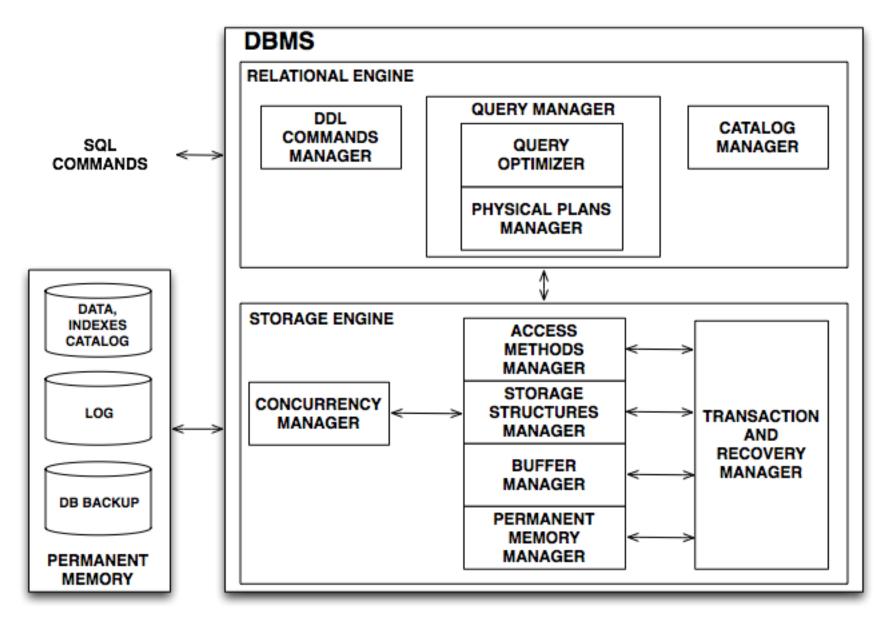
Architecture



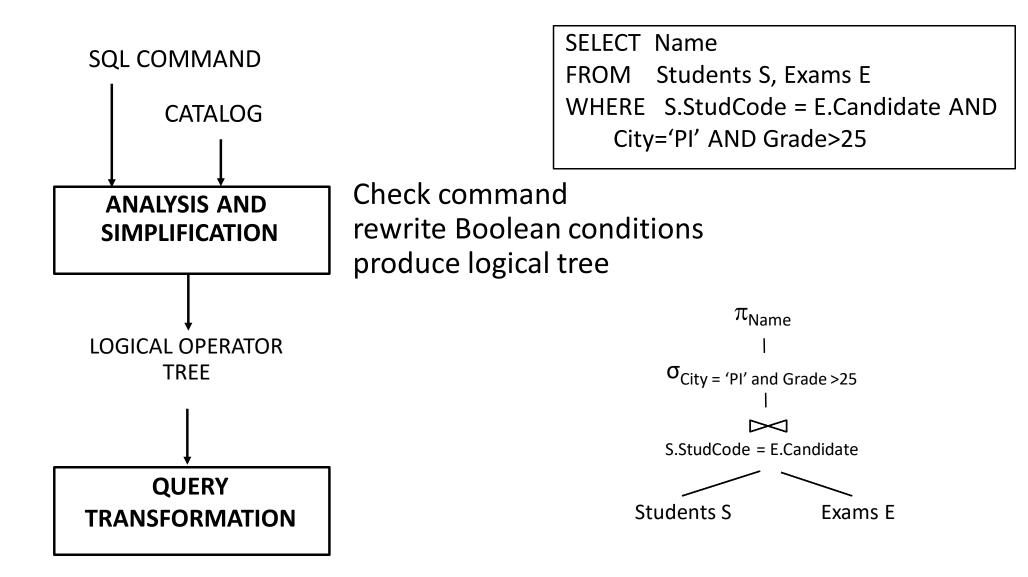
Query processing

- Understanding query processing helps producing better applications
- SQL is a declarative language: it describes the query result, but not how to get it.
- Query processing:
 - Query analysis \rightarrow logical query plan
 - Query transformation
 - Physical plan generation and optimization
 - Query execution

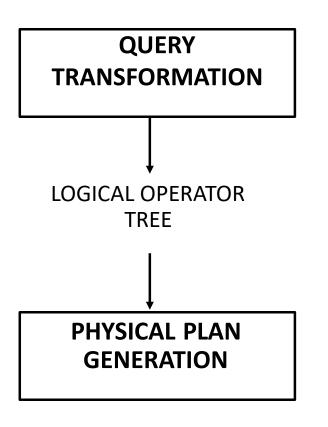
Physical db design

- A query optimizer uses all available indexes, materialized views, etc. in order to better execute the query
 - Data Base Administrator (DBA) is expected to set up a good physical design
 - Good DBAs understand query optimizers very well
 - Good DBAs are hard to find

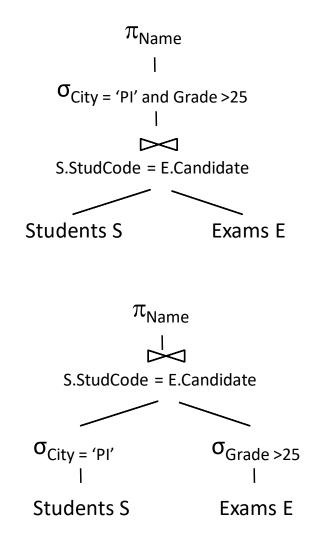
Query execution steps: analysis



Query execution steps: transformation



Transform a logical query plan using equivalence rules to get a faster plan



Query ex. steps: physical plan generation

PHYSICAL PLAN

GENERATION

Select an algorithm for each logical operation.

Ideally: Want to find best physical plan.

In practice: Avoid worst physical plans!

(Exams)

Physical plan execution

- Each operator is implemented as an iterator using a 'pull' interface: when an operator is 'pulled' for the next output tuples, it 'pulls' on its inputs and computes them.
- An operator interface provides the methods open, next, isDone, and close implemented using the Storage Engine interface.

Interesting transformations

- **DISTINCT** Elimination
- **GROUP BY** Elimination
- WHERE-Subquery Elimination
- **VIEW** Elimination (Merging)
- Many are based on functional dependencies
- Do you remember functional dependencies?

Functional dependencies

- For R(T) and X, $Y \subseteq T$
- $X \rightarrow Y$ (X determines Y) iff:
 - $\forall r$ valid instance of R.
 - \forall t1, t2 \in r. If t1[X] = t2[X] then t1[Y] = t2[Y]

Example

StudCode	Name	City	Region	BirthYear	Subject	Grade	Univ
1234567	Mary	Pisa	Tuscany	1995	DB	30	Pisa
1234567	Mary	Pisa	Tuscany	1995	SE	28	Pisa
1234568	John	Lucca	Tuscany	1994	DB	30	Pisa
1234568	John	Lucca	Tuscany	1994	SE	28	Pisa

- StudCode \rightarrow Name, City, Region, BirthYear
- City \rightarrow Region
- StudCode, Subject \rightarrow Grade
- $\emptyset \rightarrow Univ$
- StudCode, Name \rightarrow City, Univ, Name

Functional dependencies

- Trivial dependencies: $XY \rightarrow X$
- Atomic dependency: $X \rightarrow A$ (A attribute)
- Union rule:

 $-X \rightarrow A1...An$ iff $X \rightarrow A1 ... X \rightarrow An$

• What about the lhs:

- Does A1...An \rightarrow X imply A1 \rightarrow X ... An \rightarrow X ?

- Does A1 \rightarrow X imply A1..An \rightarrow X?

• What does $\emptyset \rightarrow X$ mean?

Functional dependencies and keys

• Canonical dependencies:

 $- X \rightarrow A$ but not X' $\rightarrow A$, for any X' $\subset X$

- Every non-trivial dependency 'contains' one or more canonical dependencies – just remove extraneous attributes
- Key: set K such that $K \rightarrow T$ holds and is canonic
- In a well designed relation, only one kind of nontrivial canonical dependencies (BCNF):
 - Key \rightarrow A (key dependencies)

Deriving dependencies

Given a set F of FDs, X → Y is derivable from F
 (F |− X → Y), iff X → Y can be derived from F using the following rules:

- If
$$Y \subseteq X$$
, then $X \rightarrow Y$ (Reflexivity R)

– If $X \rightarrow Y$ and $Z \subseteq T$, then $XZ \rightarrow YZ$ (Augmentation A)

– If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ (Transitivity T)

• Soundness:

- when $r \models F$ and $F \models X \rightarrow Y$, then $r \models X \rightarrow Y$

Closure of an attribute set

- **Definition** Given R<T, F>, and X \subseteq T, the *closure* of X wrt F, denoted by X_F⁺, (or just X⁺ when F is clear), is: $-X_{F}^{+} = \{A_i \in T \mid F \mid -X \rightarrow A_i\}$
- Theorem: $F \mid -X \rightarrow Y \Leftrightarrow Y \subseteq X_{F^{+}}$

Example

- StudCode \rightarrow Name, City, BirthYear
- City \rightarrow Region
- StudCode, Subject \rightarrow Grade
- $\emptyset \rightarrow Univ$
- StudCode⁺ ={StudCode, Name, City, BirthYear, Region, Univ}
- (StudCode, Name)⁺ = {
- (Name,City)⁺ = {Name, City, Region, Univ}
- (StudCode, Subject)+
- Ø+

Dependencies in a SQL query

- Consider a query on a set of tables $R_1(T_1),...,R_n(T_n)$ such that no attribute name appears in two tables
- After joins and select, assuming that the WHERE condition C is in CNF, these dependencies hold on the result:
 - The initial dependencies: $K_{ij} \rightarrow T_i$ for any key K_{ij} of the table T_i
 - Constant dependencies $\emptyset \rightarrow A$ for any factor A=c in C
 - Join dependencies $A_i \rightarrow A_j$ and $A_j \rightarrow A_i$ for any factor $A_i = A_j$

Computing the closure of X

- Assume a product-select-project expression with CNF condition
- Let X⁺=X
- Add to X⁺ all attributes A_i such that A_i=c is in C
- Repeat until X⁺ stops changing:
 - Add to X⁺ all A_j such that A_k is in X⁺ and A_j = A_k or A_k = A_j is in C
 - Add to X^+ all attributes of R_i if one key of R_i is included in X^+

DISTINCT elimination

- Consider a SELECT DISTINCT query
 - Duplicate elimination is very expensive, and DISTINCT is often redundant
- SELECT Name FROM Students
- SELECT StudId FROM Students
- SELECT Studid FROM Students NATURAL JOIN Exams

DISTINCT elimination

- Consider E returning a set of tuples of type {T}. If
 A→T, then π^b_A(E) creates no duplicates: if two lines coincide on A they are the same line
- SELECT DISTINCT A
 FROM R1(T1),...,Rn(Tn)
 WHERE C:
 - DISTINCT is redundant when A⁺ is T1∪... ∪Tn (or A⁺ includes a key for every relation in the join), assuming that all input tables are sets (have a key)
 - A⁺ can be computed as in the previous slide

Distinct elimination: example

Products(<u>PkProduct</u>, ProductName, UnitPrice) Invoices(<u>PkInvoiceNo</u>, Customer, Date, TotalPrice) InvoiceLines(<u>FkInvoiceNo</u>, <u>LineNo</u>, FkProduct, Qty, Price)

SELECT DISTINCT FkInvoiceNo,TotalPrice **FROM** InvoiceLines, Invoices

WHERE FkInvoiceNo = PkInvoiceNo;

SELECT DISTINCT FkInvoiceNo,TotalPrice

FROM InvoiceLines, Invoices

WHERE FkInvoiceNo = PkInvoiceNo AND LineNo = 1;

DISTINCT elimination with GROUP BY

- Consider a GROUP BY query:
 - SELECT DISTINCT X, f
 - FROM R1,...,Rn WHERE C1
 - GROUP BY X,Y HAVING C2
- The set X,Y determines all other attributes in the output of the run-time $_{\{X,Y\}}\gamma_{\{f,g\}}$ operation
- Hence, DISTINCT is redundant when $XY \subseteq X+$
- The X+ computation has to use the keys of R1,...,Rn and the conditions C1 and C2

Distinct elimination: example

Products(<u>PkProduct</u>, ProductName, UnitPrice) Invoices(<u>PkInvoiceNo</u>, Customer, Date, TotalPrice) InvoiceLines(<u>FkInvoiceNo</u>, <u>LineNo</u>, FkProduct, Qty, Price)

SELECTDISTINCTFkInvoiceNo, COUNT(*)ASNFROMInvoiceLines, InvoicesWHEREFkInvoiceNo = PkInvoiceNoGROUP BYFkInvoiceNo, Customer;

Group by elimination

Products(<u>PkProduct</u>, ProductName, UnitPrice) Invoices(<u>PkInvoiceNo</u>, Customer, Date, TotalPrice) InvoiceLines(<u>FkInvoiceNo</u>, LineNo, FkProduct, Qty, Price)

SELECT	FkInvoiceNo, COUNT(*) AS N
FROM	InvoiceLines, Invoices
WHERE	FkInvoiceNo = PkInvoiceNo
	AND TotalPrice > 10000 AND LineNo = 1
GROUP BY	FkInvoiceNo, Customer;

The query producing the data to be grouped is without duplicates?

SELECT	FkInvoiceNo, Customer
FROM	InvoiceLines, Invoices
WHERE	FkInvoiceNo = PkInvoiceNo
	AND TotalPrice > 10000 AND LineNo = 1;

WHERE-subquery elimination

nested correlated select * from studenti s * where exists (select * from exams e where e.sid=s.sid) select * nested not correlated **from** students s where s.id in (select e.sid from exams e) select distinct s.* unnested

from students s natural join exams e

WHERE-subquery elimination

- The most important transformation: very common and extremely relevant
- Very difficult problem: no general algorithm
- We only consider here the basic case:
 - Subquery is EXISTS (do not consider NOT EXISTS)
 - Correlated subquery
 - Subquery with no GROUP BY

Left outer join

A	В
1	۵
2	Ъ
3	С

A	С
1	×
3	У
5	z

SELECT * FROM R NATURAL JOIN S;

A	В	С
1	۵	×
3	с	У

Also called: natural inner join

S

S

A	В
1	۵
2	Ь
3	с

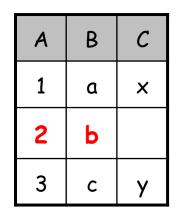
 A
 C

 1
 ×

 3
 y

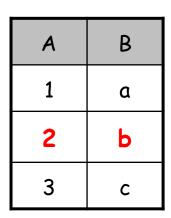
 5
 z

SELECT*FROMRNATURAL LEFT JOINS;



Also called: natural left outer join

Outer join: right, full

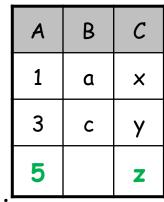


A	С
1	x
3	у
15	z

S

S

SELECT * FROM R NATURAL RIGHT JOIN S;

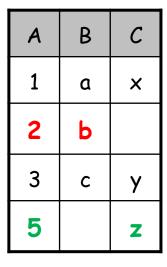


Also called: natural right outer join

R		
A	В	
1	۵	
2	Ь	
3	с	

A	С
1	×
3	У
5	z

SELECT*FROMRNATURAL FULL JOINS;



Also called: natural full outer join

- Courses(CrsName, CrsYear, Teacher, Credits)
- Transcripts(<u>StudId</u>, <u>CrsName</u>*, Year, Date, Grade)

SELECT * FROM Courses C WHERE CrsYear = 2012 AND EXISTS (SELECT FROM Transcripts T WHERE T.CrsName = C.CrsName AND T.Year = CrsYear); • The unnested equivalent query is

SELECT DISTINCT C.*

FROM Courses C, Transcripts T

WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012;

SELECT DISTINCT C.Teacher **FROM** Courses C WHERE CrsYear = 2012 AND **EXISTS (SELECT FROM** Transcripts T WHERE T.CrsName = C.CrsName **AND** T.Year = CrsYear); • The unnested equivalent query is **SELECT DISTINCT** C.Teacher **FROM** Courses C, Transcripts T WHERE T.CrsName = C.CrsName AND T.Year = CrsYear

AND CrsYear = 2012;

SELECT C.Teacher

FROM Courses C

WHERE CrsYear = 2012 AND

EXISTS (SELECT FROM Transcripts T

WHERE T.CrsName = C.CrsName **AND** T.Year = CrsYear);

Is not equivalente to the following, w or w/o distinct:
 SELECT (DISTINCT) C.Teacher

FROM Courses C, Transcripts T

WHERE T.CrsName = C.CrsName **AND** T.Year = CrsYear

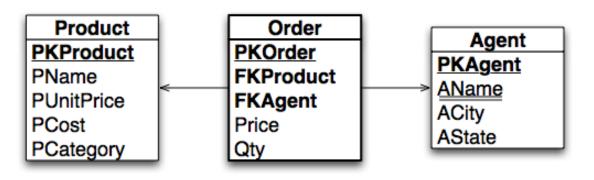
AND CrsYear = 2012;

- SELECT C.CrsName, C.Teacher
 FROM Courses C
 WHERE CrsYear = 2012 AND
 EXISTS (SELECT count(*) FROM Transcripts T
 WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
 HAVING 27 < AVG(Grade))
- The unnested equivalent query is
- SELECT C.CrsName, C.Teacher
 FROM Courses C, Transcripts T
 WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
 AND CrsYear = 2012
 GROUP BY C.CrsName, C.Teacher
 HAVING 27 < AVG(Grade);

- SELECT C.CrsName, C.Teacher
 FROM Courses C
 WHERE C.CrsYear = 2012 AND
 EXISTS (SELECT count(*) FROM Transcripts T
 WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
 HAVING 0 = Count(*))
- The following is wrong (the *count bug* problem)
- SELECT C.CrsName, C.Teacher
 FROM Courses C, Transcripts T
 WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
 AND CrsYear = 2012
 GROUP BY C.CrsName, C.Teacher
 HAVING 0 = Count(*);

- SELECT C.CrsName, C.Teacher
 FROM Courses C
 WHERE C.CrsYear = 2012 AND
 EXISTS (SELECT * FROM Transcripts T
 WHERE T.CrsName = C.CrsName AND T.Year = CrsYear
 HAVING 0 = Count(*))
- The following is ok:
- SELECT C.CrsName, C.Teacher
 FROM Courses C LEFT JOIN Transcripts T
 ON (T.CrsName = C.CrsName AND T.Year = CrsYear)
 WHERE CrsYear = 2012
 GROUP BY C.CrsName, C.Teacher
 HAVING 0 = Count(C.Grade);

View merging



- CREATE VIEW TestView AS
 - SELECT Price, AName
 - FROM Order, Agent
 - WHERE FKAgent = PKAgent;
- SELECT Price, AName
 - FROM TestView
 - WHERE Price = 1000;
- Can the query be transformed to avoid the use of the view?

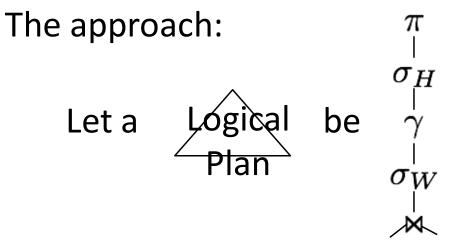
Temporary view

- Created by a SELECT in the FROM:
- SELECT ...

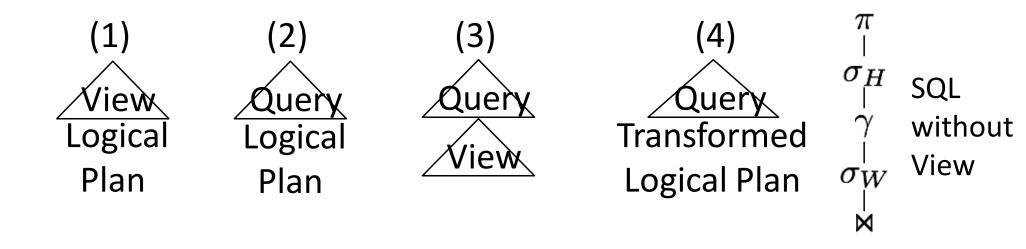
FROM (SELECT ... FROM ...) AS Q1,
 (SELECT ... FROM ...) AS Q2,
 WHERE ...

- Same as
- WITH Q1 AS (SELECT ... FROM ...) , Q2 AS (SELECT ... FROM ...) SELECT FROM Q1, Q2, WHERE ...

View merging



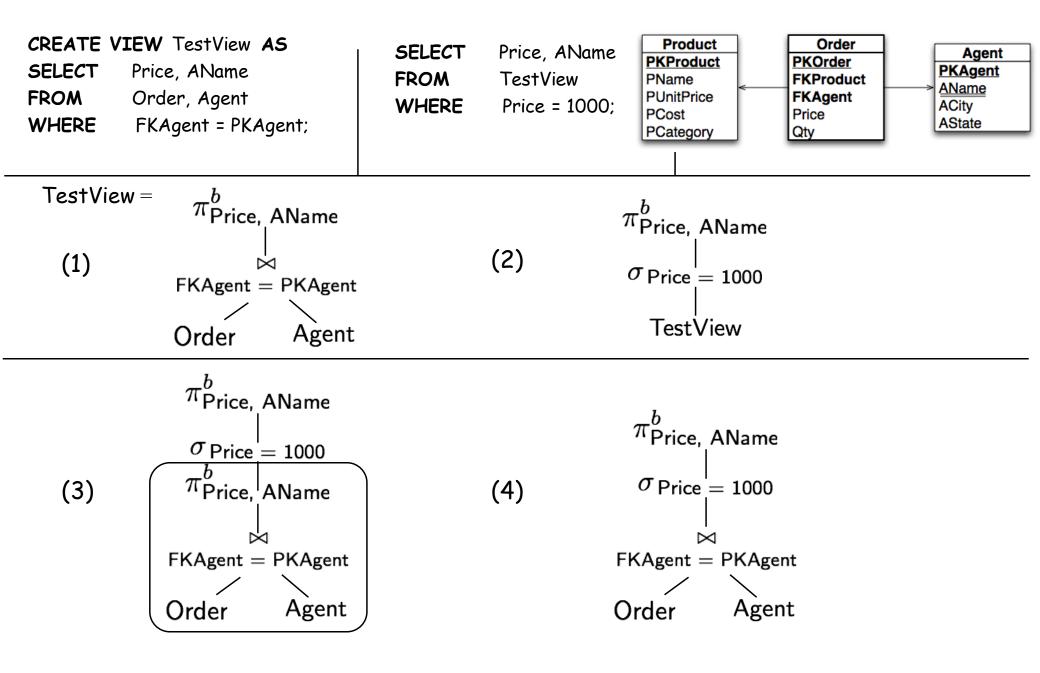
View merging:

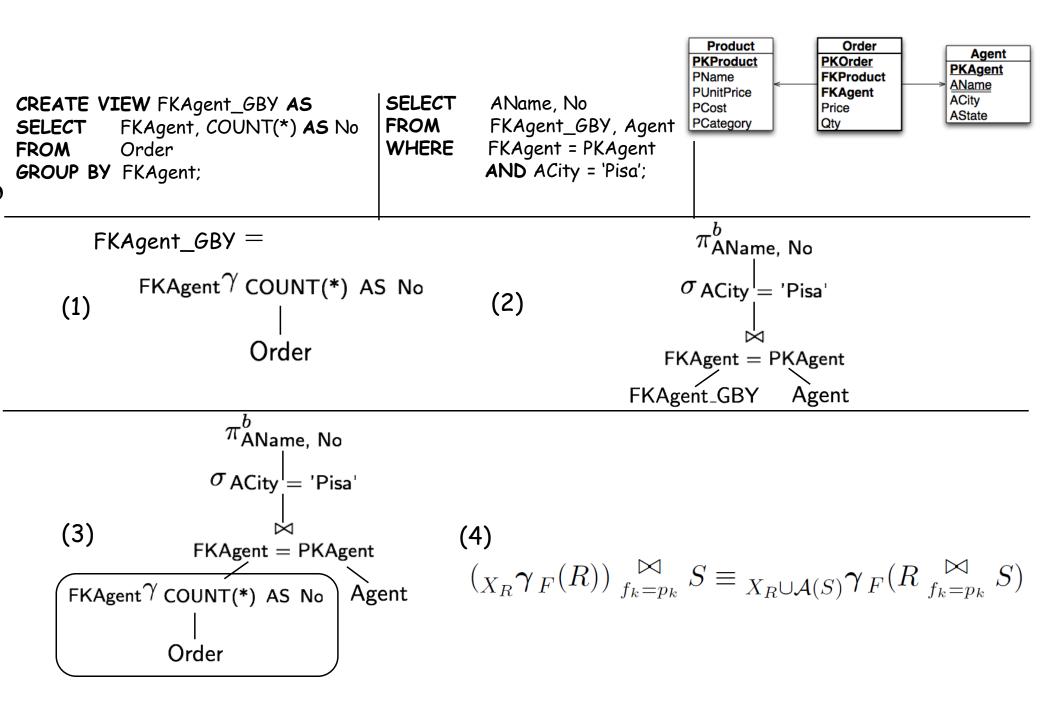


View merging: an equivalence rule

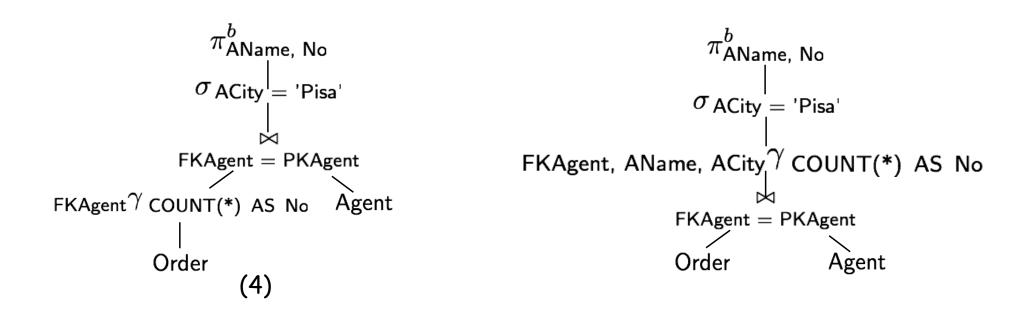
• Let X_R be attributes of R with $fk \in X_R$ a foreign key of R referring to pk of S with attributes A(S), then

$$\left(_{X_R}\boldsymbol{\gamma}_F(R)\right) \underset{f_k=p_k}{\bowtie} S \equiv _{X_R \cup \mathcal{A}(S)} \boldsymbol{\gamma}_F(R \underset{f_k=p_k}{\bowtie} S)$$





PK PN PU PC	Order Agent Product ame nitPrice ost ategory PKOrder FKProduct FKAgent Price Qty PKAgent PKAgent AName ACity AState SELECT AName, No FROM FKAgent_GBY, A WHERE FKAgent = PKAge AND ACity = 'Pis	gent AND A City = 'Dias'
----------------------	--	--------------------------



$$\left(_{X_R} \boldsymbol{\gamma}_F(R)\right) \underset{f_k = p_k}{\bowtie} S \equiv _{X_R \cup \mathcal{A}(S)} \boldsymbol{\gamma}_F(R \underset{f_k = p_k}{\bowtie} S)$$

Physical plan generation

- Main steps:
 - Generate plans
 - Evaluate their cost
- Plan generation:
 - Needs to keep track of attributes and order of each intermediate result
- Cost evaluation:
 - Evaluate the size of each intermediate result
 - Evaluate the cost of each operator

Physical plan generation phase: statistics and catalog

- The Catalog contains the following statistics:
 - $-N_{reg}$ and N_{pag} for each relation.
 - $-N_{key}$ and N_{leaf} for each index.
 - min/max values for each index key.
 - ... Histograms
- The Catalog is updated with the command UPDATE
 STATISTICS

Single relation queries

- S(PkS, FkR, aS, bS, cS)
- SELECT bS FROM S
 WHERE FkR > 100 AND cS = 2000
- The only question is which index or indexes to use
- If we have an index on (cS, FkR, bS), a IndexOnly plan can be used

Multiple relation queries

- Basic issue: join order
- Every permutation is a different plan
 - AxBxCxD
 - BxAxCxD
 - BxCxAxD
 - ...
- n! permutations

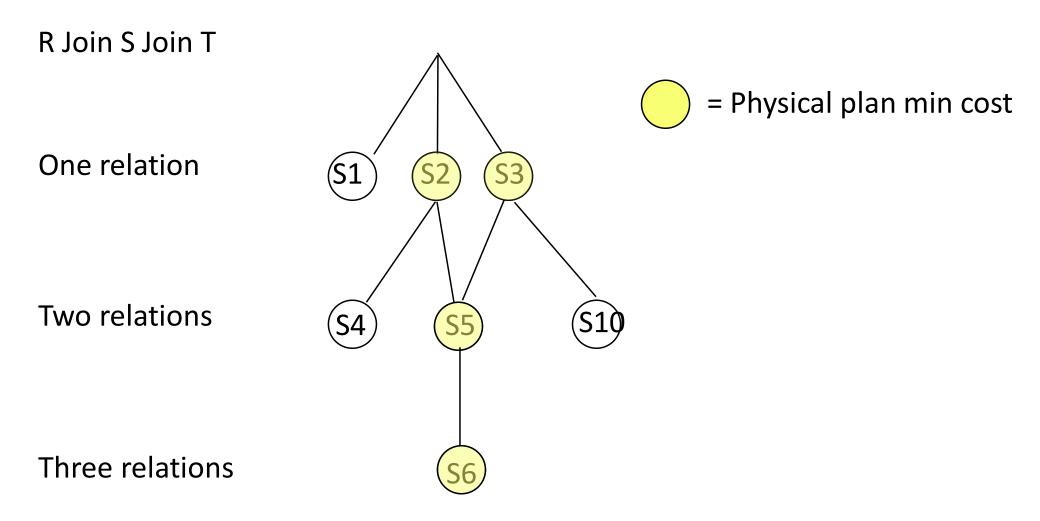
Multiple relation queries

- Every permutation is many different plans
 - -Ax(Bx(CxD))
 - -(AxB)x(CxD)
 - (Ax(BxC))xD
 - -Ax((BxC)xD)

- ...

- Many different choices of join operator
- Huge search space!

Full search



Optimization algorithm for a join

- Initialize *Plans* with one tree for each restricted relation
- repeat {

extract from *Plans* the fastest plan *P*

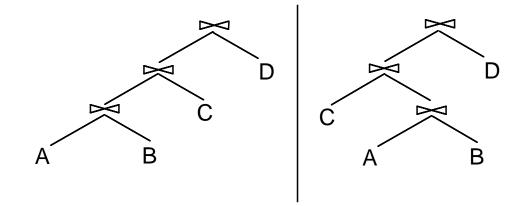
if *P* is complete, exit.

else, expand P:

join *P* with all other plans *P*' on disjoint relations for each *P* join *P*', put the best tree in *Plans* remove *P*

Optimization algorithm: heuristics

- Left deep: generate left-deep trees only
- Greedy: after a node is expanded, only expand its expansions
- Iterative full search: alternate full and greedy
- Interesting-order plans should also be considered



R(N, D, T, C), with indexes on C and T S(C, O, E), with indexes on C and E

SELECT S.C, S.O
FROM S, R
WHERE S.C = R.C AND E = 13 AND T = 'AA';

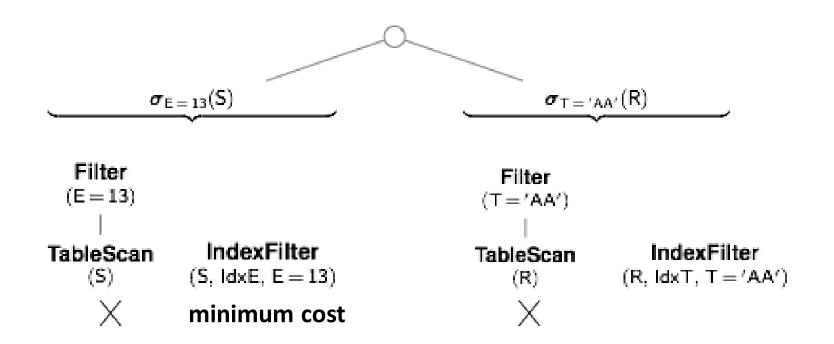
$$\pi_{S.C, S.O}^{b}(\sigma_{E} = 13 \land T = 'AA'(S \bowtie R))$$

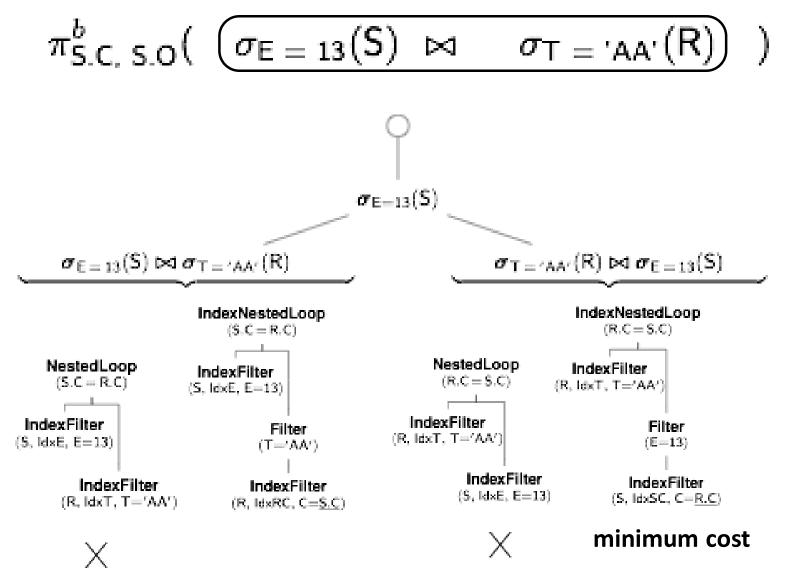
 $\pi_{S.C, S.O}^{b}(\sigma_{E} = 13 \land T = 'AA'(S \bowtie R))$

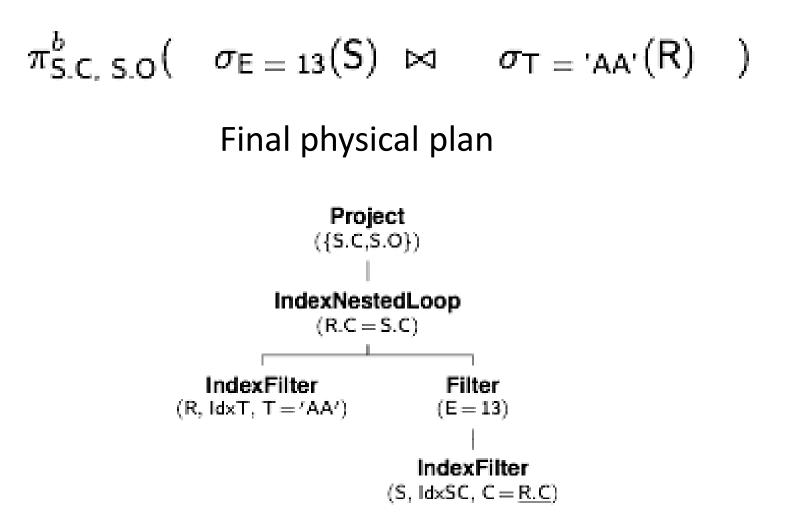
R(<u>N</u>, D, T, <u>C</u>), with indexes on C and T S(<u>C</u>, O, E), with indexes on C and E

$$\pi^b_{S.C, S.O}(\sigma_{E=13}(S) \bowtie \sigma_{T=AA'}(R))$$

Physical plans for subexpression on relations

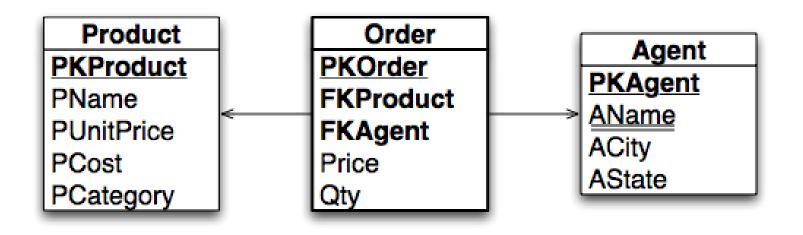






Optimization of queries with grouping and aggregations

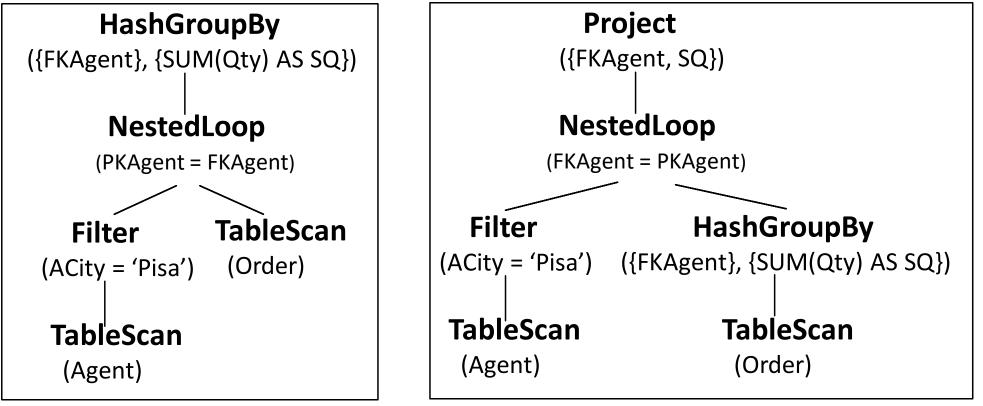
- The standard way to evaluate queries with group-by is to produce a plan for the join, and then add the group-by
- To produce cheaper physical plans the optimizer should consider doing the group-by before the join



SELECTFKAgent, SUM(Qty) AS SQFROMOrder, AgentWHEREFKAgent = PKAgent AND ACity = 'Pisa'GROUP BYFKAgent;

Pre-grouping

SELECT FKAgent, SUM(Qty) AS SQ
FROM Order, Agent
WHERE FKAgent = PKAgent and ACity = 'Pisa'
GROUP BY FKAgent;



Standard Physical Plan

Physical Plan with the Pre-Grouping

Assumptions

- The tables do not have null values, and primary and foreign keys have only one attribute
- The queries are a single SELECT with GROUP BY and HAVING but without subselect, DISTINCT and ORDER BY clauses
- In the SELECT there are all the grouping attributes

The pre-grouping problem

$$_X\gamma_F(R \mathop{\bowtie}_{f_k=p_k} S)$$

When and how can the group-by be pushed through the join?

$${}_X\gamma_F(R \mathop{\bowtie}_{f_k=p_k} S) \stackrel{?}{\equiv} \dots \left(\left({}_{X'}\gamma_{F'}(R) \right) \mathop{\bowtie}_{f_k=p_k} S \right)$$

Grouping equivalence rules: σ $\sigma_{\phi}(_X\gamma_F(E)) \stackrel{?}{\equiv} _X\gamma_F(\sigma_{\phi}(E))$

Two cases to consider for the selection

1)
$$\sigma_{\phi_X}(_X \gamma_F(E)) \equiv {}_X \gamma_F(\sigma_{\phi_X}(E))$$
 In SQL ?

2) $\sigma_{\phi_F}(X\gamma_{AGG}(A_1) \text{ as } F_1, \dots, \text{Agg}(A_n) \text{ as } F_n(E))$ AGG = COUNT, SUM, MIN, MAX, AVG

Bad news: two cases only

 $\sigma_{\mathsf{Mb} \ge \mathsf{v}}(_X \gamma_{\mathsf{MAX}(\mathsf{b})} \text{ as }_{\mathsf{Mb}}(E)) \equiv _X \gamma_{\mathsf{MAX}(\mathsf{b})} \text{ as }_{\mathsf{Mb}}(\sigma_{\mathsf{b} \ge \mathsf{v}}(E))$ $\sigma_{\mathsf{mb} \le \mathsf{v}}(_X \gamma_{\mathsf{MIN}(\mathsf{b})} \text{ as }_{\mathsf{mb}}(E)) \equiv _X \gamma_{\mathsf{MIN}(\mathsf{b})} \text{ as }_{\mathsf{mb}}(\sigma_{\mathsf{b} \le \mathsf{v}}(E))$

Grouping equivalence rules

Assume that X \rightarrow Y: $_X\gamma_F(E) \equiv \pi^b_{X\cup F}(_{X\cup Y}\gamma_F(E))$

SELECT	PKAgent, SUM(Qty) AS SQ	SELECT	PKAgent, SUM(Qty) AS SQ
FROM	Order, Agent	FROM	Order, Agent
WHERE	FKAgent = PKAgent	WHERE	FKAgent = PKAgent
GROUP BY	PKAgent;	GROUP BY	PKAgent, AName;

PKOrder	FKAgent	•••	PKAgent	AName	ACity	
1	1		1	Rossi	Pisa	
2	2		2	Verdi	Firenze	•••
3	1		1	Rossi	Pisa	
4	2		2	Verdi	Firenze	

Grouping equivalence rules

• Let F be decomposable with F_I-F_g

$$_X\gamma_F(E) \equiv _X\gamma_{F_g}(_{X\cup Y}\gamma_{F_l}(E))$$

The pre-grouping problem

$$_X\gamma_F(R_{f_k=p_k}\boxtimes S)$$

When and how can the group-by be pushed through the join?

$${}_X\gamma_F(R \mathop{\bowtie}_{f_k=p_k} S) \stackrel{?}{\equiv} \dots \left(\left({}_{X'}\gamma_{F'}(R) \right) \mathop{\bowtie}_{f_k=p_k} S \right)$$

Three cases

The invariant grouping rule

Proposition 1. R has the **invariant grouping** property

$${}_X\gamma_F(R {\,}_{C_j}^{\bowtie} S) \equiv \pi^b_{X \cup F}(({}_{X \cup \mathcal{A}(C_j) - \mathcal{A}(S)}\gamma_F(R)) {\,}_{C_j}^{\bowtie} S)$$

if the following conditions are true:

1. $C_j \mid -X \rightarrow A(S)$: in every group, only one line from S

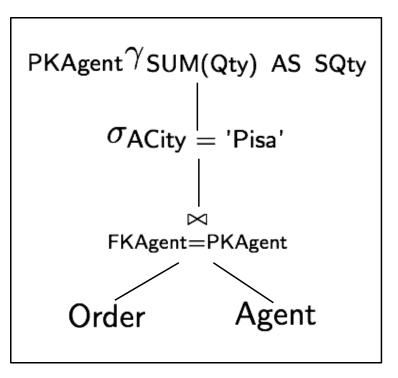
in practice: C_i is $f_k = p_k$, with f_k in R, p_k key for S, X $\rightarrow f_k$

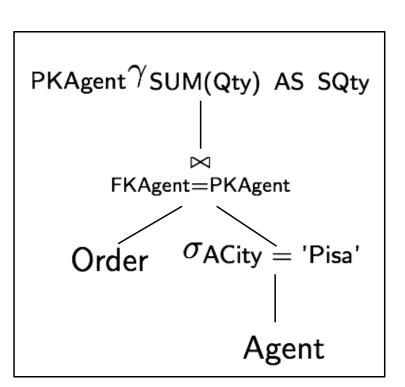
2. Each aggregate function in F only uses attributes from R.

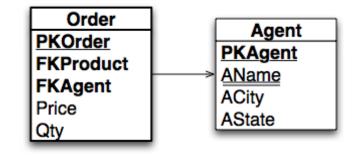
- **SELECT** PKAgent, SUM(Qty) AS SQ
- **FROM** Order, Agent
- **WHERE** FKAgent = PKAgent AND ACity = 'Pisa'

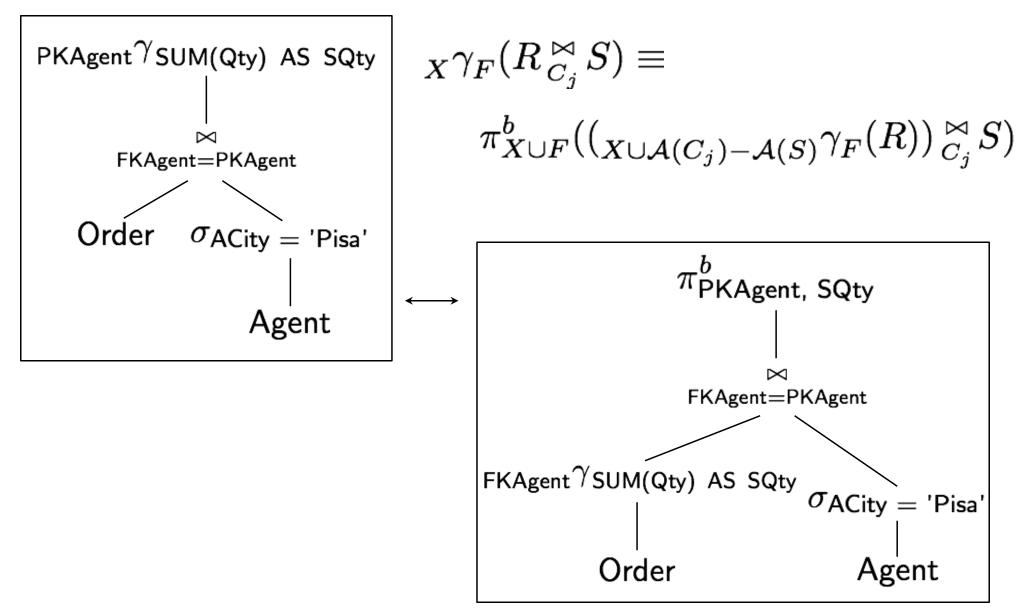
Ξ

GROUP BY PKAgent;



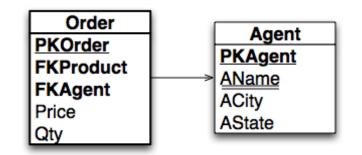






Tests

- SELECT PKAgent, ACity, SUM(Qty) AS SQ
- **FROM** Order, Agent
- WHERE FKAgent = PKAgent
- **GROUP BY** PKAgent, ACity;



SELECTACity, SUM(Qty) AS SQFROMOrder, AgentWHEREFKAgent = PKAgentGROUP BYACity;

SELECT	AName, SUM(Qty) AS SQ
FROM	Order, Agent
WHERE	FKAgent = PKAgent AND ACity = 'Pisa'
GROUP BY	AName;

Summary

- Understand principles and methods of query processing in order to produce a good physical design and better applications
- Query rewriting
- Production of alternative plans and cost evaluation