Tree primary organizations

- Tree terminology:
- Order: max number of children per node
- Level of a node: number of nodes in the path from the root to the node
- Height of a tree:Maximum level of a node
- Balanced tree: levels of leaf nodes differ by at most 1

Tree primary organizations

- Binary tree
- B-tree

B-tree

- A B-tree is a perfectly balanced search tree in which nodes have a variable number of children
- Here, let ' k *' denote the full record with key k, and a tree node be a page.

B-tree

- A B-tree of order $m(m \geq 3)$ is perfectly balanced and has the following properties:
- Each node has at most ($m-1$) keys and, except the root, at least ($[\mathrm{m} / 2\rceil-1$) keys
- A node with j keys has also $\mathrm{p0}, \ldots, \mathrm{pj} \quad(\mathrm{j}+1)$ pointers to distinct subtrees, undefined in the leaves. Let K(pi) be the set of keys in the subtree pi
- Each non leaf node has the following structure

B-tree

B-tree

Equality search: $\mathrm{k}=5 \quad$ Range search: $\mathrm{k}>=23$

B-tree

- Relationship between the height h, the order m and number of keys N :
- Example: record 100 byte, pointer 4 byte, a page 4096 byte, $m=40((4096-4) /(100+4)+1)$
$-\mathrm{h}=1 \quad$ Nodes $=1 \quad$ NMax $=39$
$-\mathrm{h}=2 \quad$ Nodes $=1+40 \quad$ NMax $=(1+40) * 39=1599$
$-h=3 \quad$ Node $=1+40+1600=1641$
NMax $=1641 * 39=63999$
- $\log _{m}(N+1) \leq h \leq 1+\log _{[m / 2]}\left(\frac{N+1}{2}\right)$

B-tree: search cost

- Equality search ($k=v$): $1 \leq \mathrm{C} \leq \mathrm{h}$
- Range search $\left(p=\left(v_{1} \leq k \leq v_{2}\right)\right)$:

$$
\begin{aligned}
& -s_{f}(p)=\left(v_{2}-v_{1}\right) /\left(k_{\max }-k_{\min }\right) \\
& -E_{\text {reg }}=s_{f}(p) \times N \\
& -C=s_{f}(p) \times N_{\text {nodes }} \\
& -h \leq C \leq N_{\text {nodes }}
\end{aligned}
$$

Insertion

- Insertion in an unfull leaf - Insertion in a full leaf ...

Insertion of 6

Insertion of 6

The tree height increases

In the worst case, the insertion cost is h reads $+(2 h+1)$ writes

Deletion

- The key is in a nonleaf node: it is replaced by the next key, which is in a leaf node, and is deleted from there
- The key is in a leaf node: it is deleted
- What happens if, after deletion, the leaf node has less than ($\lceil\mathrm{m} / 2\rceil-1$) elements ?

Rotation

Deletion of 16 and rotation

Merging

Deletion of 22, 20 and merging

Deletion: cost

- In the worst case (merging at all levels and rotation at the root children), the cost is:
$-(2 h-1)$ reads $+(h+1)$ writes

B^{+}-Tree

Index Sequential
IOT: Index Organized Table
Clustered Index

Sparse Index

Note: when a leaf splits, a copy of the key is inserted the ancestor ($\mathrm{B}^{+}-$ tree), when a nonleaf node splits, a key moves in the ancestor (B-tree)

B+-Tree: Equality Search Cost

Let us consider the leaf access cost only
equality search (k = v1)

$$
C=1 \quad(C=2 \text { or } C=3)
$$

range search ($p=(\mathrm{v} 1 \leq k \leq \mathrm{v} 2)$)

$$
\begin{aligned}
& S_{f}(p)=(v 2-v 1) /\left(k_{\max }-k_{\min }\right) \\
& C=S_{f}(p) \cdot N_{\text {leaf }}
\end{aligned}
$$

Deletion

- Search the leaf F with the key
- Actual deletion:
- If F does not underflow, end
- Otherwise, apply merging or rotation
- If a merging is performed, delete a key from the ancestor of F, in the B-tree structure...

Secondary organizations: indexes

- An index is a mapping of attribute(s) (key) values to RID of records.
- Definition. An index I on an attribute (key) K of a relational table R is an ordered table I(K, RID)
- A tuple of the index is a pair ($\mathrm{k}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}}$), where k_{i} is a key value for a record, and r_{i} is a reference (RID) to the corresponding record.
- We can have several indexes on a table, each with a different search key

Examples

Table

RID	StudCode	City	BirthYear
1	100	MI	1972
2	101	PI	1970
3	102	PI	1971
4	104	FI	1970
5	106	MI	1970
6	107	PI	1972

Index on StudCode \begin{tabular}{|c|c|}
\hline StudCode \& RID

\hline 100 \& 1

\hline 101 \& 2

\hline 102 \& 3

\hline 104 \& 4

\hline 106 \& 5

\hline 107 \& 6

\hline

\quad Index on BirthYear

\hline BirthYear \& RID

\hline 1970 \& 2

\hline 1970 \& 4

\hline 1970 \& 5

\hline 1971 \& 3

\hline 1972 \& 1

\hline
\end{tabular}

Clustered Indexes

- Clustered vs. unclustered
- If the order of data records is the same as the order of data entries, then it is called clustered index.
- Clustered = with data almost ordered, if there are insertions

Data organizations for two keys: K_{p} and K

Clustered vs. Unclustered

SORTED DATA FILE

Equality search cost ($k=v 1$)
Range search cost $(\mathrm{p}=(\mathrm{v} 1 \leq \mathrm{k} \leq \mathrm{v} 2))$
$\mathrm{C}_{\text {clustered }}=\mathbf{S f}(\mathrm{p}) * \mathrm{~N}_{\text {leaf }}+\mathbf{S f}_{\mathbf{f}}(\mathrm{p}) * \mathrm{~N}_{\mathrm{pag}}$

INDEX FILE

DATA FILE

Search cost
$\mathrm{C}=\mathrm{Cl}+\mathrm{CD}$
$C=1+1$
$\mathbf{S f}(\mathrm{p})=(\mathrm{v} 2-\mathrm{v} 1) /\left(\mathrm{k}_{\text {max }}-\mathrm{k}_{\text {min }}\right)$
$C_{\text {unclustered }}=\mathbf{S f}_{\mathrm{f}}(\mathrm{p})^{*} \mathrm{~N}_{\text {leaf }}+\mathbf{S f}_{\mathrm{f}}(\mathrm{p})^{*} \mathrm{~N}_{\text {rec }}$

Summary

- A B-tree is a fully balanced dynamic structure that automatically adapts to inserts and deletes
- A B+-tree refine the B-tree to improve range search and sorted data scans
- Indexes are used for secondary organizations
- Types of Indexes: clustered vs unclustered

