
Non-key attribute organizations

• How to select the records of a large table R that
satisfy a selective condition on non-key attributes?

• Indexes on the non-key attributes

• Parameters:

– Nrec(R), Npag(R)

– LI , LRID

– Nkey(Idx), Nleaf(Idx)

Example

• Table

• Indexes

Index on Code Index on BY

RID Code City BY

1 100 MI 1972

2 101 PI 1970

3 102 PI 1971

4 104 FI 1970

5 106 MI 1970

6 107 PI 1972

Code RID

100 1

101 2

102 3

104 4

106 5

107 6

BY RID

1970 2

1970 4

1970 5

1971 3

1972 1

1972 6

Inverted indexes

• An inverted index: collection of pairs <ki,Infi>,
where ki is a non key value and Infi = (ni, (r

i
1, ri

2,...,
ri

l)), is the sorted list of RIDs of the records for ki

• Table

• Indexes

Index on City Index on BY

BY n RID-List

1970 3 2 4 5

1971 1 3

1972 2 1 6

FI 1 4

MI 2 1 5

PI 3 2 3 6

City n RID-List

RID Code City BY

1 100 MI 1972

2 101 PI 1970

3 102 PI 1971

4 104 FI 1970

5 106 MI 1970

6 107 PI 1972

Assumptions

• The index-key values are uniformly distributed

• Records are uniformly distributed

• The index organization is a B+-tree with the sorted
rid-lists stored in the leaves.

• Cost: CI + CD

– CI = cost of accessing the index leaves

– CD = cost of accessing the data pages

• Erec= sf(ψ) Nrec(R)

• CI = sf(ψ) Nleaf(Idx)

Equality search (ψ = (A = v))

• sf(ψ) = sf(A = v) = 1 / Nkey(Idx)

• Average length of a rid-list (AvgLRidList)

= sf(ψ) Nrec(R)

= Nrec(R)/ Nkey(Idx)

• Space:

Equality search(cont)

• NoPagesToVisitForRidList:

– If the index is unclustered, with unsorted rid-lists…

– If the index is clustered, with sorted rid-lists

– ⎡ sf(ψ) × Npag(R) ⎤

– If the index is unclustered, with sorted rid-lists

–(AvgLRidList, Npag(R))

– is called the Cardenas’ formula

–(k,n) = n(1– (1 - 1/n)k) ≤ min(k, n)

Range key search(ψ = (v1 ≤ A ≤ v2))

• sf(ψ) = sf(v1 ≤ A ≤ v2) = (v2 – v1)/(max(A) – min(A))

• CI = ⎡ sf(ψ) × Nleaf(Idx) ⎤

Range key search(ψ = (v1 ≤ A ≤ v2))

• CD = NoIndexKeyValues × NoPagesToAccessForRidList

• NoIndexKeyValues = ⎡ sf(ψ) × Nkey(Idx) ⎤

• If the index is clustered, with sorted rid-lists

• NoPagesToAccessForRidList = ⎡ Npag(R) / Nkey(Idx) ⎤

• If the index is unclustered, with sorted rid-lists,

• NoPagesToAccessForRidList
= ⎡ Φ(Nrec(R)/ Nkey(Idx), Npag(R)) ⎤

• Unclustered, unsorted rid-lists

• NoPagesToAccessForRidList = ⎡ Nrec(R)/ Nkey(Idx) ⎤

Other operations

• Selection condition with AND or with OR

• Insertion

• Deletion

• Update

Multi attribute indexes

Data records
sorted by name

Name Age Sal

Bob 35 10

Cal 40 80

Joe 35 20

Sue 45 75

RID Age

35

35

40

45

RID Sal

10

20

75

80

Age Sal RID

35 10

35 20

40 80

45 75

Sal Age RID

10 35

20 35

75 45

80 40

Multi attribute indexes

• Exact queries

• Range queries

Bitmap index

Index on City Index on BirthYear

Table

Bitmap indexes

RID StudCode City BirthYear

1 100 MI 1972

2 101 PI 1970

3 102 PI 1971

4 104 FI 1970

5 106 MI 1970

6 107 PI 1972

FI 0 0 0 1 0 0

City Bitmaps

MI 1 0 0 0 1 0

PI 0 1 1 0 0 1

1970 0 1 0 1 1 0

BirthYear Bitmaps

1971 0 0 1 0 0 0

1972 1 0 0 0 0 1

Inverted
indexes

BirthYear n RID Lists

1970 3 2 4 5

1971 1 3

1972 2 1 6

FI 1 4

MI 2 1 5

PI 3 2 3 6

City n RID Lists

Bitmap index

• The RID list becomes a bitmap

• The length of the bitmap is Nrec

• The i-th bit is set if the i-th record of the base table
has the value for the indexed attribute.

• A BM index is used in all DBMS for constant tables
when the number of distinct values of an indexed
attribute is small (i.e. the attribute is not selective).
An inverted lists index would be useless.

Advantages of bitmap index

• Multi-attribute complex queries can be solved using
bit operations

– City in (‘Pisa’, ‘Lucca’) and (Year = 1972)

• Good if domain cardinality is small, but bit vectors
can always be compressed

FI 0 0 0 1 0 0

City Bitmap

MI 1 0 0 0 1 0

PI 0 1 1 0 0 1

1970 0 1 0 1 1 0

BirthYear Bitmap

1971 0 0 1 0 0 0

1972 1 0 0 0 0 1

Memory comparison

• Hyp: full index nodes

• Inverted indexes
– Nleaf = (Nkey * Lk + Nrec * LRID) / Dpag

≈ Nrec * LRID / Dpag

• Bitmap indexes
– Nleaf = (Nkey * Lk + Nkey * Nrec / 8)/ Dpag

≈ Nrec * Nkey / (Dpag * 8)

Oracle: Bitmap indexes are compressed and are suggested if
Nkey < Nrec/2

Nleaf

Nkey

B+

BM

Nkey = 8 * LRID

Multidimensional data organization

Point and region search:

Alternative: Store near points in the same page

Store (PartitionCode,PID) in a B+-tree

Multi-attribute index multidimensional indexB+-Tree (c=2)

15≤A1≤50 20≤A2≤40and

Multidimensional data organization

• Several proposals...

Multidimensional data organization:
the G-tree

Space partitioning

Hyp: page capacity = 2

Partition tree: a partition has a
binary code, with max length M

A tree structure for region codes: G-tree

G-tree

0

000

00

4 6
A partition
binary code, can
be seen as a
decimal code, to
better grasp the
order

Point search: P(A1, A2) = (30,60)

← P = (30, 60)

4 6

Which partition
contains P, if
present?

Spatial range search

← P = (40, 60)

P = (30, 20) →

4 6

30 ≤ A1 ≤ 40
20 ≤ A2 ≤ 60

Query region

(30, 20)

(40, 60)
Which regions are
checked?
{0,6} or {0,4,5,6} ?

Insertion: p1 = (70, 70) and p2 = (30, 30)

P2 = (30, 30)

4 6

P1 = (70, 70)

Point insertion: P2 = (30, 30)

62

4

4 6

Point insertion with longer encoding 24

62

4

P = (20, 55)

P = (20, 55)

The partition binary
code is longer

Geographical data

• R*-trees

