
Proceedings of Seventh International Joint Conference on Artificial Intelligence
Vancouver, Canada, August 1981, 504–510

Consistency and Completeness of Omega,
a Logic for Knowledge Representation

Giuseppe Attardi and Maria Simi

Massachusetts Institute of Technology
545 Technology Square
Cambridge, Mass. 02139
(617) 253-7891/5835

Istituto di Scienze dell’Informazione
Corso Italia 40
I-56100 Pisa, Italy
(50) 40 862

Abstract
Omega is a description system for knowledge embedding

which incorporates some of the attractive modes of expression
in natural language such as descriptions, inheritance,
quantification, negation, attributions and multiple viewpoints. It
combines mechanisms of the predicate calculus, type systems,
and pattern matching systems. Description abstraction is a
construct which we introduce to extend the expressive power of
the system. The logic foundations for the basic constructs of
Omega are investigated. Semantic models are provided, an
axiomatization is derived and the consistency and
completeness of the logic is established.

I. Introduction
Omega is a description system developed for knowledge
representation and reasoning [10]. Omega is a calculus of
descriptions rather then a calculus of predicates as ordinary
logic. The concept of description in logic, and in particular of
definite descriptions, can be traced back to the works by Frege
and by Russell [15]. Logicians have always been bothered by
the semantic problems raised by definite descriptions when
none or more then one individual meets the description.
Therefore they have favored their elimination by showing how
descriptions can be contextually replaced by means of other
constructs [16].

In Omega we deal with indefinite descriptions such as the
description "(a Man)". Omega then, has more the flavor of a
naive set theory. Omega however allows many ways to build
new objects, rather than the single set formation construct of set
theory. Omega is a type free system, in the sense that a single
logical type is admitted, the type of descriptions. With Omega
we achieve the goal of an intuitively sound and consistent
theory of classes which permits unrestricted abstraction within a
powerful logic system. Description abstraction is a construct
provided in Omega similar to set abstraction. Abstractions add
considerable expressive power to a language, nevertheless
such powerful constructs are likely to lead to inconsistencies or
paradoxes. The rules for abstraction we present have been
studied to avoid those problems. The proof of consistency that
is provided in the paper is therefore significant to establish this
claim.

The main goal of this paper is to present the logic theory
Omega, to introduce its models, derive an axiomatization and
finally to show the consistency and completeness of the system.

We consider the study of a knowledge representation system as
a logic system to be of fundamental importance. In this way we
isolate the basic deductive mechanisms from the intricacies of
specific programming languages or implementations. The
fundamental results obtained in this way can help us
understand the basic mechanisms of reasoning on a knowledge
base, and insure us of the soundness of the system.

This research was supported in part through a grant from
Olivetti to the Artificial Intelligence Laboratory of MIT.

The second author has been supported in part by a fellowship
of the Consiglio Nazionale delle Ricerche.

As an alternative to symbolic logic, many knowledge
representation systems use semantic networks [14] as their
basic formalism. The term "semantic" in the name "semantic
network" refers to the fact that the formalism was originally
developed to represent the semantic information necessary to
understand natural language. Despite their name, the
semantics of semantics network has never been satisfactorily
developed. In the work by Brachman [4], the ambiguities and
inadequacies of semantics networks are investigated. A typical
problem deals with the meaning and use of inheritance links.

In most cases the semantics of semantic networks is
determined by the way the processing routines of application
programs manipulate the information represented by nodes and
links of the network. Many authors consider semantic networks
as embedded into first order predicate calculus [9, 18], so the
reasoning mechanisms are directly drawn from predicate logic.
Semantic networks can then be considered a convenient
notation (i.e. an alternative syntax) for expressing variable-free
assertions of predicate calculus. The notation is convenient
because it suggests an organization of the database of
assertions, highly suitable for mechanical manipulation.
Kowalski in [7] adopts this point of view, and also proposes an
extension to the notation of semantic networks in order to
express a more general class of formulas, including universally
quantified variables. The class he suggests is the class of Horn
clauses, i.e. formulas of the kind:

A1 � A2 ... An � An+1

where all Ai are positive atomic formulas. For this class of
formulas a uniform proof procedure based on resolution
performs reasonably well. However the expressive power is still
limited, mostly because of the restriction in the use of negation.

By drawing such connections between semantic networks and
predicate logic, one can argue that a semantics has been
provided for semantic networks. However, many of the
fundamental aspects of semantic networks, such as inheritance,
remain unexplained.

Other knowledge representation systems provide deductive
mechanisms of their own, most often procedurally defined [8],
[3], [5], [19]. Such deductive mechanisms are not formally
investigated, so their logical soundness can be questioned. It is
in fact the case that some of these systems perform unwanted
or incorrect deductions. An example of this kind of problems is
the so-called "copy confusion" effect reported by Fahlman about
his NETL system.

In comparison with other knowledge representation systems,
Omega has increased expressive power deriving from
including:

• variables: this allows description of complex general
relations, rather then isolated assertions;

• quantification: both over individuals and classes

(descriptions);

 505

• negation: this removes the major limitation of systems like
PROLOG, based on the use of Horn clauses;

• abstraction: allows description of classes of individuals in

terms of their properties. It is a very powerful construct,
which allows for instance to define the concept of converse
of a relation, that had to be given as primitive in [10].

We believe that recent proposals of parallel problem solving
systems such as Ether [12] will be suitable for implementing the
reasoning mechanisms demanded by a rich system such as
Omega. For instance the ability to process concurrently
proponents and opponents [12] of a same goal, is what is
needed to appropriately deal with sentences containing
negations. Conversely, it is the provision of negative facts what
makes the proponents/opponents metaphor profitable and
effective. So far the limitations on the use of negation seem to
have been dictated mainly by considerations related to
sequential proof algorithms.

In this paper we present and develop the description system
Omega, as a logic system. The system we develop has some
similarities with the one presented by R. Martin in [13], even
though we started with different aims and motivations. Martin’s
system is proposed as a system of mathematical foundation, as
an alternative to the classical theory of sets. However no result
of completeness or consistency for that logic is presented.

A sound logical theory for Omega is necessary as a formal
concise specification for the algorithms that will carry out the
reasoning process. Results such as the correctness or the
completeness of such algorithms can be established only with
respect to the theory. Properties and theorems about the theory
can be exploited in the design of the proof procedure, as it was
the case for the resolution algorithm in First Order Predicate
Logic.

We are leaving out from the present discussion other features
of Omega such as the calculus of attributions and of
metadescriptions.

A version of Omega has been implemented on the MIT LISP
machine by the authors and has been used to describe the
base of active knowledge supporting an experimental system of
office forms [1]. A second implementation of Omega is
currently under development by Jerry Barber. A subset of
Omega is being used to describe two dimensional objects within
the SBA system by Peter de Jong [6].

Our experience has proven that the axiomatization provides an
extremely useful guideline in the process of implementation.

II. Descriptions and Predications
This section is intended as an informal introduction to the theory
Omega. For more exhaustive presentation and examples we
refer to [10].

The simplest kind of description is the individual description,
like:

Boston

or

Paul

Here the names Boston and Paul are names describing
individual entities.

An instance description is a way to describe a collection of
individuals. For instance

(a Man)

represents the collection of individuals in the class of men.

The most elementary sentence in Omega is a predication. A
predication relates a subject to a predicate by the relation is.
For instance the predication

Paul is (a Man)

is meant to assert that the individual named Paul belongs to the
class of men. Predication can be used to relate arbitrary
descriptions. For instance the sentence:

 (a Man) is (a Mortal)

states the fact that any individual of class man is also an
individual of class mortal. A fundamental property of the relation
is is transitivity, that allows for instance to conclude that

Socrates is (a Mortal)

from

Socrates is (a Man) and (a Man) is (a Mortal)

The description operators and, or and not allow us to build
more complex descriptions, like in the following example:

(a Boolean) is (true or false)

More complex statements can be built by combining statements
with the logical connectives ∧, ∨, ¬ and ⇒, as in:

Jean is ((a Man) or (a Woman)) � � (Jean is (a Man))
 � Jean is (a Woman)

Note the difference between description operators and
statement connectives in the following examples:

(true ∧ false) is false
(true and false) is Nothing

where Nothing is our notation for "the null entity".

III. Syntax
The language of the theory Omega is presented here using the
kind of notation which has become standard in logic and
denotational semantics. We list first the syntactic categories of
the language. For each of them we show our choice of
metavariables ranging on the elements of that category, that we
will use in the rest of the exposition.

I: individual constants (i, i1, i2, i3 …), including

the constants true and false

V: variables (v, v1, v2, v3 …)

C: class constants (c, c1, c2, c3 …)

S: statements (� , � 1, � 2, � 3 …)

∆: descriptions (

�
,
�

1,
�

2,
�

3 …)

Descriptions and statements are built from constants and
variables according to the following syntax:

Descriptions

i, Nothing, Something
v
(a c)
(Any v such that �)
(
�

1 or
�

2)
(
�

1 and
�

2)
(not

�
)

�

Statements

true, false
v
(
�

1 is
�

2) �
v . �

(� 1 � � 2)
(� 1 � � 2)
(� �)
(� 1 � � 2)

Nothing and Something are two special constants.

 506

IV. Semantics
We have followed in this work the method of defining validity in
a semantic way. First we characterize a class of models for
Omega and define the notion of truth in a model. This gives an
intuitive and immediate semantic interpretation for our theory.
Then we look for an axiomatization for valid formulas of the
theory. The models defined earlier are useful in this stage for
providing a guideline and a criterion for the suitability of the
axiomatization.

By proving the completeness theorem, we show that the
axiomatization is adequate. Furthermore the completeness
result tells that our theory is consistent if and only if it has a
model. Therefore the existence of models presented in this
section implies the consistency of Omega.

The structure of the interpretation is

A = 〈D, I , C〉

where D is the domain of interpretation, a nonempty set of
individuals, I is a mapping from individual constants into
elements of D

I : I → D

and C is a mapping from class constants into subsets of D

C : C → 2D

A. Definition of Value of a Description
The value of a description can be defined as a mapping from
descriptions and environments into subsets of D.

V : ∆ → E → 2D

An environment defines an association between variables and
subsets of D.

E : V → 2D

Value of constant descriptions:

1. V [[i]]ρ = {I [[i]]}

a. V [[Nothing]]ρ = {}

b. V [[Something]]ρ = D

c. V [[v]]ρ = ρ(v)

2. V [[(a c)]]ρ = C[[c]]ρ

3. V [[(Any v such that �)]]ρ = {x∈D | A [[σ]]ρ[{x}/v]}

4. V [[(
�

1 or
�

2)]]ρ = V [[
�

1]]ρ ∪ V [[
�

2]]ρ

5. V [[(
�

1 and
�

2)]]ρ = V [[
�

1]]ρ ∩ V [[
�

2]]ρ

6. V [[(not
�
)]]ρ = D – V [[

�
]]ρ

7. V [[�]]ρ = V [[true]]ρ if A [[�]]ρ, V [[false]]ρ if A [[�]]ρ

The interpretation of the description abstraction Any is the set
of individuals which, substituted for v in the statement � , make
the statement true. The notation

 A [[�]]ρ

means that the statement � in the environment ρ is true relative
to the structure A, and it is completely defined in the next
section.

B. Definition of Truth Value

1. A [[true]]ρ, A [[¬false]]ρ

2. Variables

a. A [[v]]ρ iff ρ(v) = V [[true]]ρ

b. A [[¬ v]]ρ iff ρ(v) = V [[false]]ρ

3. A [[(
�

1 is
�

2)]]ρ iff V [[
�

1]]ρ ⊆ V [[
�

2]]ρ

4. A [[(
�

v . �)]]ρ iff for all x ∈ 2D, A [[�]]ρ[x/v]∗

5. A [[(� 1 � � 2)]]ρ iff A [[� 1]]ρ or A [[� 2]]ρ

6. A [[(� 1 � � 2)]]ρ iff A [[� 1]]ρ and A [[� 2]]ρ

7. A [[� �]]ρ iff not A [[�]]ρ

8. A [[(� 1 � � 2)]]ρ iff A [[� 1]]ρ implies A [[� 2]]ρ

The truth of a statement relative to a structure A is defined as:

Definition 1: (Truth) A � iff ∀ ρ A [[�]]ρ

Given the definition of truth, validity is defined as follows:

Definition 2: (Validity) � iff ∀ M m �

V. Axiomatization
We turn now to the question of finding an axiomatization of the
universally valid formulas.

The method that we followed in deriving the axiomatization, is
based on noting rules that preserve validity of formulae and
making them into axioms or inference rules.

A. Axiom Schemata
We present the axioms of the system in the form of natural
deduction inference rules [11]. As a matter of notation we will
use a double bar to indicate that a rule can be applied in both
directions. The bar is omitted if the set of premises is empty.

Axioms for Statements

S1: true
S2: ¬ false

S3: � � true
S4: false ⇒ σ

S5: true � � � � �
S6: � � � � � false

� 1 � � 2, � 1 � � 3S7:
� 1 � � 2 � � 3

� 1 � � 3, � 2 � � 3S8:
� 1 � � 2 � � 3

� 1 � � 2S9:
��� 2 � ��� 1

S10: � � � (���)
S11: � (���) � �

S12: � � � is true
S13: ��� � � is false

Not that this axiom set is not minimal, since for instance S1-S2,
S3-S4 and S5-S6 are pairwise derivable from one another. (A
similar remark applies to the axioms for descriptions presented
below).

The notion of "sameness" between descriptions is defined as
follows:

Definition 3: (Sameness)

(
�

1 same
�

2) iff ((
�

1 is
�

2) � (
�

2 is
�

1))

We will also need the following abbreviation:

Definition 4: (Individuality) Individual[δ] stands for

∗ ρ[x/v] is the same environment as ρ but for variable v to which
it associates x.

 507

� (
�
 is Nothing) �

�
 v . (v is

�
) � (

�
 is v) � (v is Nothing)

Axioms for Descriptions

D1:
�

1 is
�

2 �
�

 v. Individual[v] � v is
�

1 � v is
�

2
D2: Individual[i]

D3:
�
 is Something

D4: Nothing is
�

D5: Something is (
�
 or (not

�
))

D6: (
�
 and (not

�
)) is Nothing

�
1 is

�
2,
�

1 is
�

3D7: �
1 is (

�
2 and

�
3)

 �
1 is

�
3,
�

2 is
�

3D8:
(
�

1 or
�

2) is
�

3

�

1 is
�

2D9:
not

�
2 is not

�
1

D10: not (not
�
) is

�

D11:
�
 is not (not

�
)

The notion of individual, as it is formally defined, corresponds in
our interpretation to the set consisting of a single element, or
singleton. Axiom D1 then corresponds to the following version
of the axiom of extensionality for sets:

A 	 B �
�

 x
 A . {x} 	 A � {x} 	 B

Axiom D2 states the fact that individual constants are
individuals.

We have chosen this set of axioms so that there is an almost
complete symmetry between the axioms for statements and the
axioms for descriptions. In this way any theorem about
descriptions has a corresponding dual theorem about
statements. A single proof procedure will work for both
descriptions and statements.

There is another strong correspondence between statements
and descriptions, which is expressed in the following
Lemma 5:
1. Nothing same (Any v such that false)
2. Something same (Any v such that true)
3. (

�
1 or

�
2) same (Any v such that (v is

�
1) � (v is

�
2))

4. (
�

1 and
�

2) same (Any v such that (v is
�

1) � (v is
�

2))
5. (not

�
) same (Any v such that � (v is

�
))

Actually these statements could have as well been given as an
alternative axiomatization for description operators. We prefer
however the set of axioms presented above since they do not
involve explicitly description abstraction. The inference rules for
description abstraction are rather complicated. With the axioms
we have chosen, the use of abstraction rules and extentionality
(axiom D1) can often be avoided.

B. Inference Rules
It is easy to verify that these two transitivity rules preserve the
truth according to our interpretation:

� 1 � � 2, � 2 � � 3
�

1 is
�

2,
�

2 is
�

3
� 1 � � 3

�
1 is

�
3

The ordinary rule of Modus Ponens can be derived from
transitivity by letting � 1 be true.

Standard rules can be used for ⇒ introduction, ∀ introduction
(generalization) and ∀ elimination (instantiation).

The rules for description abstraction require more careful
examination. The most obvious formulation of the abstraction
rule for descriptions would be:

� [
�
]

�
 is (Any v such that � [v])

A1

and the corresponding concretion rule:
 �

 is (Any v such that � [v])
� [
�
]

C1

Unfortunately, these unrestricted forms for the abstraction and
concretion rules lead to contradiction. Consider for example

John is (a Man)

With (a Man) for δ, by A1, we get:

(a Man) is (Any v such that (John is v))

but if also

Paul is (a Man)

then by transitivity:

Paul is (Any v such that (John is v))

and by C1:

(John is Paul)

which might not be true.

A restricted form of the abstraction principle that avoids such
problems is the following:

� [
�
] � Individual[

�
]

�
 is (Any v such that � [v])

A2

Similar problems arise with an unrestricted concretion rule. Let
σ[v] = Individual[v] and suppose for instance:

Individual[John]
Individual[Paul]

then by A2

John is (Any v such that Individual[v])
Paul is (Any v such that Individual[v])

From the axiom D6, which introduces the or description, we get:

(John or Paul) is (Any v such that Individual[v])

and from this and C1:

Individual[John or Paul]

We solve this problem by restricting C1 analogously to what
we did for A1:
 �

 is (Any v such that � [v]) � Individual[
�
]

� [
�
]

C2

With this restriction to individuals, it is easy to verify that the
abstraction and concretion rules are sound.

Note that with this form of the concretion principle Russell’s
paradox is avoided. Suppose we call z the following description:

z ≡ (Any v such that ¬ (v is v))

If we allow C1, since z is z is true by reflexivity of is, we would
derive the paradoxical consequence:

¬(z is z)

We can show however that:

z same Nothing

because

(Any v such that ¬ (v is v)) same (Any v such that false)
same Nothing

 508

Therefore rule C2 cannot be applied because Nothing is not an
individual.

The complete set of inference rules is summarized in the
following table.

Inference Rules
Statements Descriptions

[σ1]
.
.

σ2

σ1 ⇒ σ2

σ1 ⇒ σ2, σ2 ⇒ σ3 δ1 is δ2, δ2 is δ3
σ1 ⇒ σ3

σ

 δ1 is δ3

σ[δ] ∧ Individual[δ]
∀ v . σ

provided v is not free
in any assumption
on which σ depends

∀ v . σ[v]

 δ is (Any v such that σ[v])

δ is (Any v such that σ[v])
∧ Individual[δ]

σ[δ] σ[δ]

As it can be seen from the formulation of the rules of abstraction
and concretion, Omega cannot be finitely axiomatized in first
order logic.

VI. Soundness and Completeness
The first result to be proved about the axiomatization is its
soundness:

Theorem 6: (Soundness) For every closed statement A, Γ A
⇒ Γ A

We are using the notation Γ A as an abbreviation for:

∀ M . (∀ � . � ∈ Γ ∧ m �) ⇒ M A]

The derivability relation is defined in a standard way, so that
Γ σ means that the statement σ can be derived from the
statements in Γ and from the axioms by applying the rules of
inference.

The soundness theorem states that whenever a statement can
be derived from the set of premises Γ then it is true in every
model that satisfies the statements in Γ. We omit here the proof
since the argumentation is straightforward.

We next turn to prove the completeness theorem for the theory
presented above.

The completeness theorem gives us a measure of the
adequacy of our axiomatization. In fact it asserts that the set of
valid formulas coincides with the set of theorems of our theory.
So it provides a bridge between what is established as
semantically valid, and what is established by symbolic
manipulations.

More important, this result is the fundamental step in showing
the consistency of our formal theory.

The completeness theorem can be formulated as follows:
Theorem 7: (Completeness) For every closed statement A, Γ

 A ⇔ Γ A.

We follow a Goedel-Henkin argument [17]. The implication Γ
A ⇒ Γ A corresponds to the soundness theorem. The other
direction of the implication is equivalent to saying:

Γ A ⇒ ∃ M Γ M A

If A cannot be derived from Γ then there exists a model that
satisfies Γ but not A. So we can prove the result by building a
model M, possibly in dependence from A, such that:

Γ A ⇒ Γ M A

In order to do that, for any given closed formula A, we build a
complete Henkin extension of theory Γ, called ΓA, having the
following additional properties:

Γ A ⇒ ΓA A (1)

ΓA (� 1 � � 2) ⇒ ΓA � 1 or ΓA � 2 (2)

Since ΓA is a complete Henkin extension of Γ, it also satisfies
the following properties:

Γ ⊆ ΓA (3)

For all closed σ either ΓA � or ΓA � � (4)

For every statement � [v], there is a constant c, such that:
ΓA � [c] ⇒ ∀ v . � [v] (5)

ΓA is built as the limit of an inductive sequence of theories,
starting from Γ. For the details of the construction we refer to
[2].

Next we prove the following lemma in order to prove that ΓA has
a model:

Lemma 8: (Main lemma) ∃ M . ∀ � . ΓA � ⇔ ΓA M �

The proof is outlined in the next section. Let M be such a
model for ΓA. Assuming now that Γ A, it follows that ΓA A
and then ΓA M A. Since a model of ΓA is also a model of Γ, we
have proved that:

Γ A ⇒ ∃ M . Γ M A

and the completeness theorem.

A. Proof of Main Lemma
We will prove the lemma by building a model M such that:

∀ � ΓA � ⇔ ΓA M �

M will be a term model built out of syntactic material. More
precisely equivalence classes of individual descriptions will be
the elements of the domain of interpretation. Let us define the
equivalence relation ~ as:

�
 ~
�
’ ≡ ΓA (

�
 same

�
’)

We will denote as |δ| the equivalence class of δ according to ~.

We will call Ind = {δ ∈ ∆ | Γ Individual[

�
]}. The domain of

interpretation is the quotient of the set Ind with respect to the
relation ~.

The model M is defined as: M = 〈Ind/~, I , C〉 where

I (i) = |i|
C (c) = {|

�
| |
�
 ∈ Ind and ΓA (

�
 is (a c))}

This model has the following significant property:

V [[
�
]] = {|

�
’| |
�
’ ∈ Ind and ΓA (

�
’ is

�
)}

This property establishes the connection between the
semantics (value of descriptions) and the syntax (derivability of
predications). Because Omega allows statements as special
cases of descriptions, this property is all is needed to establish
the main lemma, as the following result shows:

Lemma 9: If V [[�]] = {|

�
’| |
�
’ ∈ Ind and ΓA (

�
’ is �)} then

ΓA � ⇔ ΓA M �
Proof: Assume first that ΓA � . By axiom S12, it is also ΓA
(� is true). Using this fact and transitivity in the premise of the
lemma, we have

 509

V [[�]] ⊆ {|
�
’| |
�
’ ∈ Ind and ΓA (

�
’ is true)} = {|true|}

But by the definition of V:

V [[�]] = {|true|} if and only if ΓA M �

On the other hand, if we assume that ΓA M � then

V [[�]] = {|true|} = {|
�
’| |
�
’ ∈ Ind and ΓA (

�
’ is �)}

This means that ΓA (true is �). Since ΓA is complete, then
either ΓA � or ΓA � � . But the latter case is impossible
because, by applying axiom S13, we would get ΓA (� is
false), and by transitivity ΓA (true is false), which
contradicts the consistency assumption for ΓA.

Lemma 10: V [[

�
]] = {|

�
’| |
�
’ ∈ Ind and ΓA (

�
’ is

�
)}

Proof: The proof is done by induction on the structure of
descriptions. We give the flavor of the proof presenting a few of
the cases.
1. δ ≡ i.

V [[i]] = {|i|} = {|
�
’| |
�
’ ∈ Ind and ΓA (

�
’ is i)}

since i ∈ Ind by axiom D2. Note that this case takes care
also of the individual constants true and false.

2.

�
 ≡ (

�
1 or

�
2).

V [[
�

1 or
�

2]] = V [[
�

1]] ∪ V[[
�

2]] (by induction hypothesis)

{|
�
| |
�
 ∈ Ind and ΓA (

�
 is
�

1)} ∪

 {|
�
| |
�
 ∈ Ind and ΓA (

�
 is
�

2)} =

{|
�
| |
�
 ∈ Ind and ΓA (

�
 is
�

1) or ΓA (
�
 is
�

2)} (by prop. 2)

{|
�
| |
�
 ∈ Ind and ΓA (

�
 is
�

1) � (
�
 is
�

2)} (by Lemma 5.6)

{|
�
| |
�
 ∈ Ind and ΓA (

�
 is (

�
1 or

�
2))}

3. � ≡ (

�
1 is

�
2).

V [[
�

1]] ⊆ V[[
�

2]] (Assumption)

{|
�
| |
�
 ∈ Ind and ΓA (

�
 is
�

1)} ⊆

 {|
�
| |
�
 ∈ Ind and ΓA (

�
 is
�

2)} (by ind. hyp.)
�
 ∈ Ind and ΓA

�
’ is

�
1 ⇒ ΓA

�
’ is

�
2

ΓA
�

1 is
�

2 (by axiom D1)

ΓA (
�

1 is
�

2) is true (by axiom S12)

{|
�
| |
�
 ∈ Ind and ΓA (

�
 is (

�
1 is

�
2))} ⊆

 {|
�
| |
�
 ∈ Ind and ΓA (

�
 is true)} (by transitivity)

{|
�
| |
�
 ∈ Ind and ΓA (

�
 is true)} = {|true|} =

V [[
�

1 is
�

2]] (by definition of V).

The proof is similar under the hypothesis that: ¬ V [[
�

1]] ⊆ V[[
�

2]]

4. � ≡ (� 1 � � 2).

ΓA M � 1 or ΓA M � 2 (Assumption)

ΓA � 1 or ΓA � 2 (by ind. hyp. and lemma 9)

ΓA (� 1 � � 2) (by property 3 of ΓA)

ΓA (� 1 � � 2) is true (by axiom S12)

{|
�
| |
�
 ∈ Ind and ΓA (

�
 is (� 1 � � 2))} ⊆

 {|
�
| |
�
 ∈ Ind and ΓA (

�
 is true)} (by transitivity)

{|
�
| |
�
 ∈ Ind and ΓA (

�
 is true)} = {|true|} =

 V [[� 1 � � 2]] (by definition of V)

The proof is similar under the hypothesis that ΓA M � 1 and ΓA

 M � 2

Once lemma 10 has been established we can prove the main
lemma. In fact from lemma 9 we can deduce the following:

If ∀ � . V [[�]] = {|
�
’| |
�
’ ∈ Ind and ΓA (

�
’ is �)}

then ∀ � . ΓA � ⇔ ΓA M �

The main lemma follows from this and lemma 10.

VII. Consistency
The consistency of Omega can be established by means of the
following result:

Theorem 11: If an Omega theory Γ has a model, then it is
consistent.

Proof: Suppose Γ has a model M. Then Γ M false. From the
completeness result it follows that Γ M false which proves the
consistency of Γ.

VIII. Omega and other Formal Logic Theories
Omega is not a First Order Predicate Logic, since it includes a
variable binding operator, namely the Any construct, which is
not present nor expressible in First Order Predicate Logic. In
this sense Omega is more similar to set theory, which includes
set abstraction, besides universal and existential quantifiers.

The version of Omega presented here is a first order theory. We
are investigating extending the axiomatization to higher orders.
In [10] we presented examples of the use of higher order
capabilities.

Omega is a Set Theory. However Omega relies on constructors
for building new descriptions. In set theory, pairs for instance
are built by means of set formation alone. In Omega a Pair
constructor can be used to describe pairs of objects. A Pair of
two individuals will be an individual itself, therefore separating
the inheritance relationship from the component relationship.
Omega is a constructive set theory and has no axiom
corresponding to the powerset axiom of classical set theory.
The constructive nature of Omega implies that it is possible to
use the proof of a statement to determine a description which
meets some requirements or is the answer to a question.

IX. Conclusion
The results of this paper provide us with a solid base on which
to build a theory of knowledge representation. The system
presented is powerful enough to express arithmetic, by
following the construction of [13]. The use of attributions as in
[10] however increases the naturalness of the notation. There
are a number of problems regarding attributions to be
addressed such as: interaction between attributions, merging
and inheritance; functional dependencies between attributions;
contrasting uses of attributions (for instance attributions have
been used to express part/whole relationships as well as to
express n-ary relations). In [10] a preliminary set of axioms for
attributions was presented. A set theoretical model along the
lines of the present work has to be defined in order to obtain a
satisfactory full axiomatization of attributions. Such
axiomatization will appear in a forthcoming paper [2].

Another important construct allowed in Omega is the λ-
abstraction. The axiomatization for this construct is similar to
the axiomatization of the λ-calculus. This construct interacts
nicely with the inheritance mechanism of Omega, allowing the
same notation to be used for describing the type of a function
as well as for defining its values.

We have also investigated the problems arising from allowing
self-reference in the language. In order to avoid logical
paradoxes like the liar paradox, it is necessary to give up the
rules of excluded middle (axiom S5) and contradiction (axiom
S6). This allows models where the value of a sentence can be

 510

neither true nor false. Such solution follows the lines of the one
suggested by Visser in [20]. The logic can still be proved to be
complete, but the proofs by hypothetical reasoning become
more cumbersome.

Acknowledgement
Carl Hewitt has been the leading force behind the
developement of Omega and its axiomatization. Luca Cardelli
and Giuseppe Longo have thoroughly discussed our ideas in
the early stages of this work. William Clinger has provided
constructive criticism and encouragement. We had several
suggestions from Jerry Barber, who is involved in implementing
Omega, about the basic rules of deduction.

References

[1] Attardi G., Barber G. And Simi M. “Towards an integrated
office Work Station”. Strumentazione e Automazione
(March 1980).

[2] Attardi G., Hewitt C. And Simi M. “Semantics of
Inheritance and Attributions in the Description System
Omega”. AI MEMO forthcoming, MIT, 1981.

[3] Bobrow, D.G. and Winograd, T. “An Overview of KRL, a
Knnowledge Representation Language”. Cognitive
Science 1, 1 (1977).

[4] Brachman, R.J. “A Structural Paradigm for Representing
Knowledge”. Report 3605, Bolt Beranek and Newman
Inc., May, 1978.

[5] Ciccarelli, E. and Brachman, R.J. “Kl-One Reference
Manual”. BBN Report.

[6] De Jong, P. “Private communication”, Ferbruary 17th,
1981.

[7] Deliyanni, A. Kowalski, R.A. “Logic and Semantic
Networks”. Comm. ACM 2, 3(1979), 184-192.

[8] Fahlman, Scott. “NETL: A System for Representing and
Using Real World Knowledge”, MIT Press, 1979.

[9] Fikes, R. and Hendrix, G. “A Network-Based Knowledge
Representation and its Natural Deduction System”. Proc.
IJCAI-77, Cambridge, Mass. August, 1977, 235-246.

[10] Hewitt, C., Attardi, G. and Simi, M. “Knowledge
Embedding with the Description System Omega”, Proc. Of
First National Annual Conference on Artificial Intelligence,
Stanford University, August 1980, 157-163.

[11] Kalish and Montague. “Logic: Techniques of Formal
Reasoning”. Harcourt, Brace and World, 1984.

[12] Kornfeld W.A. “ETHER -- A Parallel Problem Solving
System”. Proc. Of 6th Int. Joint Conference on Artificial
Intelligence, Tokyo, 1979, 490-492.

[13] Martin, R.M. “A Homogeneous system for formal logic”.
The Journal of Symbolic Logic 8, 1 (1943).

[14] Quillian, M.R. “Semantic Memory”. In Semantic
Information Processing, M. Minki, Ed., MIT Press, 1968.

[15] Russell, B. “On Denoting”. Mind 14 (1905), 479-493.

[16] Scott, D. “Existence and Description in Formal Logic”. In
Bertrand Russell: Philosopher of the Century, R.
Scoenman, Ed., G. Allen & Unwin Tld, London, 1969.

[17] Shoenfield, J.R. “Mathematical Logic”. Addison-Wesley,
1967.

[18] Shubert, L.K. “Extending the Expressive Power of
Semantic Networks”. Artificial Intelligence 7 (1976), 163-
198.

[19] Steels, L. “Reasoning Modeled as a Society of
Communicating Eperts”. Ai Lab Technical Report 542,
MIT, June, 1979.

[20] Visser, A. “The Liar Paradox”. Lecture Notes, 1980.

