
Advanced Database Systems, second intermediate test – 4 June 2018 – solutions, Version 1.1

Please feel free to answer this test in English, Italian, or any mixture

1. Consider the following log content. Assume that the DB was identical to the buffer before the

beginning of this log, and consider a undo-redo protocol

(begin,T1) (W,T1,A,0,5) (begin,T2) (W,T2,B,0,20) (begin-ckp,{T1,T2}) (W,T1,A,5,10) (end-

ckp) (begin,T3) (commit,T1) (W,T3,C,0,20) (commit,T3) (begin,T4) (W,T4,C,20,50) (commit,T4)

a. Before starting this log, what was the content of A, B and C in the PS (Persistent Store)?

b. Assume there was a crash at the end of the logging period. At crash time, what was the content

of A, B and C in the buffer? What can be said about the content of A, B and C in the PS?

c. At restart time, which transactions are put in the undo-list? Which in the redo-list?

d. List the operations that are redone, in the order in which are redone

e. After restart is finished, what is the content of A, B and C in the buffer?

f. Undo and Redo are executed in the buffer or on the PS?

g. After restart is finished, what is the content of A, B and C in the PS? What is different between

this answer and that of question (b)?

a. Before starting this log, what was the content of A, B and C in the PS (Persistent Store)?

(A=0,B=0,C=0)

b. Assume there was a crash at the end of the logging period. At crash time, what was the content

of A, B and C in the buffer? What can be said about the content of A, B and C in the PS?

In the buffer: (A=10,B=20,C=50). In the PS: (A=5 or 10, B=20, C=0 or 20 or 50)

c. At restart time, which transactions are put in the undo-list? Which in the redo-list?

Undo-list=T2, redo-list=T1,T3,T4

d. List the operations that are redone, in the order in which are redone

(W,T1,A,5,10) (W,T3,C,0,20) (W,T4,C,20,50)

e. After restart is finished, what is the content of A, B and C in the buffer?

(A=10,B=0,C=50).

f. Undo and Redo are executed in the buffer or on the PS?

In the buffer

h. After restart is finished, what is the content of A, B and C in the PS? What is different between

this answer and that of question (b)?

 (A=5 or 10, B=0 or 20, C=0 or 20 or 50)

The only different is that now B may also be 0, because of the undo operation.

2. Assume that a system with no scheduler produces the following history, where we omit the

commits:

r1[A], w2[C], w1[B], r2[B], w3[C], w2[A], r1[B], r3[A]

a. Is this history c-serializable?

b. Exhibit a history that may be produced by a strict 2PL scheduler if presented with the above

operations in that order, assuming that each transaction commits immediately after its last

operation

a. Yes, is it equivalent to a history T1-T2-T3

b. 2PC History:

T1 T2 T3

r(A)

 w(C)

w(B)

 rl(B)*

 wl(C)*

r(B)

c

 r(B)

 w(A)

 c

 w(C)

 r(A(

 c

3. Consider the following tables:

Sales(Date,FKShop,FKCust,FKProd,UnitPrice,Q,TotPrice)

Shops(PKShop,Name,City,State,Area)

Customers(PKCust,Nome,FamName,City, State,Area)

Products(PKProd,Name,SubCategory,Category,Price)

With the following sizes:

Sales: NRec: 100.000.000, Npag: 1.000.000;

Shops: 500, 2; Customers: 10.000, 100; Products: 100.000, 10.000

Assume a buffer of 1.000 pages. Consider the following queries:

SELECT P.PKProd, P.Name, P.Category, Sum(TotPrice)

FROM Sales S, Products P

WHERE S.FKProd=P.PKProd

GROUP BY P.PKProd, P.Name, P.Category

SELECT P.Category, Year(S.Date), Sum(TotPrice)

FROM Sales S, Customers C, Products P

WHERE S.FKCust=C.PKCust AND S.FKProd=P.PKProd

GROUP BY P.Category, C.Area

a. In the context of a traditional database, choose a physical organization to optimize both

queries, and give a synthetic justification of your choice. Specify the primary organization of

each table and which indices would you use. If the primary key of the Product and Customer

relations must satisfy any property, specify this fact.

b. Show an access plan for the first query and compute its cost.

c. (Optional) How would the organization of (a) and the cost of (b) change if you added a

condition AND Product.Category = ‘Food’, where ‘Food’ includes the 10% of the sales.

a. The first query can be executed in linear time if Sales is organized sequentially on FKProd and

Products sequentially on PKProd: the join will just require a SortMerge of the two tables, and

the result will be sorted on (Category, Name) if we assume that ordering Products on PKProd

is the same as ordering them lexicographically on (Category, Name). If the Sales query where

vertically partitioned the query would be even more efficient. For the second query, the join

can be still executed in linear time since Customers fits main memory. However, the result will

be sorted on (Category, Name), hence is not grouped in (Category,Area), hence must be sorted,

which is quite expensive.

b. Access plan:

GroupBy(MergeJoin(TS(Products),TS(Sales),S.FKProd=P.PKProd),

 { P.PKProd, P.Name, P.Category},

 { Sum(TotPrice)}

)

 Cost: NPag(Products)+NPag(Sales) = 10.000+1.000.000 = 1.010.000

c. The condition Product.Category = ‘Food’ is best implemented by finding the first product with

category ‘Food’ and scanning the two tables starting from that product. Since both tables are

sorted on PKProd, whose order respect the Category order, such first product can be found

using binary search with log2(10.000)+log2(1.000.000)=13+20 accesses. This number may be

reduced by adding a sparse index on Product.Category, which we would use to find the first

product and its PKProd, and a sparse index on Sales.FKProd.

Since both tables are clustered on Product.PKProd they are also clustered on Product.Category,

hence the total cost is given by the cost of accessing the first element +

 sf*(NPag(Products)+NPag(Sales)) = 33+0,1*(1.010.000) = 33+101.000 = 101.033

4. Answer the following questions. Please keep the answers short and WRITE IN YOUR BEST

HANDWRITING.

a. Column databases are better suited for OLAP applications than for OLTP applications. Why?

b. (Really really optional) List some features of column databases, or some techniques that are

used by some of them, that are related with the recent trends in the evolution of hardware

architectures. Please be brief and write clearly.

a. Column databases are based on three ideas, all of which are very useful for OLAP queries: (a)

dividing the columns so that every query only accesses the columns it needs; (b) compressing

the columns, so that every massive query transfers a smaller amount of data; (c) storing

redundant Projections, so that every query finds the projection that is best suited; (d)

optimizing the transfer of massive amount of data. (a) implies that the insertion of a single

tuple must access many different pages (b) implies that every update must potentially compress

and decompress the column (c) redundant storage implies that a single update must update

more copies of the same item (d) massive access is essential in OLAP applications but has no

relevance for OLTP applications.

b. The emphasis on linear scan is linked to the fact that modern disks have excellent linear scan

speed. Use of compression is related to the increasing gap between disk speed and memory

speed. The emphasis on fixed-size data structures is linked to SIMD parallelism of modern

CPUs. The choice of moving from ‘tuple at a time’ to ‘block at a time’ is related to pipelined

executing of instruction and to the importance of avoiding function calls, and to optimal use of

instruction-cache. The choice of ‘block-at-a-time’ approach is also related to the need of doing

optimal use of L3 cache.

5. Consider relations R(K,A, B)[NPag=1.000.000, NReg=100*NPag] and S(K,A, B)[NPag=100.000,

NReg=100*NPag], both having K as their Key. Assume a Shared Nothing architecture, where the

relations are horizontally partitioned and stored in nodes [n0,…,n99], and records are distributed

using the function h1 applied to R.A for relation R, and the function h2 applied to S.B for relation

S.

a. Describe a hash-based algorithm to compute the intersection of R and S, that leaves each piece

of the result on the disk of the node where it has been computed. Assume that every node has a

buffer of 100 pages. When describing the actions in a node you may refer to standard hash

based algorithms, such as hash-join or hash-based intersection.

b. Assume that disks are able to read or write at a rate of 1.000 pages/s, and compute the cost of

the I/O operations of each single node, including the initial read, the local intersection

operation, the final local write. For each node specify how much data is read and written, and

how much time is needed for that, assuming that, at each node, different i/o operations cannot

overlap

c. Optional: Assume that each node communicates with the network at a rate of 40 MBytes/s, that

every page measures 4Kbytes, that the network itself has unlimited capacity, ignore the set-up

time of the communications, and assume that, whenever a node sends a block of data the

receiving node is ready to receive it. Compute the time of the communication phase,

remembering that each node must both send and receive data, and that when a node is sending

it cannot be receiving.

a. Every node uses h1(S.A) to distribute its S tuples to the other nodes. Every node performs a

hashjoin, on the K attribute, on the S tuples that it receives, that measure 1.000 pages, and its

portion of the R table, which measures 10.000. (That is, it uses a new function h3(K) to

distribute the S tuples into 100 buckets, it reads the local part of R and distributes it into 100

buckets in the same way, then it rereads every pair of corresponding R-S buckets, computes the

intersection, and store the intersection on the disk).

b. (1) Every node reads its portion of S: 1.000 reads, i.e., 1 sec. (2) while its tuples si from S

arrive, each node computes h3(si.K) for each tuple and creates 100 buckets, each of size

NPag(S)/NNodes/100, that is 100.000/100/100, that is 10 pages each, hence each bucket will

fit main memory. This phase costs 1.000 writes for each node, since each node receives

NPag(S)/NNodes records, hence 1 sec. (3) each node executes the first hashjoin phase for its

part of the R relation as well, hence it creates 100 buckets for R, and this costs a full read and a

full write of the local copy of R, that is 2*(1.000.000/NNodes) = 2*10.000 pages = 20 sec (4)

each node executes the second phase of hashjoin and writes the result, hence it must read once

both R and S, which costs 1.000+10.000 pages – and it must write the result, which is as big as

S in the worst case, that is 1.000 pages. Total cost is 12.000 pages, that is, 12 secs. The total

cost is hence 1+1+20+12=34 secs.

c. Every node sends 1.000 pages and receives 1.000 pages, that is, 8Mbytes. With a rate of 40

Mbytes/s, this requires 0,2 seconds.

6. Consider a distributed DBMS composed by two separate nodes, US and EU, which store the

schema of exercise (1), where Area belongs to {‘US’,’EU’). Assume that each node issues the

following amount of operations per day.

Table Queries per day Updates per day

Sales 100 200

Shops 100 1

Customers 100 1

Products 100 5

Every query that is issued by a node n1 (US or EU) but also involves data that is only found on the

other node incurs a cost QC, and every update that is issued by a node n1 (US or EU) but also

involves data that is also found on the other node incurs a cost UC. The 90% of the US operations

that involve a Sale regard a Sale whose shop has Area=’US’, and similarly for the operations on

the EU node. The tables Customers and Products are uniformly accessed.

a. Define how the tables may be horizontally fragmented according to the above description. One

fragment may include one entire table or a portion.

b. Specify how would you allocate the fragments on the two nodes, according to the usage model

described, assuming QC and QU are similar. Ignore the issue of failure resilience.

c. (Optional) Compute the total communication cost per day according to the above description.

a. Shops should be fragmented according to the US/EU division. Sales should be fragmented

according to the result of a semijoin with the fragmented Shops table. The other tables should

not be fragmented: although Customers have an Area attribute, it is not involved in the

condition of the queries that we consider.

b. Each Sale fragment should only be allocated on the corresponding node, since their access is

mostly local and they are heavily updated. All other tables should be duplicated since queries

are much more common than updates.

c. The communication cost for each node is the following

Table Cost of queries Cost of updates How is stored

Sales 100*10%*QC 200*10%*QU Partitioned

Shops 0 1*QU Replicated

Customers 0 1*QU Replicated

Products 0 5*QU Replicated

 Total 10*QC 27*QU

 If Sales were duplicated and Shops was not, we would have the following lines:

Table Cost of queries Cost of updates How is stored

Sales 0 200*QU Replicated

Shops 100*10%*QC 1*10%*QU Partitioned

