr1), int, _curr_type0> _curr_type1;

// Field attr2
struct attr2_name { static char* const name = "attr2"; };
typedef Reflection::Field<attr2_name, class,
(int)&(((class*)0)->attr2), char*, _curr_type1> _curr_type2;
typedef _curr_type2 attributes;

};

The metaclass describes the attributes and methods using a template list. An attribute
is described by the following class:

template<class name_, class cont, int offs, class h_,
class t_ = End,
class traits_ = Reflection::defaultTraits>

struct Field {
typedef cont memberof;
typedef h_ attr_type;
typedef t_ Tail;
typedef traits_ traits;
enum { size = sizeof(attr_type), offset = offs };
static char * const name = name_::name;

};

A class field is described by suitable template parameters: t_ represents the tail of the
list, End the end of the list, h_ the type of the attribute which is stored in a typedef
within the class, cont is the class containing the field.
Without going into the details of the implementation, we just mention that the meta-
class provides informations like these:

MetaFoo::class; // the type Foo
MetaFoo::name; // the string "Foo"
MetaFoo::attributes::type; // type char*
MetaFoo::attributes::name; // the string "attr2"

The static metaclass can be used either by meta-functions or by standard code. In
the former case all computation is performed at compile time, while in the latter case
types and constants defined in the metaclass can be used at runtime.

The generic template metafunction Serialize for instance produces code for se-
rializing an object of a given type. This is the base case for the function:

template <class T>
struct SerializeBase {

static void serialize(T *p, byte* buffer) {} };

SerializeBase is called for the End type terminating the recursion through the
list of attributes of a class. The general case is the following:

template <class T>
struct Serialize {

static void serialize(typename T::memberof *p,
byte* s) {

typedef Reflection::If<
!Reflection::Equals<typename T::Tail,

typename Reflection::End>::VAL,
Serialize<typename T::Tail>,
SerializeBase<typename T::memberof> >::VAL next;

next::serialize(p, s);

typename T::type *m =
(typename T::type *)((char*)p + T::offset);

(T)m = *(T*)s;
}

};

Method serialize() generates the appropriate sequence of assignments for stor-
ing each field of the object, by recurring over the list of attributes of the metaclass. At
each step, serialize() gets called on the type of the next attribute. This generates
the serialization code for the following attributes. The current attribute gets serialized
by knowing the base pointer of the object and the attribute offset. An object foo can
be serialized to a location dest as follows:

Serialize<MetaFoo::attributes>::serialize(foo);

Static reflection does not handle subtype polymorphism: a metaprogram can only
know the formal parameter type, not the actual type.

Dynamic reflection

Dynamic reflection uses an instance of class MetaClass for describing a class. Each
class holds a static reference to its metaclass. The META construct for class Foo
produces the following code:

class Foo {
int attr1;
char* attr2;

typedef Foo _CLASS_;
static Field* _createFields() {

return &(
createField("attr1", (int)&((_CLASS_*)0)->attr1,

0, Field::unique, &((_CLASS_*)0)->attr1),
createField("attr2", (int)&((_CLASS_*)0)->attr2,

1024, Field::None, &((_CLASS_*)0)->attr2),
); }

static MetaClass metaClass;
};
MetaClass Foo::_metaClass("Foo", Foo::_createFields());

Method createFields() builds the list of fields for the class. Function create-
Field() creates an object of class Field with the specified attributes: the name of
the attribute, its offset, the size of the field, whether the field must be indexed and a
pointer to the attribute used to determine the type with template metaprogramming.
The operator,() for class Field has been overloaded to create a linked list of
Fields. The metaclass is initialized with its name and the list of fields. The same ap-
proach can be extended to methods and constructors.

Function createField() uses template metaprogramming to build the proper
Field object and it is defined as follows:

template <class T>
inline Field& createField(char_t const *name, size_t

offs, size_t maxLength,
Field::IndexType indexType, T*) {
MetaClass* mc = If<isClass<T>::VAL,

getMetaClass<T>,
noMetaClass>::VAL::get();

return
If< isPointer<T>::VAL,

FieldBuilder<VarField<deref<T>::VAL> >,
If< isClass<T>::VAL,

CompositeBuilder<T>,
FieldBuilder<FixedField<T>
> >::VAL

>::VAL::factory(name, offs, maxLength, indexType, mc);
}

Class Field is abstract and can be specialized for different kinds of fields, in par-
ticular: VarField, FixedField and CompositeField. FixedField is used
to represent an attribute of fixed size such as a number or a pointer. VarField is
used to represent a variable length type such as a C string. CompositeField is

Template classes derived from Field provide a method store() for storing the
field of an object in a table row. Here is the case for FixedField:

template <class T>
byte* FixedField<T>::store(byte*& row, byte* src) {

(T)row = *(T*)src;
return row + sizeof(T);

}

The serialization of an object foo of class Foo is performed by the static method
serialize() in Foo’s metaclass Foo::metaClass:

Foo::metaClass.serialize(row, &(byte*)foo);

which is defined as follows:

byte* MetaClass::serialize(byte*& row, byte* src) {
for (Field* fd = columns; fd != NULL; fd = fd->next)

row = fd->store(row, src + fd->offset);
return row;

}

This method simply iterates over the list of fields and for each field calls its virtual
store() method.

Static vs. dynamic reflection

When using dynamic reflection, having a metaclass is sufficient to manipulate objects
of the corresponding class, hence it is possible to define classes dynamically assem-
bling the field descriptions and other information. For instance, the metaclass for Foo
can be created like this:

MetaClass metaFoo("Foo",
createField("attr1", 0, 0, Field::unique, (int*)0,
createField("attr2", 4, 1024, Field::None,

(char**)0)));

Our framework provides class AnyObject to represent instances produced from
such metaclasses, and class DynamicTable for using them in tables:

AnyObject any(metaFoo);
any.field<int>(0) = 5;
any.field<char*>(1) = "value for attr2";
DynamicTable table("/tmp/foo", metaFoo);
table.insert(&any);

DynamicTable is just a variant of class Table and defines the same tables, pro-
vided the same metaclass is used. For instance an SQL interpreter needs to use the
DynamicTable interface in order to access a table created with C++ classes, since
the classes it will use are not known at compile time.

Certain methods used with dynamic reflection involve some runtime computations
for interpreting the metaclass information, while with static reflection the body of
such methods is expanded at compile time into code specific for the class. For exam-
ple, the dynamic version of method serialize() iterates through the fields of the
class and calls methods for storing each field. Instead the static version of serial-
ize() consists of a sequence of store operations of the appropriate type for each
field: there is no iteration nor invocation of virtual methods.

On the other hand dynamic reflection can use virtual methods, which cannot be
dealt instead with static reflection.

Both solutions suffer for a minor drawback: namespace pollution, since they intro-
duce classes or types (e.g. MetaFoo, Foo::_CLASS) that might conflict with
names present in the user program.

4 Case study: a relational object table

An object oriented interface library to a relational table must be capable of storing
objects of any class in rows of a relational table. Therefore the library must know the
structure of the class of the objects in order to perform serialization when storing the
object. The table schema is often extracted from the database itself, which was created
separately or by means of SQL constructs like “create table”. For fetching or
updating objects from a table, the library needs only to provide methods for accessing
the individual fields of a row: the programmer must know and specify the type of
each field being accessed and he is also responsible of storing values of the correct
type into the fields of the object. Table schema definition and table usage are inde-
pendent operations, of which the compiler is totally unaware: none of the information
involved in such operations is available to it, in particular type information.

On the other hand, if the programming language used to implement the interface
library supports introspection [1], the library can exploit it for determining the attrib-
utes of a class and their types. Through intercession [1] the library is then capable of
modifying the object’s attributes by accessing the description of the class.

An interface library built with introspection can provide a higher-level interface to
programmers, relieving them from the burden of reconstructing an object fetched
form a table or supplying detailed information about the class of the object.

We present the design for such an object interface to relational tables. The interface
goes beyond the ability to store flat objects, corresponding to relational rows, and

allows storing composite objects, containing other objects. A full object-oriented
database can be build with limited effort on top of this interface.

The relational table interface has been inspired by GigaBase [7], but exploits
metaprogramming in order to produce a suitable metaclass, capable of handling for
instance various kinds of attribute traits. The interface has been used in implementing
IXE, a fully featured, high performance class library for building customized, full-text
search engines.

Class Table implements a relational table stored on disk on a Berkeley Database
[4]. The template parameter to this class defines the structure of the table and must
provide a metaclass through the META construct. Various kind of indexing can be
specified through attributes traits, including inverted indexes and full-text indexes.

A program can load the data into the table as follows:

Table<DocInfo> table(table_file);
DocInfo aDocinfo(…);
table.insert(aDocInfo);

A query on the table can be performed as follows:

Query query(query_string);
QueryCursor<DocInfo> cursor(table, query);
while (cursor.hasNext()) {

DocInfo docInfo = cursor.get();
// use docInfo

}

Differently from traditional interfaces to database systems [5, 6, 8], here the cursor
returns a real object, built from database row data using reflection. The cursor is ca-
pable of accepting complex boolean queries, involving full-text searches on full-text
columns and other typical SQL conditions on other columns.

IXE uses dynamic reflection, which is required for dynamic class creation, a neces-
sary feature for building an SQL interpreter. In future versions of the library we will
combine static and dynamic reflection to exploit the efficiency of static reflection.

5 Conclusions

We have presented a general technique based on template metaprogramming for sup-
porting reflection in C++. Metaprogramming is crucial to the solution since it allows
accessing type information from the compiler and inaccessible otherwise.

We have shown how to use reflection to define a generic component for storing ob-
jects in a relational table. The component can be specialized to any class of objects.
Such component has been used in developing the search engine library IXE. The
application programmer can insert C++ objects directly into the table, without any
conversion. Search the table is done through a cursor interface that allows scanning
the results returned as C++ objects. The IXE library has proven effective in building
several customized search engines and its performance is superior to similar commer-
cial products.

Future work includes combining static and dynamic reflection. Static reflection
would be the preferred choice with fall-back on dynamic reflection when sufficient
type information is not available.

References

1. R.G. Gabriel, D.G. Bobrow, J.L. White, CLOS in Context – The Shape of the Design
Space. In Object Oriented Programming – The CLOS perspective. The MIT Press, Cam-
bridge, MA, 1993, pp. 29-61.

2. K. Czarnecki, U.W. Eisenacker, Generative Programming – Methods, Tools, and Applica-
tions. Addison Wesley, Reading, MA, 2000.

3. B. Stroustrup, The Design and Evolution of C++. Addison Wesley, Reading, MA, 1994.
4. Sleepycat Software, The Berkeley Database, http://www.sleepycat.com.
5. MySQL, MySQL, http://www.mysql.com.
6. Microsoft, ActiveX Data Objects,

http://msdn.microsoft.com/library/psdk/dasdk/adot9elu.htm.
7. K.A. Knizhnik, The GigaBASE Object-Relational database system,

http://www.ispras.ru/~knizhnik.
8. Sun Microsystems, Java Database Connectivity, http://java.sun.com/.
9. Petter Urkedal, Tools for Template Metaprogramming,

http://matfys.lth.se/~petter/src/more/metad.
10. R. Sunderraman, Oracle8™ Programming: a primer, Addison-Wesley, MA, 2000.
11. P. J. Plauger, A. Stepanov, M. Lee, D. Musser, The Standard Template Library, Prentice-

Hall, 2000.
12. J. Malenfant, M. Jaques, and F.-N. Demers, A tutorial on behavioral reflection and its

implementation. Proceedings of the Reflection 96 Conference, Gregor Kiczales, editor, pp.
1-20, San Francisco, California, USA, April 1996.

13. Tyng-Ruey Chuang and Y. S. Kuo and Chien-Min Wang, Non-Intrusive Object Introspec-
tion in C++: Architecture and Application. Proceedings of the 20th Int. Conference on
Software Engineering, IEEE Computer Society Press, pp. 312-321, 1998

14. Peter W. Madany, Nayeem Islam, Panos Kougiouris, and Roy H. Campbell, Reification
and reflection in C++: An operating systems perspective. Technical Report UIUCDCS-R-
92-1736, Dept. of Computer Science, University of Illinois at Urbana-Champaign, March
1992.

15. Yutaka Ishikawa, Atsushi Hori, Mitsuhisa Sato, Motohiko Matsuda, J. Nolte, Hiroshi
Tezuka, Hiroki Konaka, Munenori Maeda, and Kazuto Kubota, Design and Implementa-
tion of metalevel architecture in C++ – MPC++ approach. Proceedings of the Reflection
96 Conference, Gregor Kiczales, editor, pages 153-166, San Francisco, California, USA,
April 1996.

16. B. Gowing and V. Cahill, Meta-Object Protocols for C++: The Iguana Approach. Proc.
Reflection '96, San Francisco, California, 1996, pp. 137-152.

17. Shigeru Chiba. A metaobject protocol for C++. Conference Proceedings of Object-
Oriented Programming Systems, Languages and Applications, pp. 285-299, ACM Press,
1995.

