
Data organizations

We are here

Representing a record

• Assume records are shorter than a page

2

Array of field offsets

Fields delimited by special symbols

Storing records in a page

• Records are stored in pages of few KB.

• RID = (Page PID, position within page)

• If a record moves on a page, its RID must non
change

3

Storage layout of a page

Organizing a collection of pages

• Doubly Linked
lists of pages

• Directory of
pages

4

The directory entry for a
page includes the number
of free bytes on the page.

Heap organizations

• A new record is put at the end of the file

• Very simple, efficient in term of memory used

• The standard organization for every DBMS

• Ideal for:

– Situations where insert is more common than search

– Files where massive search is common - efficient
equality search and range search need additional data
structures

• Cost of memory

• Cost of search
5

Sequential Organizations

• Data are sorted on a “key” K

– (Here key stands for attribute, not necessarily
identifying a tuple)

• Useful for search on K – equality and range

• Problems to insert records

• Not commonly used

• Cost of memory

• Cost of search

6

Insertion on Sequential Organizations

• Differential file

• Keeping empty space in each page

– Page splitting and page balancing

Heap vs. sequential

8

Type Memory
Equality

search Cs

Range

search
Insertion Deletion

Heap Npag(R) Npag(R)/2 Npag(R) 2 Cs+1

Sequential Npag(R) log2 Npag(R)
Cs - 1 +

sf×Npag(R)

Cs + 1 +

((Npag(R)))
Cs+1

𝑠𝑓 = Τ(𝑘2 − 𝑘1) (𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛)

External sorting

• Sorting is a classical problem in computer science

• Sorting is a common operation in a DBMS

• Merge-sort algorithm

9

Merge sort in two passes

First pass: data partitioning in runs
(sorted sets) Second pass: merge of all sorted Ss

B S

BUFFER RESULT

Runs

DATA PARTITIONBUFFER

Merge sort in two passes: cost

• C = 4 × NPag(Data)

• How many buffer pages B are needed to sort
NPag(Data) with one merge phase?

Sorted Runs

DATA BUFFERPARTITION RESULTBUFFER

Merge-sort with several passes

• After the first pass of data partitioning in sorted
runs, several merge passes of order Z are required...

12

Buffer

. . .

f1

fS

. . .F

B

Buffer

. . .

f1

fS

. . .

B = z + 1
. . .
fZ

f1

. . .

S/Z

Example with B=3

13

Merge sort: cost

• Buffer with B pages

• C = SortPhaseCost + MergePhaseCost

= 2×Npag+ 2×Npag×NoMergePasses

• After each merge pass, the number of runs:

– ⎡S/Z⎤ , ⎡S/Z2⎤,…, ⎡S/Zk⎤ = 1

– k = ⎡logZ S⎤

– C = 2×Npag + 2×Npag×⎡logZ S ⎤

– = 2 × Npag × (1 + ⎡ logZ (Npag/B) ⎤)

– ~ 2(Npag×logZ (Npag))

• Runs may be longer than B
14

Summary

• Heap organization as DBMSs default

• Sequential organization is not really used by DBMSs

• External sorting is important, we are still improving

• External merge-sort minimizes disk I/O cost

• Choice of internal sort algorithm matters:

– Quick sort (quick)

– Replacement sort, natural selection (2x slower, but 2x
longer runs)

15

