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Abstract 
Omega is a description system for knowledge embedding 

which incorporates some of the attractive modes of expression 
in natural language such as descriptions, inheritance, 
quantification, negation, attributions and multiple viewpoints. It 
combines mechanisms of the predicate calculus, type systems, 
and pattern matching systems. Description abstraction is a 
construct which we introduce to extend the expressive power of 
the system. The logic foundations for the basic constructs of 
Omega are investigated. Semantic models are provided, an 
axiomatization is derived and the consistency and 
completeness of the logic is established.  

I. Introduction 
Omega is a description system developed for knowledge 
representation and reasoning [10]. Omega is a calculus of 
descriptions rather then a calculus of predicates as ordinary 
logic. The concept of description in logic, and in particular of 
definite descriptions, can be traced back to the works by Frege 
and by Russell [15]. Logicians have always been bothered by 
the semantic problems raised by definite descriptions when 
none or more then one individual meets the description. 
Therefore they have favored their elimination by showing how 
descriptions can be contextually replaced by means of other 
constructs [16]. 
 
In Omega we deal with indefinite descriptions such as the 
description "(a Man)". Omega then, has more the flavor of a 
naive set theory. Omega however allows many ways to build 
new objects, rather than the single set formation construct of set 
theory. Omega is a type free system, in the sense that a single 
logical type is admitted, the type of descriptions. With Omega 
we achieve the goal of an intuitively sound and consistent 
theory of classes which permits unrestricted abstraction within a 
powerful logic system. Description abstraction is a construct 
provided in Omega similar to set abstraction. Abstractions add 
considerable expressive power to a language, nevertheless 
such powerful constructs are likely to lead to inconsistencies or 
paradoxes. The rules for abstraction we present have been 
studied to avoid those problems. The proof of consistency that 
is provided in the paper is therefore significant to establish this 
claim. 
 
The main goal of this paper is to present the logic theory 
Omega, to introduce its models, derive an axiomatization and 
finally to show the consistency and completeness of the system. 
 
We consider the study of a knowledge representation system as 
a logic system to be of fundamental importance. In this way we 
isolate the basic deductive mechanisms from the intricacies of 
specific programming languages or implementations. The 
fundamental results obtained in this way can help us 
understand the basic mechanisms of reasoning on a knowledge 
base, and insure us of the soundness of the system. 
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As an alternative to symbolic logic, many knowledge 
representation systems use semantic networks [14] as their 
basic formalism. The term "semantic" in the name "semantic 
network" refers to the fact that the formalism was originally 
developed to represent the semantic information necessary to 
understand natural language. Despite their name, the 
semantics of semantics network has never been satisfactorily 
developed. In the work by Brachman [4], the ambiguities and 
inadequacies of semantics networks are investigated. A typical 
problem deals with the meaning and use of inheritance links. 
 
In most cases the semantics of semantic networks is 
determined by the way the processing routines of application 
programs manipulate the information represented by nodes and 
links of the network. Many authors consider semantic networks 
as embedded into first order predicate calculus [9, 18], so the 
reasoning mechanisms are directly drawn from predicate logic. 
Semantic networks can then be considered a convenient 
notation (i.e. an alternative syntax) for expressing variable-free 
assertions of predicate calculus. The notation is convenient 
because it suggests an organization of the database of 
assertions, highly suitable for mechanical manipulation. 
Kowalski in [7] adopts this point of view, and also proposes an 
extension to the notation of semantic networks in order to 
express a more general class of formulas, including universally 
quantified variables. The class he suggests is the class of Horn 
clauses, i.e. formulas of the kind: 

A1 �  A2 ... An �  An+1 

where all Ai are positive atomic formulas. For this class of 
formulas a uniform proof procedure based on resolution 
performs reasonably well. However the expressive power is still 
limited, mostly because of the restriction in the use of negation. 
 
By drawing such connections between semantic networks and 
predicate logic, one can argue that a semantics has been 
provided for semantic networks. However, many of the 
fundamental aspects of semantic networks, such as inheritance, 
remain unexplained. 
 
Other knowledge representation systems provide deductive 
mechanisms of their own, most often procedurally defined [8], 
[3], [5], [19]. Such deductive mechanisms are not formally 
investigated, so their logical soundness can be questioned. It is 
in fact the case that some of these systems perform unwanted 
or incorrect deductions. An example of this kind of problems is 
the so-called "copy confusion" effect reported by Fahlman about 
his NETL system. 
 
In comparison with other knowledge representation systems, 
Omega has increased expressive power deriving from 
including: 

• variables: this allows description of complex general 
relations, rather then isolated assertions; 

 
• quantification: both over individuals and classes 

(descriptions); 
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• negation: this removes the major limitation of systems like 
PROLOG, based on the use of Horn clauses; 

 
• abstraction: allows description of classes of individuals in 

terms of their properties. It is a very powerful construct, 
which allows for instance to define the concept of converse 
of a relation, that had to be given as primitive in [10]. 

 
We believe that recent proposals of parallel problem solving 
systems such as Ether [12] will be suitable for implementing the 
reasoning mechanisms demanded by a rich system such as 
Omega. For instance the ability to process concurrently 
proponents and opponents [12] of a same goal, is what is 
needed to appropriately deal with sentences containing 
negations. Conversely, it is the provision of negative facts what 
makes the proponents/opponents metaphor profitable and 
effective. So far the limitations on the use of negation seem to 
have been dictated mainly by considerations related to 
sequential proof algorithms. 
 
In this paper we present and develop the description system 
Omega, as a logic system.  The system we develop has some 
similarities with the one presented by R. Martin in [13], even 
though we started with different aims and motivations.  Martin’s 
system is proposed as a system of mathematical foundation, as 
an alternative to the classical theory of sets. However no result 
of completeness or consistency for that logic is presented. 
 
A sound logical theory for Omega is necessary as a formal 
concise specification for the algorithms that will carry out the 
reasoning process. Results such as the correctness or the 
completeness of such algorithms can be established only with 
respect to the theory. Properties and theorems about the theory 
can be exploited in the design of the proof procedure, as it was 
the case for the resolution algorithm in First Order Predicate 
Logic. 
 
We are leaving out from the present discussion other features 
of Omega such as the calculus of attributions and of 
metadescriptions. 
 
A version of Omega has been implemented on the MIT LISP 
machine by the authors and has been used to describe the 
base of active knowledge supporting an experimental system of 
office forms [1].  A second implementation of Omega is 
currently under development by Jerry Barber.  A subset of 
Omega is being used to describe two dimensional objects within 
the SBA system by Peter de Jong [6]. 
 
Our experience has proven that the axiomatization provides an 
extremely useful guideline in the process of implementation. 

II. Descriptions and Predications 
This section is intended as an informal introduction to the theory 
Omega. For more exhaustive presentation and examples we 
refer to [10]. 
 
The simplest kind of description is the individual description, 
like: 

Boston 

or 

Paul 

Here the names Boston and Paul are names describing 
individual entities. 
 
An instance description is a way to describe a collection of 
individuals. For instance 

(a Man) 

represents the collection of individuals in the class of men. 
 

The most elementary sentence in Omega is a predication. A 
predication relates a subject to a predicate by the relation is. 
For instance the predication 

Paul is (a Man) 

is meant to assert that the individual named Paul belongs to the 
class of men. Predication can be used to relate arbitrary 
descriptions. For instance the sentence: 

 (a Man) is (a Mortal) 

states the fact that any individual of class man is also an 
individual of class mortal. A fundamental property of the relation 
is is transitivity, that allows for instance to conclude that 

Socrates is (a Mortal) 

from 

Socrates is (a Man) and (a Man) is (a Mortal) 

The description operators and, or and not allow us to build 
more complex descriptions, like in the following example: 

(a Boolean) is (true or false) 

More complex statements can be built by combining statements 
with the logical connectives ∧, ∨, ¬ and ⇒, as in: 

Jean is ((a Man) or (a Woman)) �  �  (Jean is (a Man)) 
   �  Jean is (a Woman) 

Note the difference between description operators and 
statement connectives in the following examples: 

(true ∧ false) is false 
(true and false) is Nothing 

where Nothing is our notation for "the null entity". 

III. Syntax 
The language of the theory Omega is presented here using the 
kind of notation which has become standard in logic and 
denotational semantics. We list first the syntactic categories of 
the language. For each of them we show our choice of 
metavariables ranging on the elements of that category, that we 
will use in the rest of the exposition. 
 
I: individual constants (i, i1, i2, i3 …), including 

the constants true and false 
 
V: variables (v, v1, v2, v3 …) 
 
C: class constants (c, c1, c2, c3 …) 
 
S: statements ( � , � 1, � 2, � 3 …) 
 
∆: descriptions (

�
, 
�

1, 
�

2, 
�

3 …) 
 
Descriptions and statements are built from constants and 
variables according to the following syntax: 
 

Descriptions 
 

i, Nothing, Something 
v 
(a c) 
(Any v such that � ) 
(
�

1 or 
�

2) 
(
�

1 and 
�

2) 
(not 

�
) 

�  
 

Statements 
 

true, false 
v 
(
�

1 is 
�

2) �
v . �  

( � 1 �  � 2) 
( � 1 �  � 2) 
( �  � ) 
( � 1 �  � 2) 

 
Nothing and Something are two special constants. 
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IV. Semantics 
We have followed in this work the method of defining validity in 
a semantic way. First we characterize a class of models for 
Omega and define the notion of truth in a model. This gives an 
intuitive and immediate semantic interpretation for our theory.  
Then we look for an axiomatization for valid formulas of the 
theory.  The models defined earlier are useful in this stage for 
providing a guideline and a criterion for the suitability of the 
axiomatization. 
 
By proving the completeness theorem, we show that the 
axiomatization is adequate.  Furthermore the completeness 
result tells that our theory is consistent if and only if it has a 
model.  Therefore the existence of models presented in this 
section implies the consistency of Omega. 
 
The structure of the interpretation is 

A = 〈D, I , C〉 

where D is the domain of interpretation, a nonempty set of 
individuals, I  is a mapping from individual constants into 
elements of D 

I  : I → D 

and C is a mapping from class constants into subsets of D 

C : C → 2D 

A. Definition of Value of a Description 
The value of a description can be defined as a mapping from 
descriptions and environments into subsets of D. 

V : ∆ → E → 2D 

An environment defines an association between variables and 
subsets of D. 

E : V → 2D 

Value of constant descriptions: 
 
1. V [[i]]ρ = {I  [[i]]} 

a. V [[Nothing]]ρ = {} 

b. V [[Something]]ρ = D 

c. V [[v]]ρ = ρ(v) 

2. V [[(a c)]]ρ = C[[c]]ρ 

3. V [[(Any v such that � )]]ρ = {x∈D |  A [[σ]]ρ[{x}/v]} 

4. V [[(
�

1 or 
�

2)]]ρ = V [[
�

1]]ρ ∪ V [[
�

2]]ρ 

5. V [[(
�

1 and 
�

2)]]ρ = V [[
�

1]]ρ ∩ V [[
�

2]]ρ 

6. V [[(not 
�
)]]ρ = D – V [[

�
]]ρ 

7. V [[� ]]ρ = V [[true]]ρ if  A [[� ]]ρ, V [[false]]ρ if  A [[� ]]ρ 
 
The interpretation of the description abstraction Any is the set 
of individuals which, substituted for v in the statement � , make 
the statement true. The notation 

 A [[� ]]ρ 

means that the statement �  in the environment ρ is true relative 
to the structure A, and it is completely defined in the next 
section. 

B. Definition of Truth Value 

1.  A [[true]]ρ,  A [[¬false]]ρ 

2. Variables 

a.  A [[v]]ρ iff ρ(v) = V [[true]]ρ 

b.  A [[¬ v]]ρ iff ρ(v) = V [[false]]ρ 

3.  A [[(
�

1 is 
�

2)]]ρ iff V [[
�

1]]ρ  ⊆  V [[
�

2]]ρ 

4.  A [[(
�

v . � )]]ρ iff for all x ∈ 2D,  A [[� ]]ρ[x/v]∗ 

5.  A [[( � 1 �  � 2)]]ρ iff  A [[� 1]]ρ or   A [[� 2]]ρ 

6.  A [[( � 1 �  � 2)]]ρ iff  A [[� 1]]ρ and   A [[� 2]]ρ 

7.  A [[�  � ]]ρ iff not  A [[� ]]ρ 

8.  A [[( � 1 �  � 2)]]ρ iff  A [[� 1]]ρ implies  A [[� 2]]ρ 
 
The truth of a statement relative to a structure A is defined as: 

Definition 1: (Truth)  A �  iff ∀ ρ  A [[� ]]ρ 
 
Given the definition of truth, validity is defined as follows: 

Definition 2: (Validity)   �  iff ∀ M  m �  

V. Axiomatization 
We turn now to the question of finding an axiomatization of the 
universally valid formulas. 
 
The method that we followed in deriving the axiomatization, is 
based on noting rules that preserve validity of formulae and 
making them into axioms or inference rules. 

A. Axiom Schemata 
We present the axioms of the system in the form of natural 
deduction inference rules [11]. As a matter of notation we will 
use a double bar to indicate that a rule can be applied in both 
directions. The bar is omitted if the set of premises is empty. 
 

Axioms for Statements 
 

S1: true 
S2: ¬ false 

S3: �  �  true 
S4: false ⇒ σ 

S5: true �  �  �  �  �  
S6: �  �  �  �  �  false 

� 1 �  � 2, � 1 �  � 3S7:
� 1 �  � 2 �  � 3

 
� 1 �  � 3, � 2 �  � 3S8:
� 1 �  � 2 �  � 3

 
� 1 �  � 2S9:
��� 2 �  ��� 1

S10: �  �  �  (��� ) 
S11: �  ( ��� ) �  �  

S12: �  �  �  is true 
S13: ���  �  �  is false 

Not that this axiom set is not minimal, since for instance S1-S2, 
S3-S4 and S5-S6 are pairwise derivable from one another. (A 
similar remark applies to the axioms for descriptions presented 
below). 
 
The notion of "sameness" between descriptions is defined as 
follows: 

Definition 3: (Sameness) 

(
�

1 same 
�

2) iff ((
�

1 is 
�

2) �  (
�

2 is 
�

1)) 

We will also need the following abbreviation: 

Definition 4: (Individuality) Individual[δ]  stands for 

                                                           
∗ ρ[x/v] is the same environment as ρ but for variable v to which 
it associates x. 
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� (
�
 is Nothing) �  

�
 v . (v is 

�
) �  (

�
 is v) �  (v is Nothing) 

 
Axioms for Descriptions 

 

D1: 
�

1 is 
�

2 �
�

 v. Individual[v] �  v is 
�

1 �  v is 
�

2 
D2: Individual[i] 

D3: 
�
 is Something 

D4: Nothing is 
�
 

D5: Something is (
�
 or (not 

�
)) 

D6: (
�
 and (not 

�
)) is Nothing 

�
1 is 

�
2, 
�

1 is 
�

3D7: �
1 is (

�
2 and 

�
3)

 �
1 is 

�
3, 
�

2 is 
�

3D8:
(
�

1 or 
�

2) is 
�

3

 
�

1 is 
�

2D9:
not 

�
2 is not 

�
1

D10: not (not 
�
) is 

�
 

D11: 
�
 is not (not 

�
) 

The notion of individual, as it is formally defined, corresponds in 
our interpretation to the set consisting of a single element, or 
singleton. Axiom D1 then corresponds to the following version 
of the axiom of extensionality for sets: 

A 	  B �  
�

 x 
  A . {x} 	  A �  {x} 	  B 

Axiom D2 states the fact that individual constants are 
individuals. 
 
We have chosen this set of axioms so that there is an almost 
complete symmetry between the axioms for statements and the 
axioms for descriptions. In this way any theorem about 
descriptions has a corresponding dual theorem about 
statements. A single proof procedure will work for both 
descriptions and statements. 
 
There is another strong correspondence between statements 
and descriptions, which is expressed in the following 
Lemma 5: 
1. Nothing same (Any v such that false) 
2. Something same (Any v such that true) 
3.  (

�
1 or 

�
2) same (Any v such that (v is 

�
1) �  (v is 

�
2)) 

4.  (
�

1 and 
�

2) same (Any v such that (v is 
�

1) �  (v is 
�

2)) 
5.  (not 

�
) same (Any v such that �  (v is 

�
)) 

 
Actually these statements could have as well been given as an 
alternative axiomatization for description operators. We prefer 
however the set of axioms presented above since they do not 
involve explicitly description abstraction. The inference rules for 
description abstraction are rather complicated. With the axioms 
we have chosen, the use of abstraction rules and extentionality 
(axiom D1) can often be avoided. 

B. Inference Rules 
It is easy to verify that these two transitivity rules preserve the 
truth according to our interpretation: 
 

� 1 �  � 2, � 2 �  � 3  
�

1 is 
�

2,  
�

2 is 
�

3 
� 1 �  � 3 

�
1 is 

�
3

 
The ordinary rule of Modus Ponens can be derived from 
transitivity by letting � 1 be true. 
 
Standard rules can be used for ⇒ introduction, ∀ introduction 
(generalization) and ∀ elimination (instantiation). 
 
The rules for description abstraction require more careful 
examination. The most obvious formulation of the abstraction 
rule for descriptions would be: 
 

� [
�
] 

�
 is (Any v such that � [v]) 

A1 

 
and the corresponding concretion rule: 
 �

 is (Any v such that � [v]) 
� [
�
] 

C1 

 
Unfortunately, these unrestricted forms for the abstraction and 
concretion rules lead to contradiction. Consider for example 

John is (a Man) 

With  (a Man) for δ, by A1, we get: 

(a Man) is (Any v such that (John is v)) 

but if also 

Paul is (a Man) 

then by transitivity: 

Paul is (Any v such that (John is v)) 

and by C1: 

(John is Paul) 

which might not be true. 
 
A restricted form of the abstraction principle that avoids such 
problems is the following: 
 

� [
�
] �  Individual[

�
] 

�
 is (Any v such that � [v]) 

A2 

 
Similar problems arise with an unrestricted concretion rule. Let 
σ[v] = Individual[v] and suppose for instance: 

Individual[John] 
Individual[Paul] 

then by A2 

John is (Any v such that Individual[v]) 
Paul is (Any v such that Individual[v]) 

From the axiom D6, which introduces the or description, we get: 

(John or Paul) is (Any v such that Individual[v]) 

and from this and C1: 

Individual[John or Paul] 

We solve this problem by restricting C1 analogously to what 
we did for A1: 
 �

 is (Any v such that � [v]) �  Individual[
�
] 

� [
�
] 

C2 

 
With this restriction to individuals, it is easy to verify that the 
abstraction and concretion rules are sound. 
 
Note that with this form of the concretion principle Russell’s 
paradox is avoided. Suppose we call z the following description: 

z ≡ (Any v such that ¬ (v is v)) 

If we allow C1, since z is z is true by reflexivity of is, we would 
derive the paradoxical consequence: 

¬(z is z) 

We can show however that: 

z same Nothing 

because 

(Any v such that ¬ (v is v)) same (Any v such that false) 
same Nothing 
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Therefore rule C2 cannot be applied because Nothing is not an 
individual. 
 
The complete set of inference rules is summarized in the 
following table. 
 

Inference Rules 
Statements  Descriptions 

[σ1] 
. 
. 

σ2 

  

σ1 ⇒ σ2 

 
  

σ1 ⇒ σ2, σ2 ⇒ σ3  δ1 is δ2,  δ2 is δ3 
σ1 ⇒ σ3 

 

σ 

 δ1 is δ3 

 

σ[δ] ∧ Individual[δ] 
∀ v . σ 

provided v is not free 
in any assumption 
on which σ depends 

 
∀ v . σ[v] 

 δ is (Any v such that σ[v]) 
 
 
 
 

δ is (Any v such that σ[v]) 
∧ Individual[δ] 

σ[δ]  σ[δ] 
 
As it can be seen from the formulation of the rules of abstraction 
and concretion, Omega cannot be finitely axiomatized in first 
order logic. 

VI. Soundness and Completeness 
The first result to be proved about the axiomatization is its 
soundness: 
 
Theorem 6: (Soundness) For every closed statement A, Γ  A 
⇒ Γ   A 
 
We are using the notation Γ   A as an abbreviation for: 

∀ M . (∀ �  . �  ∈ Γ ∧  m � ) ⇒  M A] 

The derivability relation  is defined in a standard way, so that 
Γ  σ means that the statement σ can be derived from the 
statements in Γ and from the axioms by applying the rules of 
inference. 
 
The soundness theorem states that whenever a statement can 
be derived from the set of premises Γ then it is true in every 
model that satisfies the statements in Γ. We omit here the proof 
since the argumentation is straightforward. 
 
We next turn to prove the completeness theorem for the theory 
presented above.  
 
The completeness theorem gives us a measure of the 
adequacy of our axiomatization. In fact it asserts that the set of 
valid formulas coincides with the set of theorems of our theory. 
So it provides a bridge between what is established as 
semantically valid, and what is established by symbolic 
manipulations. 
 
More important, this result is the fundamental step in showing 
the consistency of our formal theory. 
 
The completeness theorem can be formulated as follows: 
Theorem 7: (Completeness) For every closed statement A, Γ 

  A ⇔ Γ  A. 
 
We follow a Goedel-Henkin argument [17]. The implication Γ  
A ⇒ Γ   A corresponds to the soundness theorem. The other 
direction of the implication is equivalent to saying: 

Γ   A  ⇒ ∃ M  Γ  M A 

If A cannot be derived from Γ then there exists a model that 
satisfies Γ but not A. So we can prove the result by building a 
model M, possibly in dependence from A, such that: 

Γ   A ⇒ Γ  M A 

In order to do that, for any given closed formula A, we build a 
complete Henkin extension of theory Γ, called ΓA, having the 
following additional properties: 

Γ   A ⇒ ΓA   A (1) 

ΓA  ( � 1 �  � 2) ⇒ ΓA  � 1 or ΓA  � 2 (2) 

Since ΓA is a complete Henkin extension of Γ, it also satisfies 
the following properties: 

Γ ⊆ ΓA (3) 

For all closed σ either ΓA  �   or  ΓA  �  �  (4) 

For every statement � [v], there is a constant c, such that: 
ΓA  � [c] ⇒ ∀ v . � [v] (5) 

ΓA is built as the limit of an inductive sequence of theories, 
starting from Γ. For the details of the construction we refer to 
[2]. 
 
Next we prove the following lemma in order to prove that ΓA has 
a model: 
 
Lemma 8: (Main lemma) ∃ M . ∀ �  . ΓA  �  ⇔ ΓA  M �  
 
The proof is outlined in the next section.  Let M be such a 
model for ΓA. Assuming now that Γ   A,  it follows that ΓA   A 
and then ΓA  M A. Since a model of ΓA is also a model of Γ, we 
have proved that: 

Γ   A ⇒ ∃ M . Γ  M A 

and the completeness theorem. 

A. Proof of Main Lemma 
We will prove the lemma by building a model M such that: 

∀ �  ΓA  �  ⇔  ΓA  M �  

M will be a term model built out of syntactic material. More 
precisely equivalence classes of individual descriptions will be 
the elements of the domain of interpretation. Let us define the 
equivalence relation ~ as: 

�
 ~ 
�
’ ≡ ΓA  (

�
 same 

�
’) 

We will denote as |δ| the equivalence class of δ according to ~. 
 
We will call Ind = {δ ∈ ∆ | Γ  Individual[

�
]}. The domain of 

interpretation is the quotient of the set Ind with respect to the 
relation ~. 
 
The model M is defined as: M = 〈Ind/~, I , C〉 where 

I  (i) = |i| 
C (c) = {|

�
| | 
�
 ∈ Ind and ΓA  (

�
 is (a c))} 

This model has the following significant property: 

V [[
�
]] = {|

�
’| | 
�
’ ∈ Ind and ΓA  (

�
’ is 

�
)} 

This property establishes the connection between the 
semantics (value of descriptions) and the syntax (derivability of 
predications). Because Omega allows statements as special 
cases of descriptions, this property is all is needed to establish 
the main lemma, as the following result shows: 
 
Lemma 9: If V [[� ]] = {|

�
’| | 
�
’ ∈ Ind and ΓA  (

�
’ is � )}  then 

ΓA  �  ⇔  ΓA  M �  
Proof: Assume first that ΓA  � . By axiom S12, it is also ΓA  
( �  is true). Using this fact and transitivity in the premise of the 
lemma, we have 
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V [[� ]] ⊆ {|
�
’| | 
�
’ ∈ Ind and ΓA  (

�
’ is true)} = {|true|} 

But by the definition of V: 

V [[� ]] = {|true|} if and only if ΓA  M �  

On the other hand, if we assume that ΓA  M �  then 

V [[� ]] = {|true|} = {|
�
’| | 
�
’ ∈ Ind and ΓA  (

�
’ is � )} 

This means that ΓA  (true is � ). Since ΓA is complete, then 
either ΓA  �  or ΓA  �  � . But the latter case is impossible 
because, by applying axiom S13, we would get ΓA  ( �  is 
false), and by transitivity ΓA  (true is false), which 
contradicts the consistency assumption for ΓA. 
 
Lemma 10: V [[

�
]] = {|

�
’| | 
�
’ ∈ Ind and ΓA  (

�
’ is 

�
)} 

Proof: The proof is done by induction on the structure of 
descriptions. We give the flavor of the proof presenting a few of 
the cases. 
1. δ ≡ i. 

V [[i]] = {|i|} = {|
�
’| | 
�
’ ∈ Ind and ΓA  (

�
’ is i)} 

since i ∈ Ind by axiom D2. Note that this case takes care 
also of the individual constants true and false. 

 
2. 

�
 ≡ (

�
1 or 

�
2). 

V [[
�

1 or 
�

2]] = V [[
�

1]] ∪ V[[
�

2]]  (by induction hypothesis) 

{|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is 
�

1)} ∪ 

 {|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is 
�

2)} = 

{|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is 
�

1) or ΓA  (
�
 is 
�

2)} (by prop. 2) 

{|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is 
�

1) �  (
�
 is 
�

2)} (by Lemma 5.6) 

{|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is (

�
1 or 

�
2))} 

 
3. �  ≡ (

�
1 is 

�
2). 

 

V [[
�

1]] ⊆ V[[
�

2]] (Assumption) 

{|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is 
�

1)} ⊆ 

 {|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is 
�

2)}  (by ind. hyp.)  
�
 ∈ Ind and  ΓA  

�
’ is 

�
1 ⇒ ΓA  

�
’ is 

�
2 

ΓA  
�

1 is 
�

2  (by axiom D1) 

ΓA  (
�

1 is 
�

2) is true  (by axiom S12) 

{|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is (

�
1 is 

�
2))} ⊆  

 {|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is true)}  (by transitivity) 

{|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is true)}  = {|true|} = 

V [[
�

1 is 
�

2]] (by definition of V). 

The proof is similar under the hypothesis that: ¬ V [[
�

1]] ⊆ V[[
�

2]] 
 
4. �  ≡ ( � 1 �  � 2). 

ΓA  M � 1 or ΓA  M � 2 (Assumption) 

ΓA  � 1 or ΓA  � 2 (by ind. hyp. and lemma 9) 

ΓA  ( � 1 �  � 2) (by property 3 of ΓA) 

ΓA  ( � 1 �  � 2) is true (by axiom S12) 

{|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is ( � 1 �  � 2))} ⊆  

 {|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is true)} (by transitivity) 

{|
�
| | 
�
 ∈ Ind and ΓA  (

�
 is true)}  = {|true|} = 

 V [[� 1 �  � 2]]  (by definition of V) 

The proof is similar under the hypothesis that ΓA  M � 1 and ΓA 

 M � 2 
 
Once lemma 10 has been established we can prove the main 
lemma. In fact from lemma 9 we can deduce the following: 

If ∀ �  . V [[� ]] = {|
�
’| | 
�
’ ∈ Ind and ΓA  (

�
’ is � )} 

then ∀ �  . ΓA  �  ⇔  ΓA  M �  

The main lemma follows from this and lemma 10. 

VII. Consistency 
The consistency of Omega can be established by means of the 
following result: 
 
Theorem 11: If an Omega theory Γ has a model, then it is 
consistent. 
 
Proof: Suppose Γ has a model M. Then Γ  M false. From the 
completeness result it follows that Γ  M false which proves the 
consistency of Γ. 

VIII. Omega and other Formal Logic Theories 
Omega is not a First Order Predicate Logic, since it includes a 
variable binding operator, namely the Any construct, which is 
not present nor expressible in First Order Predicate Logic. In 
this sense Omega is more similar to set theory, which includes 
set abstraction, besides universal and existential quantifiers. 
 
The version of Omega presented here is a first order theory. We 
are investigating extending the axiomatization to higher orders. 
In [10] we presented examples of the use of higher order 
capabilities.  
 
Omega is a Set Theory. However Omega relies on constructors 
for building new descriptions. In set theory, pairs for instance 
are built by means of set formation alone. In Omega a Pair 
constructor can be used to describe pairs of objects. A Pair of 
two individuals will be an individual itself, therefore separating 
the inheritance relationship from the component relationship. 
Omega is a constructive set theory and has no axiom 
corresponding to the powerset axiom of classical set theory. 
The constructive nature of Omega implies that it is possible to 
use the proof of a statement to determine a description which 
meets some requirements or is the answer to a question. 

IX. Conclusion 
The results of this paper provide us with a solid base on which 
to build a theory of knowledge representation.  The system 
presented is powerful enough to express arithmetic, by 
following the construction of [13]. The use of attributions as in  
[10] however increases the naturalness of the notation. There 
are a number of problems regarding attributions to be 
addressed such as: interaction between attributions, merging 
and inheritance; functional dependencies between attributions; 
contrasting uses of attributions (for instance attributions have 
been used to express part/whole relationships as well as to 
express n-ary relations). In [10] a preliminary set of axioms for 
attributions was presented. A set theoretical model along the 
lines of the present work has to be defined in order to obtain a 
satisfactory full axiomatization of attributions. Such 
axiomatization will appear in a forthcoming paper [2].  
 
Another important construct allowed in Omega is the λ-
abstraction. The axiomatization for this construct is similar to 
the axiomatization of the λ-calculus. This construct interacts 
nicely with the inheritance mechanism of Omega, allowing the 
same notation to be used for describing the type of a function 
as well as for defining its values. 
 
We have also investigated the problems arising from allowing 
self-reference in the language. In order to avoid logical 
paradoxes like the liar paradox, it is necessary to give up the 
rules of excluded middle (axiom S5) and contradiction (axiom 
S6). This allows models where the value of a sentence can be 
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neither true nor false. Such solution follows the lines of the one 
suggested by Visser in [20]. The logic can still be proved to be 
complete, but the proofs by hypothetical reasoning become 
more cumbersome. 
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