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To deal with the evolution of data and applications, and with the existence of multiple views for
the same data, the object data model needs to be extended with two di�erent sets of operations:
object extension operations, to allow an object to dynamically change its type, and object viewing
operations, to allow an object to be seen as if it had a di�erent structure. Object extension and
object viewing operations are related, in that they are both identity-preserving operations; but
di�erent, in that object extension may modify the behavior of the original object while object
viewing creates a new view for the original object without modifying its behavior. In this paper a
set of object viewing operations is de�ned in the context of a statically and strongly typed data-
base programming language, which supports objects with roles, and the relationships with object
extension and role mechanisms is discussed. We then show how the object viewing operations can
be used to give the semantics of a higher level mechanism to de�ne views for object databases.
Examples of the use of these operations are given with reference to the prototype implementation
of the language Galileo97. Finally, the formalization is included of both the type rules and the
operational semantics of the language mechanisms presented.
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1. INTRODUCTION

The success of the object data model is mainly due to its expressivity and its
ability to deal with both structural and procedural aspects of real-world entities.
The technology of object databases (ODBs) is, however, still relatively new. It
still has some limitations, in particular with respect to the possibility of adapting a
database to the evolution of application requirements. It is widely recognized that
long lasting, evolving databases need support for:

|objects that may evolve over time, and may exibit a di�erent behavior in di�erent
contexts;

|views mechanisms to adapt the database schema to the changing needs of users;

|schema evolution, data evolution and versioning mechanisms to support changing
application requirements.

In this paper we consider a set of operators on objects, in the context of a statically
and strongly typed database programming language, to support the �rst two aspects
of database evolution:
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|to allow objects to acquire and lose types during their life, to model the dynamic
and context dependent behavior of real-world entities. For example, to model
situations such as that of a human being who is initially classi�ed as a person,
then becomes a student, and �nally an employee. When an object acquires a
new type it preserves its identity, but it may change its behavior. The de�nition
of a type-safe extension operator implies, as will be shown later, that objects are
enriched with a role notion. In our approach, this means that every object is
equipped with a set of roles which can change over time; a message is sent to an
object only through one if its roles, and the answer to the message may depend
on the role the message is addressed to, and on the roles possessed by the object.

|to allow the creation of virtual objects starting from base or virtual objects using
a set of object algebra operators. A virtual object is used to model a di�erent
interface to the same conceptual entity, and so it has the same identity as the
object from which it has been constructed, but it may have a di�erent structure
and behavior which, in contrast to role acquisition, does not a�ect the behavior of
the object from which it has been constructed. We will also show how the object
algebra operators can be used to give the semantics of a higher level mechanism
to de�ne views for ODBs, i.e. query-de�ned collections of virtual objects.

As will be shown later, objects with roles and virtual objects are two related mecha-
nisms, hence it is essential to compare them in order to understand their similarities
and di�erences. Objects with roles and virtual objects have been implemented in
the original Galileo97 language, a statically and strongly typed language, thus prov-
ing that 
exibility can be achieved without compromising the well known bene�ts of
static typechecking. Galileo97 is the result of a redesign of the Galileo language [Al-
bano et al. 1985], and is aimed at a better integration of an object mechanism into
a database programming language. The role mechanism in Galileo97 is based on
the one proposed for Fibonacci [Albano et al. 1993], [Albano et al. 1995]. The role
mechanism is thus not a novel contribution of this paper, but is presented here for
several reasons: (a) to compare it with the virtual objects mechanism proposed,
(b) to show their di�erent semantics and their interactions, and (c) to discuss why
both mechanisms are needed to support database evolution at both instance and
schema levels.
The main contributions of this paper are:

|the de�nition of an identity-preserving object algebra which allows virtual objects
to be de�ned and typed; the novelty of our approach is that our operators are
de�ned in the context of a statically strongly typed language, where data and
code are mixed, and we de�ne a type system to deal with both of them (Section 4
and Appendix A);

|the formalization of both the type rules and the operational semantics of the
mechanisms that we present (Appendixes A and B);

|the de�nition of a translation from a view mechanism (i.e. a mechanism to de�ne
virtual classes) to our virtual object mechanisms (Section 5). Most work in this
�eld focusses on one aspect only, and we have never found a formal de�nition of
the relationship between the two mechanisms.

Objects with roles have recently been studied by several authors (e.g., [Bertino
and Guerrini 1995], [Gottlob et al. 1996], [Odberg 1994], [Papazoglou and Kr�amer
1997], [Richardson and Schwartz 1991], [Shilling and Sweeney 1989], [Wieringa et al.
1995]); a comparison of these proposals is beyond the scope of this paper but can
be found in [Papazoglou and Kr�amer 1997].
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View mechanisms for ODBs have also been proposed by several authors (e.g.,
[Dayal 1989], [Bancilhon et al. 1990], [Bertino 1992], [Abiteboul and Bonner 1991],
[Santos et al. 1994], [Guerrini et al. 1997], [Kim and Kelley 1995], [Ohori and Tajima
1994], [Parent and Spaccapietra 1985], [Rundensteiner 1992], [Scholl and Scheck
1990], [Scholl et al. 1994], [Heiler and Zdonik 1990], [Zdonik 1990],[Leung et al.
1993]), and the main approaches are compared in the survey paper [Motschnig-
Pitrik 1996], together with a discussion of the functionalities needed by a general
mechanism for de�ning views in ODBs. A deep comparison between our and those
approaches will be presented once our approach has been de�ned, in Section 6. We
only mention here that most of these approaches focus on the virtual class mecha-
nism, while we study here virtual object operators, as done in [Ohori and Tajima
1994]; we also study the relationship between the two approaches (Section 5), while
this aspect is not dealt with in other works.
The paper is organized as follows. Section 2 de�nes some basic terminology and

introduces the concepts that will be used to explain the goals of the paper. Sec-
tion 3 brie
y presents the object with roles mechanism and its semantics. Section 4
describes the virtual objects mechanism and its semantics. Section 5 outlines the
mechanism for de�ning views, whose semantics is given in terms of the virtual ob-
jects operators. Section 6 compares related works. In Section 7 some conclusions
are drawn. Appendix A presents the type rules for the Galileo97 subset used in
the paper. Appendix B presents a formal operational semantics for most of the
features we presented; object with roles and virtual objects are fully described in
this de�nition.

2. CONCEPTS, TERMINOLOGY AND ISSUES

This section establishes some basic terminology and describes informally the notion
of objects with roles and virtual objects. We will also introduce the essentials of
the Galileo97 language syntax that will be used to give examples in the rest of the
paper to make the presentation more concrete.

2.1 Objects and Types

An object is a software entity which has an internal state (instance variables)
equipped with a setof local operations (methods) to manipulate that state. The
request for an object to execute an operation is called a message to which the
object can reply. When the object state is not visible directly, but can only be
accessed through the methods, the object encapsulates its state. The object state
and methods are also called the object structural and behavioral aspects.
An object is an instance of a type de�ned with a generative type constuctor ,

i.e. each object type de�nition produces a new type, which is di�erent from any
other previously de�ned types. An object type describes the state �elds and the
implementation of methods of its possible instances. An object type de�nition
introduces a constructor of its instances, and so an object can be constructed only
after its object type de�nition has been given.
The signature +T of an object type T is the set of label-type pairs of the messages

which can be sent to its instances.
Each application of an object constructor returns a new object with a di�erent

identity that persists over time, independently of changes to its state. The equality
operator on objects is based on identity. Object identity may be implemented as
a hidden �eld with a system-generated and system-wide unique object-identi�er

(OID). Hereafter we will not talk about OID, but we will assume that (a) objects
are �rst class values, and therefore can be embedded in data structures, passed as
a parameter and returned as a value, and (b) that equality on objects is sameness
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(OID equality).
In the object-oriented programming context this approach to objects is called

class-based since the description of objects is called a class; we prefer the term
\type" since we will use \class" with a di�erent meaning according to the database
tradition.

Objects and Types in Galileo 97

In Galileo97 a new object type is de�ned by the operator <->1. An object type
description is de�ned using the record constructor [ ] and a set of label-type and
label-method pairs. Each label is called a \�eld" or \attribute". A label-type pair,
such as Ide: string, represents an instance variable (a state component), while
a label-method pair, such as Ide:=meth ..., represents a method. Methods can
access the �elds of an object using the prede�ned identi�er self. Messages are sent
to objects using the dot notation.
Components of the state can be declared to be updatable (e.g. Ide:= var T);

they are updated in an object O with the operator <- (e.g. O.Ide <- v), and their
value can be obtained with the operator at (e.g. at O.Ide). The distinction of
constant and updatable attributes in the Galileo97 type system is an important
feature to ensure static typechecking.
Components of the state or methods can be de�ned as private to enforce encap-

sulation, otherwise they are considered public, however for the sake of simplicity
we will not consider this issue, which is orthogonal to our main subject.
The following is an example of the object type Person de�nition:

let rec type Person <->

[Name: string;

BirthYear: int;

Address: var string;

WhoAreYou:= meth(): string is "My name is " & self.Name & "." ];

The de�nition of an object type T introduces the function mkT to construct objects
of type T : the function parameter is a record type contaning the label-type pairs
of T . For example, the following expression binds the identi�er John to an object
of type Person:

let John := mkPerson ([Name := "John Smith";

Address := var "A street";

BirthYear := 1967 ]);

2.2 Inheritance

Inheritance is a mechanism which allows something to be de�ned, typically an
object type, by only describing how it di�ers from a previously de�ned one. Inheri-
tance should not be confused with subtyping: subtyping is a relation between types
such that when T � S, then any operation which can be applied to any value of
type S can also be applied to any value of type T . The two notions are sometimes
confused because, in object oriented languages, inheritance is generally only used
to de�ne object subtypes, and object subtypes can only be de�ned by inheritance.
However, we will keep the two terms distinct and will use each of them with its
proper meaning.

1Galileo97 syntax is not very di�erent from those of other object oriented database languages,
and the query language is very similar to the ODMG-OQL syntax.
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2.3 Inheritance in Galileo 97

In Galileo97 an object type T can be de�ned by inheritance from another object
type T 0 as follows:

type T <-> is T 0 and H

The type T inherits the T 0 attributes, i.e. both its instance variables and methods.
Galileo97 allows strict inheritance only: a T 0 attribute Ai, with type Hi, may be
rede�ned in T only by specializing its type, that is the new type H0

i of Ai must be
a subtype of Hi. For this reason, the inheritance mechanism in Galileo97 always
produces an object subtype, i.e. in our example we will have T � T 0.
The following is an example of an object type de�ned by inheritance:

let rec type Student <-> is Person and

[Code: string;

Faculty: string;

WhoAreYou := meth(): string is

super.WhoAreYou &

" I am a student of " & self.Faculty ];

In an object type de�ned by inheritance, the special identifer super in a new
method, such as WhoAreYou, is used to invoke the old version of a method m from
a direct supertype. As usual, any occurrence of self within the method m is inter-
preted with respect to the current subtype, and not with respect to the supertype.
Multiple inheritance is generally possible, i.e. inheritance from several supertypes,

however for the sake of simplicity we will not consider this issue.

2.4 Static and Dynamic Dispatch

Given a method invocation of the form O.m(...), a language dependent technique
is responsible for identifying the appropriate method m of the object O that has to
be executed. Let us consider the following function:

let print := fun(x: Person):string is x.WhoAreYou;

Let John be an object of type Person and Bob an object of type Student. The
problem is the meaning of x.WhoAreYou in the body of print during the invocation
of print(Bob). According to a static dispatch technique (also called early binding),
based on compile-time information about x, the code of WhoAreYou in Person is
executed. On the other hand, according to a dynamic dispatch technique, based
on the run-time information about x, the code of WhoAreYou in Student is exe-
cuted. Dynamic dispatch (also called late binding), is found in all object oriented
languages, and it is considered to be one of their de�ning properties.

2.5 Sequences, Classes and Subclasses

An object data model supports a mechanism to de�ne a collection of homogeneous
values to model multivalued attributes or collections of objects to model databases.
Usually two di�erent mechanisms are provided.
To model multivalued attributes, type constructors are available for bags, lists

(or sequences), and sets. For the sake of simplicity we will only consider sequences.
To model databases we consider a mechanism called class. A class is a modi�able

sequence of objects with the same type. A class de�nition has two di�erent e�ects:

|it introduces the de�nition of the type T of its elements and a constructor for
values of this type (intensional aspect),

|it supplies a name to denote the modi�able sequence of the elements of type T
currently in the database (extensional aspect).
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In Galileo97 classes and sequences can be queried using the same operators, similar
to those o�ered by the language OQL. However, classes and sequences di�er in that
classes are automatically updated every time an object of the corresponding type
is created or deleted, while the extent of a sequence is immutable. In addition,
classes only can be de�ned by inheritance and organized into a subclass hierarchy,
such that if C1 is a subclass of C2, then the following properties hold:

|the type of the elements in C1 is de�ned by inheritance from the type of the
elements in C2;

|the elements in C1 are a subset of the elements in C2.

Subtype, inheritance, and subset are three di�erent kinds of relations between types
and values of an object language. Subtype is a relation between types which implies
value substitutability; inheritance is a relation between de�nitions, which means
that the inheriting de�nition is speci�ed \by di�erence" with respect to the super-
de�nition; subset is a subset relation between collections of objects, which also
implies a subtype relation between the types of their elements. Languages exist
that support only subtypes, or subtypes and inheritance, or subtypes, inheritance
and subsets.

Sequences, Classes and Subclasses in Galileo 97

Sequences are constant collections of homogeneous values of any type. seq T is the
type of sequence of elements of type T . Sequences are enclosed in curly brackets
and their elements are separated by semicolons.
A class de�nition introduces a name for the class and one for the object type of its

elements. In the following example, the class Persons is de�ned, whose members
belong to the object type Person:

let rec Persons class Person <->

[Name: string;

BirthYear: int;

WhoAreYou:= meth(): string is "My name is " & self.Name & "."];

Classes of objects model sets of entities of the observed world, while relationships
between such entities are represented as objects that have other objects as compo-
nents. When an object with the type T of the elements of a class is constructed by
mkT or inT , then the object automatically becomes an element in that class. When
an object loses the type T (dropT ), then it is also removed from the corresponding
class. Here is an example of a subclass de�nition:

let rec Students subset of Persons class

Student <-> is Person and

[Code: string;

Faculty: string;

WhoAreYou := meth(): string is

super.WhoAreYou &

" I am a student of " & self.Faculty ];

2.6 Objects with roles

We call object extension the operation which allows an object to assume a new type
without changing its identity. This operation is necessary to model the behavior of
real world entities. It is also useful in the context of database evolution: when a
new subtype is added to an object type hierarchy, it is often useful to make some
existing objects acquire the new type.
With the object mechanism described so far, object extension is not allowed.

Moreover, an object is always an instance of a single minimal type, that is a type T
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such that all the other types to which it belongs are supertypes of T . The minimal
type of an object is the one that it receives at construction time, and is the one
which dictates which method the object uses to answer a message.
When object extension is allowed, it becomes possible for an object to acquire

several minimal types, with possibly con
icting state component and method de�n-
itions (see Section 3 for an example). This problem should not be solved by having
one minimal type which prevails on the other ones, since in general every context
where an object has been extended with a minimal type expects that minimal type
to be the prevailing one. For this reason, several authors have proposed to adopt a
notion of object with role to support objects that can evolve over time by changing
type and appearance. In this proposals, an object role (or simply a role) is one of
the perspectives of an object as an instance of a type, and it de�nes a particular
context for method execution. One object may possess one di�erent role for each
of its minimal types, or even one for each of its types (as in Galileo97). In any
case, whenever an object is extended with a new minimal subtype it acquires a new
role. Note that in this approach a new type is only acquired when a new role is
acquired and viceversa, hence we do not have two distinct `type acquisition' and
`role acquisition' operations.
The notion of objects with roles is essential to support object extension, but is

also useful to model situations where one real world entity may exhibit a di�erent
behavior in di�erent contexts. An analysis of these approaches can be found in [Pa-
pazoglou and Kr�amer 1997]. Three important issues in the design of a language
that supports objects with roles are the technique to choose the role which will an-
swer a speci�c message, the method lookup algorithm to adopt, and the semantics
of the operator to drop types from an object. They will be discussed in Section 3
in the context of Galileo97.

2.7 Views for ODBs

Relational database systems provide a well-known view mechanism to de�ne derived
(or computed) tables as the result of a query on other real (or derived) tables. These
derived tables can be queried as if they were real tables, but updating a derived
table is generally not allowed, since it may not be possible to map the operation
onto the real tables.
A similar functionality may be provided for object databases. For example, the

following Galileo97 expression de�nes a sequence containing all the young persons
currently present in the Person class:

let AllYoungPersons := derived Persons where BirthYear > 1985;

AllYoungPersons is a computed value of type seq Person. A derived sequence
(a) is computed every time it is used, (b) it can be queried as with any other
sequence or class, (c) its elements can be updated in the same way as objects of a
class can be updated and the e�ects are the same, and (d) its elements change if
objects are added or removed from the class Persons, as one would expect. This
is the only way to change the number of elements of a derived sequence.
The AllYoungPersons example shows that a derived sequence is adequate for

representing a view whose elements are a subset of a class, while problems arise
when one needs to change the structure of the class elements in the view. The
only way to achieve the e�ect with the Galileo97 operators seen so far is to build
a new value starting from a class element: it may be either a record (using the
record constructor [ ]) or a new object which does not have the same identity as
the original one. Using the terminology proposed in [Scholl and Schek 1991], the
�rst kind of view is called a relational semantics view , and the second an object-
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generating semantics view. For example:

let ItalianRecordPersons := derived

select [ Nome:= Name; AnnoNascita:= BirthYear]

from Persons;

let type Italian <-> [ Nome: string; AnnoNascita: int];

let ItalianObjectPersons := derived

select mkItalian([Nome:= Name; AnnoNascita:= BirthYear])

from Persons;

However, two things are lacking:

|the ability to de�ne object-preserving semantics views, i.e. views whose elements
are virtual objects with the same identity as the corresponding base object;

|the ability to place the de�ned view into a subset hierarchy.

To solve the �rst problem, an object language should have an identity preserving
algebra on objects which allows one to de�ne di�erent interfaces for the same objects
(called virtual objects), so that di�erent users may see the same objects with a
di�erent structure and behavior [Scholl and Schek 1991].
To solve the second problem, the language should have a virtual class mechanism,

to allow the programmer to de�ne collections which are: (a) virtual, i.e. computed
starting from a base collection, as in our examples above; (b) classes, i.e. which
are placed into the subset hierarchy and which collect all existing values of their
associated type.
Object algebras have been proposed by several authors (e.g., [Shaw and Zdonik

1989] [Rundensteiner 1992] [Scholl et al. 1990] [Guerrini et al. 1997] [Leung et al.
1993] [Parent and Spaccapietra 1985]), and the basic algebraic operators are selec-
tion to de�ne subsets of a class, projection to see a subset of the object attributes or
methods, and extension to add new attributes and methods. Some of these papers
combine the virtual objects and virtual classes mechanisms, while in this paper
they are studied separately, and we show how the virtual objects operators can be
used to give the semantics of a virtual class mechanism.
There are particular problems which must be addressed in order to include a set

of object algebraic operators into a statically and strongly typed object-oriented
programming language:

|what is the type of a virtual object, and how is it related to the type of the object
it is based on?

|When the mechanism allows new methods to be added to objects, can the im-
plementation of these methods have access to the state of the base objects? If
a method can be overriden in the virtual object, what impact is there on the
method lookup algorithm?

|What are the di�erences between the role mechanism and the virtual object
mechanism?

|If a join operator is supported by the object algebra to combine two objects,
what is the identity of the resulting objects?

A solution to these problems will be given in the context of Galileo97 in Section 4,
and a comparison with other proposals will be presented later in Section 6.

3. OBJECTS WITH ROLES IN GALILEO97

In Galileo97, besides the operator mkT to construct objects of type T , the operator
inS exists to extend dynamically an object with a new subtype S of T , without
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changing its identity, but with the possibility of changing its behavior. The operator
inS adds a new role to the object, and returns a reference to this new role of that
object. In Galileo97 an object expressions does not return an object alone, but
always one speci�c role for that object.
The following example shows the de�nition of the type Person, with a method

WhoAreYou, and two subtypes Student and Athlete de�ned by inheritance that
have a code �eld with a di�erent type. Such a de�nition is allowed in any object-
oriented language, since the validity of an object type de�nition only depends on its
object supertypes, but cannot be limited by the de�nition of its cousin (i.e. neither
descendents nor ancestors) types:

let rec type Person <->

[Name: string;

BirthYear: int;

WhoAreYou:= meth(): string is "My name is " & self.Name & "."];

let rec type Student <-> is Person and

[Code: string;

Faculty: string;

WhoAreYou := meth(): string is

super.WhoAreYou & " I am a " & self.Faculty & "student" ];

let rec type Athlete <-> is Person and

[Code: int;

Sport: string;

WhoAreYou:= meth(): string is

super.WhoAreYou & " I play " & self.Sport ];

The following expression builds an object, with one role only, of type Person:

let John := mkPerson ([ Name := "John Smith"; BirthYear := 1967 ]);

The answer to the message John.WhoAreYou is "My name is John Smith". The
object with role John can now be extended with the subtype Athlete as follows:

let JohnAsAthlete := inAthlete(John, [ Code := 245; Sport := "tennis" ]);

As a consequence of this extension, we now have two di�erent ways to access the
same object. John refers to the Person role while JohnAsAthlete refers to the
Athlete role of the same object. As a consequence, method lookup generally gives
di�erent results, depending on the role used.
As a consequence of this extension, John now has two di�erent methods to answer

the WhoAreYou message, and Galileo97 allows both of them to be accessed, using
the di�erent notations John.WhoAreYou and John!WhoAreYou.
In both cases method lookup starts from the Person role of John. With the \."

notation, the method is �rst looked for in the subtypes of Person (downward lookup

phase). If this phase fails, the method is looked for in Person and in its supertypes
(upward lookup phase). This whole process is called double lookup, and �nds the
Athlete implementation of WhoAreYou. With the \!" notation, only upward lookup
is performed, thus �nding the Person implementation of WhoAreYou. If the method
is found in a supertype, self stands for the role that receives the message, otherwise
self stands for the role that answers the message.
Both techniques are statically guaranteed to �nd a method of the right type,

and both are instances of the late binding mechanism, since they do not depend on
the static type of the receiver, but on its dynamic types and on the role through
which it is accessed (this is not evident in this case, since the Person role of John
corresponds to its static type; this is not the case in our next example).
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Another, more important, consequence of the extension is that now we have two
di�erent roles to access the same object, which behave di�erently. For example if
the WhoAreYoumessage is sent with the upward lookup notation, the two roles John
and JohnAsAthlete answer in two di�erent ways.
The object with role John can also be extended with the type Student:

let JohnAsStudent := inStudent(John, [ Code := "0123"; Faculty := "Science" ]);

We say that John, JohnAsStudent and JohnAsAthlete are three di�erent roles of
the same object, of type Person, Student and Athlete, respectively.
This extension has the following e�ects that show how in Galileo97 messages can

be addressed to every role of an object, and the answer may depend on the role
addressed:

|the answer to the message Code sent to JohnAsStudent is a string, while the
answer to the same message sent to JohnAsAthlete is an integer;

|the answer to the message WhoAreYou sent to JohnAsStudent is "My name is

John Smith. I am a Science student", while the answer to the same mes-
sage sent to JohnAsAthlete is "My name is John Smith. I play tennis";

|the answer to the message WhoAreYou sent to John with the dot notation changes
and becomes "My name is John Smith. I am a Science student".

While upward and double lookup are two di�erent forms of dynamic binding, static
binding to the method of type T can be obtained through the (O As T)!msg idiom,
where O As T is the operator which allows one to access the role with type T of an
object O. Let us consider the following function:

let foo := fun(x:Person): seq string is

{x.WhoAreYou; x!WhoAreYou; (x As Person)!WhoAreYou};

Let JohnAsStudent be bound to a value of type Student, which has then been
extended with a role of type ForeignStudent, subtype of Student which rede�nes
the method WhoAreYou. The value returned by foo(JohnAsStudent) is a sequence
of three answers produced by the method de�ned in type ForeignStudent (dynamic
binding with double lookup), by the method de�ned in type Student (dynamic
binding with upward lookup), and by the method de�ned in type Person (static
binding).
The language also provides other operators on objects and roles which allow one

to discover which roles can be played by an object (RoleExpr isalso T ), and to
remove the role with type T and its subroles from an object (dropT (ObjExpr)). If
a role of type T is an element of a class, when an object loses the type T (dropT ),
then it is also removed from the corresponding class. The semantics of the drop

operator must be de�ned carefully, and it is discussed in the next section.

3.1 The Semantics of the drop Operator

To understand the following discussion, a clear distinction must be made between
the static and run-time type of a role.
A run-time type of a role value is the type assigned to it when the role has been

acquired. A run-time type of a role expression is the run-time type of the role value
denoted by that expression. The same expression may have a di�erent run time
type whenever it is evaluated.
A static time type of a role expression is the type assigned to the expression at

compile time.
To clarify this point, let us consider the following example:
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let print := fun (x: Person):string is x.WhoAreYou;

print(John);

print(JohnAsStudent);

The compile type of the parameter x is Person, while its run-time type is Person
when print is applied to JohnAsPerson, and Student when print is applied to
JohnAsStudent. Note that the method lookup only depends on the run-time type
of the receiver, which is always a subtype of its compile time type.
A language with the possibility of extending objects dynamically with new types

should also provide an operator to drop types from an object (e.g. a person be-
comes a student and once graduated he is no longer a student). This possibility
is supported by the Galileo97 language with the operator dropT. Two di�erent se-
mantics can be given to the drop operator with di�erent consequences both on how
an application is modeled and on the complexity of the operator's implementation:

(1) A �rst solution is to assume that when an object O loses a type T, an access
to O through the role with run-time type T will cause a run-time failure. This
solution is simple to implement, but creates problems in the design of an ap-
plication, as it is shown in the following example:

type Person <-> [Name:string;

WhoAreYou := meth():string is

"My name is " & self.Name & "." &

" I am a person."];

type Student <-> is Person and

[SNumber :int;

WhoAreYou := meth():string is

"My name is " & self.Name & "." &

" I am a student."];

type Car <-> [Plate:string;

Owner :Person;

OwnerName := meth():string is

self.Owner.WhoAreYou];

Let us construct an object with a role of type Person, and then let us extend
it with the type Student:

let Bob := mkPerson([Name:= "Bob"]);

let BobAsStudent := inStudent(Bob, [SNumber := 1]);

Now, since the type of BobAsStudent is a subtype of Person, BobAsStudent
can be used as Owner of a car:

let ACar := mkCar([ Plate := "xyz"; Owner := BobAsStudent]);

and the result of the expression ACar.Owner.WhoAreYou is "My name is Bob.

I am a student.".
Now let us assume that Bob loses the type Student, by evaluating the expres-
sion dropStudent(Bob), but still has the type Person Then if the expression
ACar.Owner.WhoAreYou is evaluated again, a run-time failure will be generated
since the message WhoAreYou is sent to a role which has been removed.
This e�ect is not satisfactory since the Owner of a car is expected to be a Person
and its present value is an object which has lost the role with type Student,
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but it has still the role with type Person. So there is an undesirable interaction
between subtyping and losing roles.
As matter of fact, if the ACar would have been constructed as follows:

let ACar := mkCar([ Plate := "xyz"; Owner := BobAsStudent As Person]);

after the evaluation of dropStudent(Bob), the result of ACar.Owner.WhoAreYou
would have been correctly "My name is Bob. I am a person.". This means
that when writing an application attention must be paid to use a value of a
certain type where a value of supertype is expected, if that value can lose the
subtype. Consequently the advantage of subtyping is lost.

(2) Another solution, which avoids the above problems, is the following one adopted
in Galileo97.
A di�erent semantics has been adopted in Galileo97 for the drop operator,
which avoids the above problems.
When an object receives a message, the method lookup algorithm ignores the
methods rede�ned in dropped roles. However before executing the selected
method, the system checks that the method has been found in a role whose
type is a subtype of the static type of the role which has received the message.
If it is not, a failure is generated. In other words, message passing fails if and
only if the receiving object has lost the role which corresponds to the static
type of the role which has received the message.
According to this semantics for the drop operator, after the evaluation of
dropStudent(Bob), the result of ACar.Owner.WhoAreYou is "My name is Bob.

I am a person." although the ACar were constructed as

let ACar := mkCar([ Plate := "xyz"; Owner := BobAsStudent]);

This solution avoids the problems shown in the previous example, but it is more
complex to implement, since the semantics of a message passing depends both
on the static type of the receiver and on its the run-time status.

3.2 A Storage Model for Objects with Roles

This section presents a simple storage model for objects in order to give an informal
semantics of objects with roles. For a discussion of extensions to this model toward
a more realistic case see [Albano et al. 1995].
We prefer to present here just an informal \arrows and boxes" model, instead of

a full formal description, because we believe it is more readable. The translation
to a formal storage model, where every arrow becomes a location and every box
becomes a tuple in the store, is shown in Appendix B.
The behavior of objects of standard class-based languages can be explained in

terms of the simple storage model of Figure 1 [Abadi and Cardelli 1996]. In this
model, an object is represented as a record which contains the �elds of the object
state and its methods. The special identi�er self in a method m is always bound
to the object that, according to this simple storage model, contains the method
m. Usually the storage model is more complex than this one, and methods are not
embedded into objects but are factored into the object type descriptor and shared
by the objects of the same type. Even though a more complex storage model would
be justi�ed for reason of e�ciency, the behavior of objects can be explained by this
simple model.
Figure 2 shows how this simple storage model for objects might be modi�ed to

deal with roles. In this model there are two structures, the object history , and the
role structure.
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Fig. 1. A simple storage model for objects.
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Fig. 2. A simple storage model for objects with roles.

The object history is used to store the history of the roles that an object has
acquired. This structure is a sequence of pairs (type identi�er, reference to the
corresponding role structure), one pair for each type acquired by the object. The
set of pairs is in temporal order. The object history is used (a) for method lookup,
(b) to implement the operators As and isalso, (c) to �nd all the roles associated
with a subtype of T which must become invalidwhen the operator dropT is executed,
and (d) to implement object identities (e.g. two objects are the same when their
object history is the same).
Each role structure stores information about the methods and the �elds which are

de�ned for the �rst time, or rede�ned, in the corresponding role type. In particular,
a role structure contains the following information:

|the role type Ti;

|a status which is valid if the object has the role with type Ti, and is removed if
the object has lost that role;

|a reference to the object history;

|the methods and the �elds de�ned for the �rst time, or rede�ned, in the corre-
sponding role type.

When a new object is created, a new role structure is created, and a reference to it
is returned. When an object is extended with a new role type, a new role structure
is created and is connected to the object, and a reference to this new structure is
returned; an object is not allowed to be extended with a role type T, if a role T is
already found in the object history.
When an object is created with a subtype Tj of the root type Ti, the e�ect is the

same as the creation of the object with the root type Ti, and then its extension with
the subtype Tj . For example, the object in Figure 3 can be obtained by creating
a Person and then by extending it with the type Student, or by creating directly
a Student. The di�erence between the two cases is that, in the former the system
returns a reference to a role structure of type Person and then a reference to a role
structure of type Student, while in the latter the system returns only a reference
to a role structure of type Student, and the access to the other role is possible only
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by using the operator As.

StudentPerson
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Methods

Person

Object

Status

State
Methods

Student

Object

Status

Fig. 3. The structure of an object with role types Person and Student.

When an object loses the type Ti, the following actions are executed:

(1) the status of the role structure R with type Ti becomes removed;

(2) the pair Ti,R is removed from the object history;

(3) steps 1 and 2 are repeated for every role in the object history whose type is a
subtype of Ti.

When a message is sent to a role r, its status is �rst checked in the corresponding
structure, and then its run-time type RT is read and the object history is used to
retrieve the role structures where the method should be looked for.
If the status of r is valid, downward lookup is performed by scanning the history

from the last acquired role back to the RT role, looking for those roles whose type is
a subtype of RT (the subroles of r). Upward lookup is then performed, by scanning
the history from the RT role back to the �rst role, looking for the superroles of r.
If the status of r is removed, two possibilities arise. With the �rst semantics

(Section ??), a failure is raisen. With the second semantics, every message has one
extra parameter, the static type ST assigned by the compiler to r, and a failure is
raisen if no ST role is found in the object history. If the ST role exists, then upward
lookup is performed by scanning the history from the last role back to the �rst
role, only considering the superroles of r. The presence of the ST role, and of its
superroles, makes us sure that a method will be found.

4. VIRTUAL OBJECTS

The operators on objects presented so far allow objects to be built, and roles to
be added and dropped without a�ecting object identity. These operators allow
one to model the dynamic behavior of real-world entities, and are also useful for
dealing with the most common kind of schema evolution, i.e. attribute addition or
specialization. In this situation, in fact, it is possible to introduce a new subtype
of the old type and to extend the old values with the new information. The type
correctness of the preexisting applications and data structures will not be a�ected,
and it is even possible to decide to partially modify the behavior of an application
by specializing the behavior of some methods.2

2More precisely, a preexisting application is a�ected by method specialization only if the applica-
tion exploits the double lookup (obj.msg) form of message passing.
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However, the role mechanism cannot cope with the related problem of giving
di�erent views of the same object without a�ecting its behavior. This is because
object extension actually modi�es the object, and object extension can only modify
an object in a very limited way (only �eld addition and specialization). If we
call \real objects" those that have been explicitly constructed using the mk or in
operators, what is needed is the possibility to de�ne \virtual objects" by starting
with objects and changing their interface while preserving their identity.
The virtual object mechanism we are going to describe has the following features:

|virtual objects are �rst class, statically and strongly typed values;

|a virtual object has the same identity as the object it is based on; when it is
based on the combination of several objects, then its identity is a combination of
the identities of the objects it is based on;

|a virtual object can add, remove, and rename �elds of its base object; moreover
a virtual object can have its own instance variables, which are accessed by its
own methods;

|a virtual object can be based on more than one real object;

|the behavior of a real object is not a�ected by the existence of a related virtual
object;

|a virtual object can be used exactly like a real object and vice versa, at least as
long as the type rules described later on are satis�ed;

|virtual objects allow one to update those components of the state of the real
object which the virtual object allows one to view;

|a message to a virtual object to execute a method imported from an object
returns an answer which is the same as if the message were directly sent to the
real object.

We will now show how virtual objects are de�ned, and discuss their types and how
these types are related to object and record types. Our approach is based on a set
of basic operators that can be applied to objects, real or virtual, in order to produce
other objects (virtual) with an identity preserving semantics. These operators can
also be applied to records, which will be seen as a special case of virtual objects,
although we will not stress this point. These object operators are then extended
to collections of objects to de�ne collections of virtual objects which are similar to
views built over relations.
As we have pointed previously, similar operators for collections of objects have

already been proposed by other authors, and the main contribution of our approach
is to introduce these operators at an instance level in the framework of statically and
strongly typed programming languages, to clarify the interactions between virtual
objects and objects with roles, and to show the di�erent semantics of method
overriding and evaluation in virtual objects and objects with roles. The formal
type rules of the virtual object mechanism are given in Appendix A.

4.1 Virtual object types

A virtual object role, which for the sake of simplicity we will sometimes call virtual
object or virtual role, can be seen as a pair formed by the base object role and a
mapping which may hide, rename, or even add some �elds (even state components)
with respect to the original object role (as described in the storage model in Sec-
tion 4.3). More precisely, a virtual object role can generally be based on a set of
base objects, with a mapping which manipulates their components and gives the
external impression of a unique virtual entity.
Virtual object roles are typed with the view type constructor:
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<T 1,...,Tm> view [A1:S1;...;An:Sn]

where T 1; : : : ; T m are role types; A1; : : : ;An are labels; S i are types. As a syntactic
abbreviation, the type Si of a label Ai can be omitted and it is assumed that it is
the type of label Ai in one of the types T 1; : : : ; T m, considered in the order.
Intuitively, the statement:

O: <T 1,...,Tm> view [A1:S1;...;An:Sn]

means that O is a virtual object based on m object roles with types T 1; : : : ; T m,
and with signature [A1:S1;...;An:Sn]. As for object roles, for any object role
type T with signature +T , the following type equivalence holds:

<T > view [+T ] � T

where T �S means that T � S and S� T , i.e. that values of each type can be
considered as if they were values of the other one. Similarly, for every record type
[A1:S1;...;An:Sn] the following type equivalence holds:

<> view [A1:S1;...;An:Sn] � [A1:S1;...;An:Sn]

The subtype relationship among real and virtual object types is de�ned in the next
section.

Type hierarchies with view types

A subtype relationship T ' � T means that any operation which can be applied to
any value of type T can also be applied to any value of type T '. A virtual object
O with type:

T = <T 1,...,Tm> view [ A1:S1;...;An:Sn]

accepts two kinds of operations: message passing (O.Ai, O!Ai), and object extraction
(O As T j). Hence, a type T ' is a subtype of T if it contains enough object identities
and components to be able to deal with every object extraction and message passing
operation which is supported by T . More precisely:

<T '1,...,T 'm> view [ A1:S1;...;An:Sn]
� <T 1,...,T r> view [ B1:R1;...;Bs:Rs]

if (a) for each T i there exists a T 'j such that T 0

j � T i and (b) for each pair Bi:Ri

there is a pair Aj:Sj such that Aj = Bi and Sj � Ri.
The principle that an object view type speci�es the object extraction and message

passing operations which can be applied to a type, implies that the following two
equivalences hold:

T � <T > view [ +T ]
[ A1:S1;...;An:Sn] � <> view [ A1:S1;...;An:Sn]

4.2 Virtual object constructors

The operators to build virtual objects are: project, rename, extend and times.
These operators can be applied to sequences of objects using the notation project*,
rename*, extend* and times*.

Project

project is used to hide properties from an object role.

O project [A1:S1;...;An:Sn].

returns the object O with components A1,. . . ,An only. More precisely, if O is an
object role with type
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<T 1,...,Tm> view [ A1:S'1;...;An:S'n; B1:R1;...;Bl:Rl],

and if each S 'i is a subtype of S i, then O project [ A1:S1;...;An:Sn] returns
the same object role O seen through type

<T 1,...,Tm> view [ A1:S1;...;An:Sn].

The type Si of a label Ai can be omitted, and it is then assumed to be the type T i

of Ai in O.
Note that although project is formally de�ned on virtual objects alone, it can

also be applied to real objects too, thanks to the type equivalence

<T > view [+T ] � T .

The same observation holds for all the other virtual object operators that will be
presented, which can all be applied in the same way to real and virtual objects to
produce virtual objects.

Example 1. Let us consider the following de�nitions:

let type AnAddress :=

[Street: var string;

City: var string;

Country: var string ];

let rec Persons class Person <->

[Name: string;

Income: var int;

Address: AnAddress;

BirthYear: int;

Parents: [ Father: Person;

Mother: Person ];

WhoAreYou:= meth(): string is "My name is " & self.Name & "." ];

let rec Employees subset of Persons class

Employee <-> is Person and

[Salary: var int;

Company: Company;

WhoAreYou:= meth(): string is

super.WhoAreYou & " I work with company " & self.Company.Name ]

and

Companies class Company <->

[Name: string;

Location: string;

Revenue: int ];

let type PersonView :=

<Person> view [ Name;

Address: [ Street: var string;

City: var string ];

WhoAreYou ];

Let John be an object role of type Person, JohnView a virtual role of type PersonView,

Foo and Goo two functions de�ned as follows:

let JohnView :=

John project [ Name;

Address: [ Street: var string;

City: var string ] ;

WhoAreYou] ;
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let Foo := fun(x: Person) :Person is x;

let Goo := fun(x: PersonView):int is

if x isalso Employee

then at (x As Employee).Salary

else at (x As Person).Income;

The following considerations apply:

|By projecting Address to the indicated supertype of the original type, Country

component is hidden in JohnView;

|John = JohnView returns true since project is an identity preserving operator

and JohnView is de�ned starting from John;

|John.WhoAreYou = JohnView.WhoAreYou returns true since the method exe-

cuted to answer the message WhoAreYou sent to JohnView is the method de�ned

for John;

|the component Street of the Address of JohnView can be updated and this

will also e�ect John. Likewise, an update of John will have the same e�ect on

JohnView;

|as will be explained in Section 4.1, Person is a subtype of PersonView, but not

vice versa, hence Goo(John) would be typed, while Foo(JohnView) would not;

|let us assume that John has been extended with the role type Employee. The

following virtual object:

let JohnEmplView :=

(John As Employee)

project [ Name;

Company: [ Name: string; Location: string ] ;

WhoAreYou] ;

has a type which is a supertype of Employee, but it is not comparable with either

Person or PersonView.

|The following example shows the de�nition of a derived sequence:

let EmployeesView := derived

Employees project* [ Name;

Company: [ Name: string; Location: string ] ;

WhoAreYou] ;

The elements of EmployeesView are those of Employees with a supertype of

Employee.

2

Extend

extend is used to add or rede�ne methods and �elds to an object.

O extend [A1:S1 := Expr1;...;An:Sn := Exprn. ]

returns the object O extended with new �elds whose value is speci�ed by the ex-
pressions Expr1,. . . ,Exprn. If a label Ai was already present in O, extend overrides
Ai with a value of a possibly unrelated type. More precisely, if O has type

<T 1,...,Tm> view [ B1:R1;...;Bl:Rl;A1:S1;...;Ak:Sk]

with k � n, then the extension expression above has the type:

<T 1,...,Tm> view [ B1:R1;...;Bl:Rl;A1:S1;...;An:Sn] .
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Note that this rule allows one to extend both real and virtual objects.
extend can be used to add both new �elds and new methods, which belong to

the virtual part of the object. To this end, the expression associated with a label
may contain the pseudo-variable me, which denotes, recursively, the whole virtual
object after it has been extended. This me variable can be used much in the same
way as self in the real object, but there is a di�erence.
When a method de�ned in a role R but activated by inheritance by a message

sent to a subrole S, sends a message msg to self, then method lookup for msg

starts from role S . When any expression, message passing included, is applied
to me, then me denotes the virtual object that has been created by the extend

operation it is bound to, hence method lookup for me.msg starts from the virtual
object where the method invoking me.msg is found. Technically, we say that self
is dynamically bound to the role that receives the message, while me is statically
bound to the virtual object that is created by the extend expression which me is
bound to. The reason for this di�erence, which is discussed in Section 4.5, is that
there is no guarantee that the virtual object which receives the message belongs
to a subtype of the virtual object where the method is de�ned, and is connected
with the requirement that the behavior of a real object must not be a�ected by the
existence of a related virtual object.

Example 2. The following example shows how to rede�ne the structure and be-

havior of a person object; note that, in the de�nition of �elds Mother and Father,

using me or John makes no di�erence, while me is essential to access �eld Age inside

WhoAreYou.

let rec AnotherJohnView :=

(John extend [ Age := meth():int is

CurrentDate().Year - me.BirthYear;

Mother := meth():Person is me.Parents.Mother;

Father := meth():Person is me.Parents.Father;

WhoAreYou := meth(): string is

(me As Person)!WhoAreYou &

" I am " & stringofint(me.Age) & " years old"]

) project [ Name; Age; Mother; Father; WhoAreYou] ;

2

Example 3. The following example shows how to rede�ne the behavior of the

person object John without changing its type so that it can be used as a parameter

of the function Foo:

let rec JohnForItalians := John extend

[WhoAreYou := meth(): string is

"Mi chiamo " & me.Name & "." ];

2

Rename

rename is used to change the name of the properties of an object. If O has the labels
A1,. . . ,An,B1,. . . ,Bl,

O rename (A1 => A'1; : : :; An => A'n).

returns O with the labels A'1, . . . , A'n, B1, . . . , Bl, which must all be di�erent. A
label Ai may also be a path expression A1i.A

2

i .....A
ni
i .

More precisely, if O has the type:

<T 1,...,Tm> view [ B1:R1; ...; Bl:Rl; A1:S1; ...; An:Sn]
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and A'1, . . . , A'n, B1, . . . , Bl, contains no duplicate, then the renaming expression
above has type:

<T 1,...,Tm> view [ B1:R1; ...; Bl:Rl; A'1:S1; ...; A'n:Sn] .

Example 4. The following de�nition gives a view of the person object John for

Italian users:

let JohnViewForItalians :=

(John rename (Name => Nome;

extend [ Presentati := meth(): string is

"Mi chiamo " & me.Nome "."]

project [ Nome; Presentati] ;

2

It may appear that rename is an operator that can be de�ned in terms of extend
and project; for example; let O be an object with an attribute Ai:

let r := O rename ( Ai => Ai' );

let r' := (O extend [ Ai' := meth() :Ti is me.Ai ] )

project [ <all attributes except Ai> ]

The two expressions above actually have a di�erent meaning, since both r'.A'i
and r'!A'i are equivalent to O.Ai, while r.A'i and r!A'i are generally di�erent
since r keeps upward and double lookup distinct.
For instance, let us assume that John has the type Person, and it has been

extended with the type Student, where the method WhoAreYou has been rede-
�ned. Then the message John.WhoAreYou is answered using the method de�ned in
Student, while John!WhoAreYou is answered using the method de�ned in Person.
Now let us de�ne two views:

let JohnViewOne:= John rename (WhoAreYou => IntroduceYourself);

let JohnViewTwo:= (John extend [ IntroduceYourself :=

meth():string is me.WhoAreYou ]

) project [ <all attributes except WhoAreYou> ] ;

While the e�ect of JohnViewOne.IntroduceYourselfand JohnViewOne!Introduce-
Yourself is di�erent as it was for John, JohnViewTwo.IntroduceYourself and
JohnViewTwo!IntroduceYourself return the same value as John.WhoAreYou .

Times

times is used to create a virtual object by starting from two objects whose com-
ponent names are all di�erent.

O times O'.

returns an object which contains the identities of both O and O', and has the �elds
of O and O'.
More precisely, if:

O: <T 1,...,Tm> view [ A1:S1;...;An:Sn]
O': <T '1,...,T 'l> view [ B1:R1;...;Bk:Rk]

then O times O' has type:

<T 1,...,Tm,T '1,...,T 'l> view [ A1:S1;...;An:Sn;B1:R1;...;Bk:Rk] .
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For example, if T and T ' are two real object role types with no common compo-
nent names, then

O times O': <T ,T '> view [ +T ;+T '] .

This type indicates that the virtual object (a) can answer all the +T , +T ' messages,
and (b) contains both a T and a T ' object role, which can be recovered with the
obj As T operator previously de�ned.
The times operator has been introduced to complete the object algebra, and to

give a semantics to the from clause of a query that includes several collections of
objects. times may appear similar to the extend operator, and as a matter of
fact in many cases extend is su�cient, but there are two di�erences: extend is
used to add attributes to a base object, or to rede�ne some of them, and the result
is a virtual object that preserves the identity of the base object; times combines
two base objects with di�erent attributes, and the result is a virtual object that
preserves the identity of both the base objects.

Example 5. The following view, built on the Employees and Companies classes

in Example 1, de�nes a class of employees who are combined with their company.

let EmployeesAndCompanies := derived

select Emp times (Emp.Company rename (Name => CompName))

from Emp In Employees;

The result has the type: seq <Employee,Company> view [Name; Income; Address;

BirthYear; Sex; Parents; WhoAreYou; Salary; Company; CompName; Location;

Revenue]. If John is an element of EmployeesAndCompanies, then John As Company

returns the company where John As Employee works.

2

4.3 A storage model for virtual objects

The behavior of virtual objects can be explained in terms of the simple storage
model in Figure 4. In this model, a virtual object is an interface adaptor for
a virtual or real object. When a virtual object is created from an object O, a
reference is returned to a structure whose shape depends on the operator which has
been used as follows :

An Object with Roles

TnR1 RnT1
...

State
Methods

T1

Object

Status

State
Methods

Tn

Object

Status

.

.

.

A Virtual
Object KindOf

Implementation
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Interface Adaptor

Fig. 4. The structure of a virtual object.
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|O project [A1:S1;...; An:Sn] has no run-time e�ects and returns a refer-
ence to O with a new type which hides the components di�erent from [A1;...;

An] ;

|O extend [A1:S1 := Expr1;...; An:Sn := Exprn] returns a reference to an
interface adaptor of kind extend which contains the new methods and �elds
A1;...; An de�ned in the virtual object, and a reference to the object O (Fig-
ure 5); the special identi�er me in a method is recursively bound to the interface
adaptor itself;

An Object with Roles
A Virtual

Object Extend

State

Methods

Role

Interface Adaptor

O

Fig. 5. The structure of a virtual object of kind extend.

|O rename (A1 => A'1; : : :; An => A'n) returns a reference to an interface adap-
tor of kind rename which contains a table that maps the attribute and method
names A'i in the virtual object to the original names Ai in O, and a reference to
the object O (Figure 6);

An Object with Roles
A Virtual

Object Rename

Role

Interface Adaptor

O

Methods Mapping

State Mapping

Fig. 6. The structure of a virtual object of kind rename.

|O times O' returns a reference to an interface adaptor of kind times which con-
tains a table that associates every attribute with the object where the attribute
should be looked for, and two references to the objects O and O' used to de�ne
the virtual object (Figure 7).

Objects with Roles
A Virtual

Object Times

Roles

Interface Adaptor

O

Message Router

O'

Fig. 7. The structure of a virtual object of kind times.

When a virtual object receives a message m, it tries to resolve it using its interface
adaptor, otherwise it sends the message to the object used to de�ne the virtual
object.
Figure 8 shows an example of a virtual object VirtualJohn de�ned from the

object role John as follows:

let VirtualJohn := John project [Name]

rename (Name => Surname)

extend[NewAttribute := ...;

NewMethod := meth() ... ]
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Person

State
Methods

Person

Object

Status

John
Virtual
John

Rename

Surname

Role

Name

Extend

NewAttribute

NewMethod

Role

Fig. 8. An example of a virtual object.

With a more realistic storage model, to avoid chains of interface adaptors, every
interface adaptor of a virtual object is a combination of those used to explain the
e�ect of each operator and it ends with a reference to the real object (or the real
objects), as shown in Figure 9.

Person

State
Methods

Person

Object

Status

John
Virtual
John Virtual

Surname

Role

NewAttribute

NewMethod

Name

Fig. 9. An example of a virtual object.

4.4 The semantics of As

The As operator allows one to move among the roles of an object and to recover
the real object from a virtual one. An expression O As T , where O: <T 1; : : : ; T n>

view [...], is well typed i� (a) T is a role type and (b) if at least one of the T i

has a common object supertype with T . In this case, the As operator searches to
see whether one of the real objects on which the virtual object is based has the T
role. If this is case, the T role of that object is returned; otherwise, a failure arises.
The As operator raises two issues:

|protection: in some situations, recovering the real object inside the virtual object
should be disallowed;

|semantics: when a virtual object contains more than one real object with a T
role, the As T operator must choose just one of them.

The protection issue can be dealt with by hiding a role type T in some sections
of the code. Consequently, in those sections the system will not accept an As T

operation. For example, the As operation at the end of the following piece of code
is statically refused by the Galileo97 system.

let type Person := ...;

let John := mkPerson...;

let type MyPerson := <Person> view [ ...] ;

let JohnView := john extend [...] project [...] ;

hide type Person;
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JohnView As Person; <------------

Note that, even if Person is hidden, the type MyPerson is still a valid type, since
static scoping is used in Galileo97.
As for the semantics, consider the following code.

let John := mkPerson...;

let Peter := mkPerson... rename ...;

let JP := John times Peter;

It is not clear whether JP As Person should be equal to John or to Peter. In
Galileo97 semantics, it is equal to John. In fact, in Galileo97, the real object
roles hidden in a virtual object are ordered. Speci�cally, in the virtual object (O1
times O2), all real object roles in O1 come before those in O2; the As operator
respects this order while looking for the result. A reasonable alternative would be a
non-deterministic semantics, which does not specify in which order the real objects
are considered. This semantics would make the times operator commutative, and
would leave more freedom to Galileo97 implementors. In any case, this kind of
semantics ambiguity is not very likely to arise in a real application.

4.5 The Semantics of self and me

Suppose that a message m is sent to a role of type T, and that the lookup mechanism
activates the method M de�ned for m in a supertype T' of T. Now, if M sends a message
p to self, should the search for the corresponding method start from the originally
receiving role T, or from the role T' where the method M has been found? In every
object oriented language, in this situation self stands for the most specialized
role T which �rst received the message (dynamic binding of self). Consider the
following example.

let rec type Picture <->

[BoundingRect:= meth(): Rectangle is fail;

DrawBoundingRect:= meth():null is

use Rectangle:= self.BoundingRect

in <draw Rectangle>;

... ] ;

This piece of code exempli�es a typical usage of object-oriented languages: the
bounding rectangle is computed in a di�erent way in di�erent subclasses. However,
DrawBoundingRect can be implemented once and for all in the superclass since,
thanks to the dynamic binding of self, the self.BoundingRect invocation will
invoke the speci�c function of the receiving object, rather than the useless function
de�ned for the generic Picture type.
The dynamic binding of self is an essential component of object-oriented lan-

guages, but it has a price: it constrains inheritance to be only used to produce
subtypes. This means that it is impossible, for example, to remove or rename �elds
in the object type which is de�ned by inheritance. In fact, when a method such as
DrawBoundingRect above is compiled and type-checked, the compiler only knows
that self belongs to a type which inherits from Picture. Hence, if inheritance
were not constrained, the compiler would not know anything about the type of
the result of any message invocation for self. Typed object-oriented languages
therefore always constrain inheritance to be used to produce subtypes alone.3

The situation is di�erent when extendwith me is considered. extend is essentially
an inheritance operator, since it allows an object (the virtual one) to be built by

3See also [Bruce et al. 1995] for a di�erent but strictly related approach.
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starting from another one. The fact that here inheritance is exploited at instance
level, rather than at the type level, is irrelevant. However, dynamic binding is not
used for me for the following reasons:

|we cannot constrain extend to only produce values belonging to a subtype; one
of the main reasons for introducing the viewing operator is to overcome the same
limitation in the role mechanism;

|dynamic binding of me is not very useful. Dynamic binding of self is essential
in role inheritance, because we expect that the role type where self is used will
be extended with new subroles, and that these subroles may be used to complete
the meaning of the current de�nition (consider the example above). With vir-
tual objects, this style of programming by adding inheritance over inheritance
(extension over extension) is not common. Moreover, the idea of completing or
modifying the meaning of a virtual object by building a new object over it, is
not compatible with the basic assumption that adding a view does not a�ect the
behavior of the object viewed.

For the above reasons, the me identi�er used in a method de�nition inside an extend
operation is not linked dynamically to the virtual object that receives the message,
but is statically linked to the object which is de�ned by the extend operation.4

4.6 Equality

In the context of object databases, three kinds of equality are usually considered:

|Identity equality (identical, \=="). This corresponds to the equality of references
or pointers in conventional languages: two objects are identical if their identities
are the same.

|Shallow equality (shallow equal, \="). Two objects are shallow equal if they have
the same run-time type and their states are identical. That is, it goes one level
deep, and compares corresponding identities of the state components.

|Deep equality (deep equal). This is a purely value-based equality: two objects are
deep equal if they have the same run-time type and their states are value-based
deep equal.

In Galileo97, every type is associated with an equality function, and the equality
of two values is determined using the equality function associated with their static
type. More precisely, a = a' is well typed if the type of a is either a supertype or
a subtype of the type of a', and a and a' are compared using the equality function
associated with the supertype. As a consequence, the same pair of values can be
equal or di�erent according to the type it is accessed through. For example, the
following two expressions would evaluate to false and true, respectively, since the
b �eld would be ignored in the second comparison:

[ a:=1; b:=2] = [ a:=1; b:=3] ==> false

[ a:=1; b:=2] :[ a:int] = [ a:=1; b:=2] ==> true

In Galileo97, equality is value-based for most concrete types, such as record and
sequence types, while it is determined by identity for modi�able values (values of
type var T), functions and roles. Equality by identity seems the most appropriate
for roles and locations for two reasons:

|in database applications it is usually more important to know whether two objects
represent the same real-world entity, rather than knowing whether they give the

4Static binding of me should not be confused with static binding of messages. For example, when
a message is sent to me, the relative method is looked up dynamically.
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same answer to every message. Likewise, for two locations, containing the same
value is generally less interesting than being the same location;

|when two objects need to be compared by structure, they can simply be looked
at through their record supertype. Likewise, to compare two locations l1 and l2

by content, one need only write (at l1 = at l2).

The situation is slightly more complex with view types, which are to some extent
intermediate between object and record types. In this case, the rule is that two
values O1 and O2 belonging to type

<T 1,...,Tm> view [ A1:S1;...;An:Sn]

are equal if:

(O1 As T 1) = (O2 As T 1) And ... And (O1 As T m) = (O2 As T m) And

O1.A1 = O2.A1 And ... And O1.An = O2.An And

O1!A1 = O2!A1 And ... And O1!An = O2!An.

Note that:

(1) for each Ai �eld the associated equality is used. Hence, methods are compared
by identity (since they are functions), updatable �elds are also compared by
identity, and constant concrete �elds are compared by value;

(2) two records are equal in type [ ...] i� they are equal in type <> view [

...] .

The above points highlight that equality on virtual object values generalizes both
role and record equalities. One may also expect that, whenever T � S, then
a : T = b is the same as a : S = b. However, this is not always true. As a
counterexample, consider a pair of role types S � T . In accordance with the view
types subtyping rules, the following equivalence holds:

<S> view [ ] � <T ,S> view [ ]

Now, let s be a role of type S and t1,t2 be two di�erent roles of type T . Comparing
t1 times s with t2 times s gives two di�erent answers in the two types above,
since only in the second case are the two virtual objects also compared with respect
to the result of the operation x As T , which gives two di�erent results.

(t1 times s):<S> view [ ] = (t2 times s) => true

(t1 times s):<T ,S> view [ ] = (t2 times s) => false

The fact that two types that are equivalent with respect to subtyping are not equiva-
lent with respect to equality is not very satisfactory, but could be avoided by adopt-
ing a more complex notion of equality, where two objects in type <T 1,...,T m>

view [...] are also compared with respect to the result of O As S for every su-
pertype S of every T i. Choosing the best approach is a matter for further research.
As an example, consider the roles John, JohnAsStudent, and JohnAsAthlete

de�ned at the beginning of Section 3, and the role NewAthlete de�ned as follows.

let NewAthlete := mkAthlete([ Name := "John Smith";

BirthYear:= 1967;

Code := 2;

Sport := "Basket" ] );

The following expression

JohnAsStudent = JohnAsAthlete;
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is not well typed since JohnAsStudent and JohnAsAthlete are not subtypes of
each other.
John and JohnAsAthlete can be compared if they are considered of type Person

as follows, and the equality prdicates returns true:

(JohnAsStudent:Person) = JohnAsAthlete;

Two virtual objects can be compared by identity using an appropriate view type.
For example:

let type IdPerson := <Person> view [] ;

(JohnAsStudent:IdPerson) = (JohnAsAthlete:IdPerson); is true

Two role values can be compared by ignoring their identity using an appropriate
record type, which allows both the shallow and deep equality to be simulated. For
example:

let type PersonRecord := [Name:string; BirthYear: int] ;

(JohnAsStudent:PersonRecord) = (JohnAsAthlete:PersonRecord); is true

(JohnAsStudent:Person) = NewAthlete; is false

(JohnAsStudent:PersonRecord) = (NewAthlete:PersonRecord); is true

5. VIRTUAL CLASSES

The virtual objects operators described so far, apart from being interesting in them-
selves, constitute the building blocks that can be used to de�ne a higher level virtual
class mechanism along the lines, for example, of the one proposed in [Guerrini et al.
1997]. The translation of such a mechanism in terms of virtual object operations
de�nes its semantics in a precise way.
We will consider the following virtual class mechanism (where, store, compute,

and import clauses are optional).

let NameView classview as

x In BaseClass where Cond
EleType := TBaseClass

store [ S1:= D1; ...; Sn:= Dn ]

compute [ C1:= E1; ...; Cn:= En ]

import [ I1; ...; In ];

This mechanism speci�es:

(1) the name NameView and the extent of the virtual class, by a query over a base
class BaseClass which may be either real or virtual;

(2) the type EleType of the objects in the virtual class, whose signature includes
the base object attributes Ii speci�ed with the clause import, the computed
attributes Ci speci�ed with the clause compute, and the stored attributes Si
(Di are the default values) speci�ed with the clause store. The Ii, Ci, and Si
must be distinct names.

A virtual class de�nition introduces a new kind of relation between classes, called
based-on: NameView is based-on BaseClass. This relation implies the subset re-
lation between NameView and BaseClass (as far as the identity based equality is
concerned), but not a subtype relation.
A virtual class de�nition is translated into the de�nition of a view type for the

virtual class element type, and a derived expression which de�nes the virtual
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class extent. The compute and import clauses are directly translated in terms of
extend* and project*; for the sake of simplicity, we postpone the treatment of
stored attributes.

let type EleType := <TRealClass> view

[ I1; ...; In; C1 :T1; ...; Cn :Tn ];

let NameView := derived

select x
from x In BaseClass
where Cond
extend* [ C1:= E1; ...; Cn:= En ]

project* [ I1; ...; In; C1 :T1; ...; Cn :Tn ];

A virtual class mechanismmust also allow one to insert a virtual class into the class
hierarchy, considering its three aspects:

|the subtype relationship between the subclass element type and the superclass
element type;

|the subset relationship between the subclass extent and the superclass extent;

|the inheritance relationship between the subclass de�nition and the superclass
de�nition.

This is accomplished by the following mechanism, which allows a virtual class to
be de�ned by inheritance from a previous virtual class de�nition.5

let NameSubView subset of SuperView classview as

x In BaseClass where Cond
SubEleType := is SuperEleType and

TBaseClass
store [ S1 := D1; ...; Sn:= Dn ]

compute [ C1:= E1; ...; Cn:= En ]

import [ I1; ...; In ];

In this case, SuperView must be a (virtual) class based on a superclass of BaseClass.
The class NameSubView inherits the where, store, compute and import clauses
from the SuperView de�niton, and it can extend them or override the attribute
de�nitions with the strict inheritance constraint: whenever an attribute is rede�ned,
its type must be a subtype of its previous type (or the same type). Thanks to these
constraints and to the inheritance of the where clause, the extent of the de�ned
virtual class is included in that of the superclass, and its element type is a subtype
of that of the superclass.
The subset relationship between virtual classes, and the based-on relationship

between a virtual class and a base class, are two di�erent relationships: the �rst
implies the subset, subtype, and inheritance relationships, while the second implies
the subset relationship alone (Figure 10).
The semantics of the virtual subclass de�nition can be de�ned by extending the

previous translation with a treatment of the inherited clauses. Inherited clauses
are copied inside the translation; the order in which they are inserted in the
translation determines the relative priorities. Since project* requires all the
projected attributes to be di�erent, we combine the di�erent sets of attribute
names with a + operator, which, whenever an attribute is both on its left and
on its right hand side, puts in the result only the one on the right hand side:

5It is also possible to inherit from a real class, which is seen as a virtual class based on itself,
without where, store, and compute clauses, and where every attribute is imported.
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subclass

A superclass
(real or virtual)

based on

based onA subclass
(real or virtual)

A superview

A subview

direct subclass

Fig. 10. The subset and based-on relationships.

(A : T ;B : U ) + (A : V ;C :W ) = (B : U ;A : V ;C : W ). In the translation, we use
I0; C0; T 0; E0 for the inherited attributes and their types and de�nitions, and Cond 0

for the inherited condition (for the sake of simplicity, we will again postpone the
treatment of stored attribute).

let type SubEleType := <TRealClass> view

[ (I 01; ...; I 0n);
+ (I1; ...; In);
+ (C 0

1 :T 01; ...;C 0
n :T 0n);

+ (C1 :T1; ...;Cn :Tn) ];

let NameSubView := derived

select x
from x In BaseClass
where Cond And Cond0

extend* [ C 0
1:= E0

1; ...; C 0
n:= E0

n ]

extend* [ C1:= E1; ...;Cn:= En ]

project* [ (I 01; ...;I 0n);
+ (I1; ...; In);
+ (C 0

1 :T 01; ...;C 0
n :T 0n);

+ (C1 :T1; ...;Cn :Tn) ];

The value of such a translation is twofold:

|once the translation has been formally de�ned, the semantics of the virtual class
construct is de�ned too; for example, the translation speci�es what happens
when an attribute with the same name is both \computed" in a superview and
imported in a subview;

|the translation suggests which typing rules should be de�ned for the virtual class
construct; for example, the translation suggests the strict inheritance constraint,
and the fact that the expressions Ei should be type-checked in a context where
the type of me is TBaseClass extended with the inherited computed attributes.
Observe that, in a strongly typed context, de�ning the correct type rules is
generally as di�cult and as crucial as de�ning a non ambiguous semantics.

Example 6. The following example shows two virtual classes Adults and En-

gineeringStudents de�ned from the classes Persons and Students:

let Persons class Person <-> [Name: string; BirthYear: int];

let Students subset of Persons class

Student <-> is Person and [SNumber: string; Faculty: string];

% virtual classes %
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let rec

Adults classview as

p In Persons where CurrentYear() - p.BirthYear > 17

Adult := Person

compute [WhoAreYou := meth(): string is

"My name is " & me.Name & "." ]

import [Name];

let rec

EngineeringStudents subset of Adults classview as

s. In Students where s.Faculty = "Engineering"

EngineeringStudent := is Adult and

Student

compute [Age := meth ():int is

CurrentYear() - me.BirthYear]

import [SNumber; Faculty];

The translation of these de�nitions using the virtual object operators is as follows:

let type Adult := <Person> view [Name;WhoAreYou:string];

let Adults := derived

(select p

from p In Persons

where CurrentYear() - p.BirthYear > 17)

extend* [WhoAreYou := meth(): string is

"My name is " & me.Name & "."]

project* [Name];

let type EngineeringStudent :=

<Student> view [Name;

SNumber; Faculty;

WhoAreYou:string; Age:int ];

let EngineeringStudents := derived

(select s

from s In Students

where s.Faculty = "Engineering" And CurrentYear() - s.BirthYear > 17 )

extend* [WhoAreYou := meth(): string is

"My name is " & me.Name & "."]

extend* [Age := meth():int is CurrentYear() - me.BirthYear]

project* [Name; SNumber; Faculty; WhoAreYou; Age];

2

To translate a virtual class with stored attributes, a new real class (extension class)
is de�ned with elements that contain the stored attributes of a virtual object and
a reference to its base object. The extension class is queried whenever a stored
attributed of the virtual class is requested. The elements of the extension class are
created on demand: the �rst time a stored attribute of a virtual object is accessed,
the corresponding object in the extension class is created and initialized as speci�ed
in the store clause. The next time a stored attribute of the same virtual object is
accessed, the same object of the extension class is retrieved.
Let us show �rst the translation for the case without inheritance, as de�ned at

the beginning of the section; we assume that Ui is the type of the expression Di.
In Galileo97, E1 iffails E2 executes E2, and returns its value, if E1 fails; get Q

fails when it �nds no value which satis�es the query Q.

let
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NameView Ext class
TNameView Ext <-> [the TBaseClass :TBaseClass;

S1:= D1 : U1; ...; Sn:= Dn : Un];

let get NameView Ext := fun(One TBaseClass :TBaseClass) :TNameView Ext is

get NameView Ext
where the TBaseClass = One TBaseClass

iffails

mkTNameView Ext([the TBaseClass:= One TBaseClass]);

let type EleType := <TRealClass> view

[I1; ...; In;
S1 : U1; ...; Sn : Un;
C1 :T1; ...;Cn :Tn ];

let NameView := derived

select x
from x In BaseClass
where Cond
extend* [S1:= meth():U1 is get NameView Ext(me).S1;

...;

Sn:= meth():U1 is get NameView Ext(me).Sn ]

extend* [ C1:= E1; ...; Cn:= En ]

project* [I1; ...; In; S1; ...; Sn;
C1 :T1; ...;Cn :Tn ];

Example 7. The following example shows a virtual class PersonsWithAddress

with a stored attribute, and its translation using the virtual object operators:

let rec

PersonsWithAddress classview as

p In Persons where true

PersonWithAddress := Person

store [Address := var ""]

compute [ChangeAddress := meth(newAddr:string): null is

me.Address <- newAddr]

import [Name];

The translation is as follows:

let PersonsWithAddress_Ext class

TPersonsWithAddress_Ext <-> [the_Person: Person;

Address:= var "" ]);

let get_PersonsWithAddress_Ext :=

fun (One_Person :Person) :TPersonsWithAddress_Ext

is get PersonsWithAddress_Ext where the_Person = One_Person

iffails

mkTPersonsWithAddress_Ext([the_Person:= One_Person]);

let type PersonWithAddress := <Person> view [Name;

Address:var string;

ChangeAddress:string->null];

let PersonsWithAddress := derived

(select p

from p In Persons

where true)
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extend* [Address := meth(): var string is

get_PersonsWithAddress_Ext(me).Address ]

extend* [ChangeAddress := meth(newAddr:string): null is

me.Address <- newAddr]

project* [Name; Address; ChangeAddress];

2

Finally, let us show the translation for a virtual class with stored attributes de�ned
by inheritance from a superview, which has stored attributes too. In this case, the
extension class NameSubView Ext for the stored attributes is de�ned as a subclass
of the extension class NameSupView Ext used to translate the superview, and the
function get NameSubView Ext is de�ned in terms of the get NameSupView Ext

function. If the superview is de�ned without stored attributes, the NameSub-

View Ext extension class and the function get NameSubView Ext are de�ned as
shown before for a virtual class with stored attributes, and the inherited attributes
S0

i will not appear in the translation.

let

NameSubView Ext subset of NameSupView Ext class
TNameSubView Ext <-> is TNameSupView Ext and

[ S1:= D1 : U1; ...; Sn:= Dn : Un];

let get NameSubView Ext :=
fun(One TBaseClass :TBaseClass) :TNameSubView Ext is

use the Ele:= get NameSupView Ext(One TBaseClass)

in the Ele As TNameSubView Ext
iffails

inTNameSubView Ext(the Ele, [ ]);

let type SubEleType := <TRealClass> view

[ (I 01; ...; I 0n);
+ (I1; ...; In);
+ S01 : U

0
1; ...;S0n : U

0
n;

+ S1 : U1; ...; Sn : Un;
+ (C 0

1 :T 01; ...;C 0
n :T 0n);

+ (C1 :T1; ...;Cn :Tn) ];

let NameSubView := derived

select x
from x In BaseClass
where Cond And Cond0

extend* [ S01:= meth():U 0
1 is get NameSupView Ext(me).S01;

...;

S0n:= meth():U 0
n is get NameSupView Ext(me).S0n ]

extend* [ C 0
1:= E0

1; ...; C 0
n:= E0

n ]

extend* [ S1:= meth():U1 is get NameSubView Ext(me).S1;
...;

Sn:= meth():Un is get NameSubView Ext(me).Sn ]

extend* [ C1:= E1; ...; Cn:= En ]

project* [ (I 01; ...; I 0n);
+ (I1; ...; In);
+ (S01; ...; S0n);
+ (S1; ...; Sn);
+ (C 0

1 :T 01; ...;C 0
n :T 0n);

+ (C1 :T1; ...;Cn :Tn) ];
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Example 8. The following example shows a virtual class StudentsWithPhone,

with a stored attribute Phone, de�ned by inheritance from the virtual class Persons-

WithAddress, and its translation, using the virtual object operators:

let rec

EngStudentsWithPhone subset of PersonsWithAddress classview as

s In Students where s.Faculty = "Engineering"

EngStudentsWithPhone:= is PersonWithAddress and

Student

store [Phone := var ""]

compute [ChangePhone := meth(newPhone:string): null is

me.Phone <- newPhone]

import [SNumber; Faculty];

The translation is as follows:

let EngStudentsWithPhone_Ext subset of

PersonsWithAddress_Ext class

TEngStudentWithPhone_Ext <-> is TPersonsWithAddress_Ext and

[Phone:= var ""];

let get_EngStudentsWithPhone_Ext :=

fun (One_Student :Student) :TEngStudentWithPhone_Ext

is use the_Ele := get_PersonsWithAddress_Ext(One_Student)

in the_Ele As TEngStudentWithPhone_Ext

iffails

inTEngStudentWithPhone_Ext(the_Ele,[]);

let type EngStudentWithPhone :=

<Student> view [Name; Address:var string; ChangeAddress:string -> null;

Phone:var string; ChangePhone:string -> null;

SNumber; Faculty ];

let EngStudentsWithPhone := derived

(select s

from s In Students

where s.Faculty = "Engineering" )

extend* [Address := meth(): var string is

get_PersonsWithAddress_Ext(me).Address ]

extend* [ChangeAddress := meth(newAddr:string): null is

me.Address <- newAddr]

extend* [Phone := meth(): var string is

get_EngStudentsWithPhone_Ext(me).Phone ]

extend* [ChangePhone := meth(newPhone:string): null is

me.Phone <- newPhone]

project* [Name; Address; ChangeAddress;

Phone; ChangePhone; SNumber;Faculty];

2

6. RELATED WORKS

The idea of extending object databases with a view mechanism has been discussed
by several authors (e.g., [Dayal 1989], [Bancilhon et al. 1990], [Bertino 1992], [Abite-
boul and Bonner 1991], [Santos et al. 1994], [Guerrini et al. 1997], [Kim and Kelley
1995], [Ohori and Tajima 1994], [Parent and Spaccapietra 1985], [Rundensteiner
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1992], [Scholl and Scheck 1990], [Scholl et al. 1994], [Heiler and Zdonik 1990],
[Zdonik 1990],[Leung et al. 1993] ). Most of them follow a \collection based"
approach, which is quite di�erent from our \object based" approach. The col-
lection based approach is based on a \virtual class" mechanism. The object based
approach, which is adopted in Galileo97, �rst de�nes a set of virtual object opera-
tions, which allow a virtual object to be built starting from a set of other objects,
and then combines these operators with a binding-by-name operation, such as our
let ViewName:= derived QueryExpr, to de�ne a view mechanism.
The main issues which are studied in this approach are:

|the semantics of virtual object operations;

|method resolution and the semantics of self;

|a type system for virtual objects.

The essential di�erences between the two approaches are:

|Semantics: The object based approach is characterized by a simpler semantics.
The notion of \a class whose objects are de�ned by a query" breaks some basic
assumptions of the object-oriented data model, especially when classes are iden-
ti�ed with object type extents and when virtual classes are inserted into the class
hierarchy. This raises some problems, for example with respect to: (a) method
resolution, (b) semantics of insertion/removal for virtual classes, (c) placement of
virtual classes in the class hierarchy, and (d) assignment of an \object identity"
to the elements of virtual classes. The object based approach, on the other hand,
divides virtual class de�nition into two atomic notions whose semantics is easier
to de�ne.

|Expressive power: In the object based approach, object operations and binding-
by-name are �rst class operators which can be freely used inside programs, while
in the class based approach the virtual class operation can only be used to de�ne
schemas; this makes the object based approach very 
exible. The ability to build
virtual objects from more than one base object is also a feature which is not
usually found in other approaches.

|Virtual class and virtual object updating: In the object based approach it is
not possible to explicitly insert or remove elements from a virtual class, while
this is possible, under certain conditions, in some class based approaches. This
is an important limitation of the object based approach, which can however be
overcome. At the object level, in both approaches every modi�able �eld of the
base object which is directly accessible through the virtual object can be modi�ed
from the virtual object as well.

|Class hierarchies: Most class based approaches merge the subtype, inclusion and
method lookup hierarchies. This fact creates some problems with virtual classes.
For example, if a virtual class V is de�ned by both restricting and projecting a
base class B, then V extension is included in B, but V type is a supertype of B
type. A solution to these problems is in [Guerrini et al. 1997].
In our object based approach we distinguish the subtyping, subset inclusion, and
method lookup hierarchies (inheritance).6 Virtual objects are assigned a �rst-
class type, which is automatically placed in the subtype hierarchy, similarly to
any other �rst class type of the language. Method resolution is not class based
but is object based, hence virtual objects do not participate to the method lookup
hierarchy.

6By method lookup hierarchy we mean the order relation between object types which is used to
perform method lookup.
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More speci�cally, the di�erent approaches can be analyzed with respect to the
following questions:

(1) Is the view mechanism based on collections of objects or on individual objects?

(2) How do virtual objects and message resolution interact?

(3) Does the language provide two orthogonal mechanisms to extend dynamically
objects with new types and to de�ne virtual objects?

(4) Do the operators for de�ning virtual objects preserve object identity?

(5) Is there a mechanism to group di�erent objects into a single virtual object?

(6) Is a virtual object a �rst class value, and, consequently, does it have a type and
can it be used like any other value of the language? Similarly, does a virtual
class behave exactly like a base class?
Moreover, if the language is typed, is a virtual object type included in the
language subtype hierarchy? Are rules provided to establish when a virtual
object type is a subtype of an object type or of another virtual object type?

(7) Is it possible to insert objects into a virtual class?

(8) Can a virtual object have its own state and methods?

(9) Is there an operator to go from a virtual object to the object from which it has
been de�ned?

Let us compare the solution o�ered by Galileo97 with three other proposals in the
framework of a typed database programming language, AQUA [Leung et al. 1993],
COCOON [Scholl et al. 1994], and O2 [Abiteboul and Bonner 1991], and with the
proposals in [Kim and Kelley 1995] (UniSQL/X), in [Ohori and Tajima 1994], and
in Chimera [Guerrini et al. 1997].

(1) The Galileo97 and the Ohori-Tajima view mechanisms are based on the oper-
ation of building a virtual object, while the other approaches work by de�ning
\virtual classes". While in Galileo97 and in the Ohori-Tajima approach virtual
objects are built by value-level operations which can be exploited by any pro-
gram, in the other approaches the creation of a virtual class is a schema-level
operation, which is available during the schema de�nition phase only. This is
the fundamental design choice, which has many consequences: the Galileo97
and Ohori-Tajima approach, based on a �rst class virtual object creation oper-
ation, gives rise to a more 
exible mechanism, while the alternative approach,
which con�nes virtual class creation to schema de�nition time, makes it easier
to exploit traditional (i.e. relational) implementation techniques.

(2) In Galileo97, a virtual object is essentially composed by a virtual interface
applied to a base object. When the virtual object receives a message, the
corresponding method is �rst looked up in the interface and then in the base
object. This lookup process resembles standard message resolution, with two
important di�erences. Firstly, the semantics of self has to be modi�ed, as
explained in this paper. Secondly, a method de�ned for a virtual object, which
overrides a method de�ned for the real object, does not a�ect how the real
object itself answers the message, even when double lookup is used; the behavior
of a real object can be changed only by extending it with a new type.
In the Ohori-Tajima proposal, method de�nition and message resolution are
not studied.
The O2 approach is very di�erent. While in our approach each virtual object
is represented by a speci�c data structure which contains a reference to the
corresponding real object, in the O2 approach only real objects have a physi-
cal representation (at least in the abstract model, which does not necessarily
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coincide with the actual implementation). Virtual objects, or rather virtual
classes, come into play since all applications access data through a speci�c
schema, which may be either the real schema or a virtual one, and the behavior
of objects depends on the chosen schema. A virtual schema speci�es a set of
virtual classes, along with which objects belong to these virtual classes, and
how methods are implemented for each virtual class. When a virtual schema
exists, the interfaces and methods of every object are those speci�ed by that
schema. Hence, when a message is sent to an object, it is necessary to determine
to which classes the object belongs according to the current schema in order
to execute the corresponding method; determining these classes is generall not
easy. Moreover, if the object belongs to di�erent unrelated virtual classes which
implement the message, the ambiguity needs to be broken in some way. It is
interesting to note that the current version of O2 deals with these problems by
adopting an approach which is quite similar to our approach, i.e. by \materi-
alizing" virtual objects [dos Santos 1994; dos Santos and Waller 1995]. It is
also interesting to note, though this point is not explicitly discussed in the O2

papers, that the semantics they adopt for self seems to be the same as the
one we adopt, despite the major di�erences between the two approaches.
The UniSQL/X approach is intermediate. Each element in a virtual class has
an OID which is di�erent from the OID of the corresponding base object. The
OID identi�es the virtual class to which the object belongs, and is used to
perform method dispatching. Hence, method resolution is class based as in O2,
but every virtual object contains (in its OID) enough information to perform
an e�cient method dispatch, as in our approach.
In Chimera each virtual object has the same OID as the corresponding real
object. Method resolution is based on both the object OID and the static type
of the object. The type hierarchies of real and virtual objects are kept separate,
hence there is no interference between real and virtual methods.

In COCOON overriding is not allowed, hence no message resolution is needed.

(3) Only the Galileo97 type system supports two orthogonal mechanisms to extend
dynamically objects with new types and to de�ne virtual objects. The same
features have been studied in Chimera.

(4) Galileo97, O2, the Ohori-Tajima approach, and COCOON provide operators
for de�ning object views with object identity preserving semantics. In AQUA
this property only holds for views that do not change object structures: the
project and join operator return a tuple. UniSQL/X objects do not have the
same OID as the corresponding base object, but the OID of the base object
can be extracted from the virtual object. In Chimera, when a virtual class is
de�ned, the programmer can choose whether the original OID will be preserved,
or a new OID generated, or no OID provided.

(5) Galileo97 provides an operator to construct a virtual object by starting from
two (or more) objects; the resulting virtual object contains the identities of
both the starting objects. AQUA provides an operator to construct a pair
which has two objects as its components; this is also possible in the Ohori-
Tajima approach. O2 provides an operator to construct a record with the
attributes of two objects, and a mechanism to construct a new object from this
record. In UniSQL/X a virtual class whose objects are built starting frommore
than one object can be created without any particular problem since, in this
approach, the identity of the virtual object is di�erent from the identity of its
base object(s). The same happens in Chimera by generating a new OID.

(6) In all of these systems a virtual object is a �rst class value. Consequently, it has
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a type, and can be used like any other value in the language. A virtual object
type is included in the language subtype hierarchy, and rules are provided to
establish when a virtual object type is a subtype of an object type, a virtual
object type, or a record type. In UniSQL/X two di�erent hierarchies are de�ned
for base object types and for virtual object types. In Galileo97 and in the Ohori-
Tajima approach the subtype relationship is inferred automatically by the type
checker, exploiting rules such as those in Section 4.1. In O2 and in UniSQL/X,
on the other hand, the subtype relationship must be de�ned explicitly.

(7) Only the UniSQL/X approach allows one to insert objects into virtual classes,
under some conditions. This is achieved by translating this operation into the
insertion of an object into the base class. The same is true for class removal.

(8) Only Galileo97 and Chimera enable one to add new state components and
new methods to a virtual object. In the Ohori-Tajima approach new state
components can be added, but methods are not dealt with. In O2 and in
UniSQL/X a virtual object can be extended with new computed attributes
and methods, but can have no new modi�able state components on its own. In
COCOON a virtual object can be extended only with new computed attributes.
In AQUA a virtual object cannot be extended at all.

(9) Galileo97, UniSQL/X and the implemented version of the O2 approach support
an operator to go from a virtual object to the object from which the virtual
object has been de�ned. This operator may be added without any problems to
the Ohori-Tajima approach.

The Galileo97 approach also has similarities with the one adopted in [Cardelli
and Mitchell 1991], where a set of operators on records is de�ned. In fact both
approaches work in the context of a statically and strongly typed functional pro-
gramming language. However, our work also deals with the object-oriented aspects,
namely identity preservation and semantics of self , while Cardelli and Mitchell's
study extends to polymorphic functions, which are not addressed here.

7. CONCLUSIONS

Two mechanisms have been presented to add 
exibility to a programming language
for object databases: roles and virtual objects. Roles allow objects to be dynam-
ically extended to model entities which change their behavior, and the class they
belong to, over time. Virtual objects are a mechanism to give a di�erent interface
of objects, rede�ning their structure and behavior, without a�ecting the behavior
of the original object.
Roles and virtual objects are similar in many respects, since they both allow

objects to be de�ned whose behavior depends on the observer, and they both allow
an object to be extended. There are, however, some essential di�erences:

|the set of the roles of an object is part of the object itself, and the object can
be tested with the predicate isalso to �nd out which roles it has; while a view
is conceptually external to the object (for this reason, an operation is de�ned
to remove a role from an object, while no similar operation is needed for virtual
objects);

|adding a new role to an object transforms its type into a subtype, while the
corresponding view operation extend produces an object whose type may not be
related to the original one;

|the behavior of an object changes when it gains a new role, while it is not a�ected
by the creation of a new virtual object;
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|the set of roles which an object can belong to, is constrained by the role type
hierarchy which has been statically de�ned, while the set of view types which can
be used to access an object is open ended;

|both roles and virtual objects can send messages to themselves, but in the �rst
case the message is received by the role that received the \original message" (see
Section 4.5), while in the second case the message is received by the virtual object
where the method is de�ned.

The main contributions of this work are (a) the clari�cation of the relationship
between the two mechanisms, (b) the study of a set of statically and strongly typed
operators which allow the virtual object mechanism to be included in a typed
language, and (c) the use of these operators to give the semantics of a higher
level mechanism to de�ne virtual classes. The semantics of these operators has
been de�ned through a simpli�ed storage model, which re
ects some aspects of
the current implementation. A formal account of the essential mechanisms of the
language is presented in Appendix B.
Both the role and the virtual object mechanisms have been implemented in a

main memory implementation of the Galileo97 language for personal computers.
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Appendix A: Type rules

This section contains the type rules for the Galileo 97 subset used in the paper. Some
trivial type rules are omitted, such as those for if then else, i�ails, and operations on
integers, booleans, strings and null values.
A formal speci�cation of the type rules is useful for di�erent purposes. First of all, it

helps the language designer to discover whether the language is underspeci�ed, and to
spot rules which are too complex or not natural. Then, it guides the implementation of
the type checker, ensuring compatibility among di�erent implementations, and making
implementation easier. There is not enough experience to assess whether programmers
are ready to take advantage of a formal presentation of type rules. Our opinion is that
the type rules of most of the current languages are too complex to make it possible to
present them in a way which is formal, complete, and easy to understand. However, this
would become possible if the importance of a clean formal presentation of the type system
were kept into account when a language is designed. In this case, programmers would be
able to take advantage of the type rules, as they currently take advantage of the BNF
presentation of the language grammar.
Due to the specialistic nature of this section, few comments are made to explain the

rules. The typing and subtyping rules have in any case been informally described in the
paper.
We �rst de�ne the syntactic elements which compose the good formation, typing and

subtyping judgements. For the sake of simplicity, we adopt for records the set-oriented
syntax [fAi : Tig

i2I], where we assume that every enumerated set fAi : Tig
i2I that we

use always satis�es the property that i 6= j ) Ai 6= Aj.

Environments:

� ::= environment
; empty environment
�;X :T expression variable
�;X :=T concrete type
�;X$ is Y and [fAi : Tig

i2I ] object type; Y may be Top
�;:X variable hidden by hide

Declarations:

D ::= declaration
let B expression declaration
let rec B recursive expression declaration
let type TB type declaration
let rec type TB recursive type declaration
hide X name hiding

B ::= binding
X class Y $ O class binding
X subset of Z class Y $ O subclass binding
X := E value binding
X := derived E expression binding

TB ::= type binding
X := T concrete binding
X $ O object binding

O ::= object type binding
[fAi : Tig

i2I; fBj = meth(�j) : Uj is Ejg
j2J ]

top object binding
is Y and [fAi : Tig

i2I; fBj = meth(�j) : Uj is Ejg
j2J ]

sub object binding

The judgement � ` T = Obj(X)(�0) means that T is an object type with supertype X and



42 � A. Albano, G. Antognoni, and G. Ghelli

signature �0; �0 also contains all the �elds which T inherits. When T has not been de�ned
by inheritance, X is equal to the reserved identi�er Top. The judgement � ` D . �0

means that the declaration D enriches the environment with the information in �0; the
judgement � ` B . �0 is only an auxiliary judgement used to de�ne � ` D . �0.

Judgements:

� ` OK good environment
� ` T OK good type
� ` T = Obj(X)(�0) T is an object type with

supertype X and full signature �0

� ` B . �0 binding B produces �0

� ` D . �0 declaration D produces �0

� ` E : T expression E has type T
� ` P : T program P has type T
� ` T � T 0 T is a subtype of T 0

� ` T " X T and X are object types
with a common supertype

Types:

T; U ::= type
X type identi�er
Top maximal object type identi�er
[fAi : Tigi2I] record type
<fXig

i2I> view [fAl : Tlg
l2L] view type

class X class type (internal use only)
seq T sequence type
var T updatable locations
T1# : : :#Tn ! U function type
bool boolean values
null the type of commands

Expressions:

E;S; B ::= Expression
X variable
X In S naming sequence elements
S where B selection
select E from S mapping E to S
[fAi := Eig

i2I] record construction
var E variable allocation
at E dereferencing
E  E variable updating
fun(X1 :T1; : : : ;Xn :Tn) is E function construction
E(E1; : : : ; En) function application
E:A double lookup message passing
E!A upward lookup message passing
E As X changing role
E isexactly X exact role testing
E isalso X role testing

E project [fB0
j : U

0
jg
j2J0

] object projection

E project � [fB0
j : U

0
jg
j2J0

] sequence projection
E extend [fBj = meth(�j) : Uj is Ejg

j2J ] virtual object extension
E extend � [fBj = meth(�j) : Uj is Ejg

j2J ] sequence extension
E times E0 object product
E times � E0 sequence cartesian product
E rename (fAi ) Big

i2I) object renaming



View Operations on Objects with Roles � 43

E rename � (fAi ) Big
i2I) sequence renaming

Programs:

P ::= program
E expression
D;P declaration plus program

Our type rules obey the discipline of static binding: names can be rede�ned, but the
rede�nition of an X does not a�ect whatever was in the scope of the previous de�nition
of the same X. This is formalized by the rules which deal with variables, which prevent
variable capture with conditions such asX 62 DV(�0) and FV(T )\DV(�0) = ; in rule (Var)
below (FV are the free variables, while DV(�) are the variables de�ned in �, i.e. DV(X1 :=
T1;X2 :T2;:X3; : : :) is fX1;X2;X3; : : :g). This rule alone would be too restrictive since,
once a type variable X has been rede�ned, it would not be possible to access an expression
variable x :X bound to the old X. Accessing such x is made possible by rule (� renaming),
which allows any consistent renaming of variables in any judgement (two judgements J
and J 0 are � equivalent (J =� J

0) if and only if one can be obtained from the other by a
consistent renaming of its bound variables).

� renaming:

(Var)
�;X :T;�0 ` OK X 62 DV(�0) FV(T ) \DV(�0) = ;

�;X :T;�0 ` X : T

(� renaming)
J J =� J

0 J' is well formed

J 0

Environments:

(empty �)

() ` OK

(expression �)
� ` T OK

�;X :T ` OK

(concrete �)
� ` T OK

�;X :=T ` OK

(object �)
� ` Y = Obj(Z)(T ) � ` T � [fAi : Tig

i2I ] � T

�;X$ is Y and [fAi : Tig
i2I] ` OK

(hide �)
� ` OK

�;:X ` OK

The following \�) U" notation is used in rules (Object Top) and (Object Sub) to specify
how the type of a method depends on its formal parameters A1 : T1; : : : ;An : Tn.

(A1 : T1; : : : ;An : Tn)) U = (T1# : : :#Tn)! U if n > 0
()) U = U

The � operator, used in rules (Object �) and (Extend), combines the �elds of two record
types, with �elds in the second type overriding �elds in the �rst with the same name.

[fAi : Tig
i2I ]� [fBj : Ujg

j2J ]
= [fAi : Ti j i 2 I ^ 8j 2 J: Bj 6= Aig [ fBj : Ujg

j2J ]

For the sake of simplicity, in rules (Object Top) and (Object Sub) we only consider stored
�elds (A : T ) and methods (A := meth : : :). Constant �elds (A := E) can be considered,
for the purpose of typing, as parameterless methods (A := meth() is T ).
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Declarations:

(let)
� ` B . �0

� ` let B . �0

(let rec)
�;�0 ` B . �0

� ` let rec B . �0

(hide)
� ` OK

� ` hide X . :X

(let type)
� ` TB . �0

� ` let type TB . �0

(let rec type)
�;�0 ` TB . �0

� ` let rec type TB . �0

(value)
� ` E : T

� ` X := E . X :T

(derived)
� ` E : T

� ` X := derived E . X :T

(concrete)
� ` T OK

� ` X := T . X :=T

(object top)
8i 2 I: 8j 2 J: Ai 6= Bj 8j 2 J: �;�j; self:X ` Ej : Uj

� ` X $ [fAi : Tig
i2I ; fBj = meth(�j) : Uj is Ejg

j2J ]
. X $ is Top and [fAi : Tig

i2I; fBj : �j ) Ujg
j2J ];

mkX : ([fAi : Tig
i2I ])! X;

dropX : X ! null

(object sub)
8i 2 I: 8j 2 J: Ai 6= Bj � ` Y = Obj(Z)(fA0

k : T
0
kg

k2K)
� ` mkY : (fA00

w : T 00wg
w2W )! Y

8i 2 I: 8k 2 K: A0
k = Ai ) Ti � T 0k

8j 2 J: 8k 2 K: A0
k = Bj ) �J ) Uj � T 0k

�;�j; self:X; super:Y ` Ej : Uj
� ` X $ is Y and [fAi : Tig

i2I; fBj = meth(�j) : Uj is Ejg
j2J ]

. X $ is Y and [fA0
k : T

0
kg

k2K]� [fAi : Tig
i2I ; fBj : �j ) Ujg

j2J ];
mkX : ([fA00

w : T 00wg
w2W ]� [fAi : Tigi2I ])! X;

InX : (Y#[fAi : Tig
i2I ])! X;

dropX : X ! null

(class)
� ` X $ O . �0

� ` Y class X $ O . Y : class X; �0

(subclass)
� ` X $ O . �0 �;�0 ` X = Obj(X 0)(T ) (X 0 6= Top)

� ` Z : class Z 0 � ` X 0 � Z 0

� ` Y subset of Z class X $ O . Y : class X; �0

Types:

(good formation)
� ` T � T

� ` T OK

(object)
�;X$ is Y and T;�0 ` OK X;Y 62 DV(�0) FV(T ) \DV(�0) = ;

�;X$ is Y and T;�0 ` X = Obj(Y )(T )

Notation:
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� ` T � U stands for � ` T � U ^ � ` U � T

Subtypes:

(trans)
� ` T � U � ` U � V

� ` T � V

(concrete �)
�;X :=T;�0 ` OK X 62 DV(�0) FV(T ) \ DV(�0) = ;

�;X :=T;�0 ` X � T

(concrete-re
�)
� ` OK X :=T 2 �

� ` X � X

(object�)
� ` X = Obj(Y )(T )

� ` X � T

(object-re
�)
� ` X = Obj(Y )(T )

� ` X � X

(sub object�)
� ` X = Obj(Y )(T ) Y 6= Top

� ` X � Y

(record�)
8j 2 J 0: � ` U 0

j OK 8j 2 J: 9j0 2 J 0: B0
j0 = Bj ^ � ` U 0

j0 � Uj

� ` [fB0
j : U

0
jg
j2J0

] � [fBj : Ujgj2J ]

(view�)
8i 2 I: � ` Xi = Obj(Yi)(�

0
i) 8i 2 I 0: � ` X 0

i = Obj(Y 0
i )(�

00
i )

8j 2 J 0: � ` U 0
j OK

8i 2 I: 9i0 2 I 0: X 0
i0 � Xi 8j 2 J: 9j0 2 J 0: B0

j0 = Bj ^ � ` U 0
j0 � Uj

� `<fX 0
ig
i2I0

> view [fB0
j : U

0
jg
j2J0

] � <fXig
i2I> view [fBj : Ujgj2J ]

(view-rec�)
8j 2 J: � ` Uj OK

� ` [fBj : Ujgj2J ] � < > view [fBj : Ujgj2J ]

(view-obj�)
� ` X = Obj(Y )([fBj : Ujg

j2J ])

� ` X � <X> view [fBj : Ujgj2J ]

(seq �)
� ` T � U

� ` seq T � seq U

(class-seq �)
� ` T � U

� ` class T � seq U

(var �)
� ` T OK

� ` var T � var T

(function �)
� ` T1 � T 01 : : : � ` Tn � T 0n � ` U 0 � U

� ` T 01# : : :#T 0n ! U 0 � T1# : : :#Tn ! U

Functions, variables, subsumption

(var)
� ` E : T

� ` var E : var T

(at)
� ` E : var T

� ` at E : T

(update)
� ` L : var T � ` E : T

� ` L E : null
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(function)
�;X1 :T1; : : : ;Xn :Tn ` E : U

� ` fun(X1 :T1; : : : ;Xn :Tn) is E : (T1# : : : ;#Tn)! U

(application)
� ` E : (T1# : : : ;#Tn)! U � ` E1 : T1 : : : � ` En : Tn

� ` E(E1; : : : ; En) : U

(subsumption)
� ` E : T � ` T � U

� ` E : U

We now de�ne a renaming operator on record types:

�(fAi ) Big
i2I)[fA00

l : Tlg
l2L]

Renaming:

�(fAi ) Big
i2I)[fA00

l : Tlg
l2L]

= [fBi : Tl j l 2 L;Ai = A00
l g [ fA

00
l : Tl j l 2 L; 8i 2 I: Bi 6= A00

l g]

In the next section we do not de�ne the type rules for the \lifted" operators extend*,
rename*, and times*; we only give, as an example, the rule for project*; the other rules
are de�ned exactly in the same way.

Record, object, and view operations:

(record)
8i 2 I: � ` Ei : Ti

� ` [fAi := Eig
i2I ] : [fAi : Tig

i2I]

(dot)
� ` E : [A : T ]

� ` E:A : T

(!)
� ` E : <X> view [A : T ]

� ` E!A : T

(")
9i 2 I: � ` Xi � Y � ` X � Y � ` Y = Obj(Z)(U)

� ` (<fXig
i2I> view T ) " X

(As)
� ` E : <fXig

i2I> view T � ` (<fXig
i2I> view T ) " X 0

� ` E As X 0 : X 0

(isexactly)
� ` E : <fXig

i2I> view T � ` (<fXig
i2I> view T ) " X 0

� ` E isexactly X 0 : bool

(isalso)
� ` E : <fXig

i2I> view T � ` (<fXig
i2I> view T ) " X 0

� ` E isalso X 0 : bool

(project)
� ` E : <fXig

i2I> view [fBj : Ujg
j2J ] 8j 2 J 0: j 2 J ^ � ` Uj � U 0

j

� ` E project [fB0
j : U

0
jg
j2J0

] : <fXig
i2I> view [fB0

j : U
0
jg
j2J0

]

(project*)
� ` E : seq (<fXig

i2I> view [fBj : Ujg
j2J ]) 8j 2 J 0: j 2 J ^ � ` Uj � U 0

j

� ` E project � [fB0
j : U

0
jg
j2J0

] : seq (<fXig
i2I> view [fB0

j : U
0
jg
j2J0

])
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(extend)
8i 2 I: �:Di : Ti

let T =<fXkg
k2K> view [fAl : Tlg

l2L]� [fAi : Tig
i2I; fBj : �j ) Ujg

j2J ]
� ` E : <fXkg

k2K> view [fAl : Tlg
l2L]

8i 2 I: 8j 2 J: Ai 6= Bj 8j 2 J: �;�j;me :T ` Ej : Uj

� ` E extend [fAi := Dig
i2I ; fBj = meth(�j) : Uj is Ejg

j2J ] : T

(times)
� ` E : <fXig

i2I> view [fAl : Tlg
l2L]

� ` E0 : <fX 0
ig
i2I0

> view [fA0
l : T

0
l g

l2L0

]
8l 2 L: 8l0 2 L0: Al 6= A0

l0

� ` E times E0 : <fXig
i2I [ fX 0

ig
i2I0

> view [fAl : Tlgl2L [ fA0
l : T

0
l g

l2L0

]

(rename)
� ` E : <fXig

i2I> view [fAl : Tlg
l2L]

� ` �(fAi ) Big
i2I)[fAl : Tlg

l2L] OK

� ` E rename (fAi ) Big
i2I)

: <fXig
i2I> view �(fAi ) Big

i2I)[fAl : Tlg
l2L]

In the following rules, observe that, by subsumption and by rules (view-rec�), (view-obj�),
every record and every real object also has a view type. This implies that the following
rules can all be applied to sequences of records, real and virtual objects alike. Moreover,
by rule (class-seq �), every class has a sequence type, which makes the following rules
applicable to classes too.

Query operations:

(In)
� ` S : seq T

� ` X In S : seq [X : T ]

(where)
� ` S : seq (<fXig

i2I> view [�0]) �;�0 ` B : bool

� ` S where B : seq (<fXig
i2I> view [�0])

(select)
� ` S : seq (<> view [�0]) �;�0 ` E : T

� ` select E from S : seq T

Programs:

(program)
� ` D . �0 �;�0 ` E : T

� ` D;E : T
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Appendix B: Operational Semantics

This section contains the operational semantics for a subset of the Galileo 97.
The operational semantics may be used for di�erent aims. First of all, it is a speci�cation

for an implementor: once the semantics has been formally de�ned, the implementation
task becomes much easier, and it becomes possible to produce di�erent implementations
which behave essentially in the same way.
The semantics may also be used to prove that the Galileo 97 type system is safe, i.e.

that well-typed terms never go wrong; this theorem is called \static strong typing".7 The
techniques to prove this kind of result are known, but the dimension of the Galileo 97
language make this task quite di�cult.
In this section, as in the previous one, we will only give the minimal amount of comments

which make the formalization possible to understand.
The semantics of some operators, such as times, select from, and where, depends on some

information which is collected at compile-time. This is modelled by de�ning the semantics
over a language of run-time expressions, which coincide with Galileo 97 expressions with
the following exceptions.

Run-time expressions:

E;S; B ::= Run-time expression
: : : . . .
S whereX1::Xn B selection, where X1; : : : ;Xn

are �elds of S elements and may
be accessed in B

selectX1::Xn E from S mapping E to S

E timesX1::Xn ;X
0

1
::X0

m E0 object product

E times* X1::Xn ;X
0

1
::X0

m E0 sequence cartesian product
: : : . . .

To connect Galileo 97 with run-time expressions we de�ne a judgement � ` E ! E0 : T
which speci�es how an expression E is adorned with the information needed to produce
the run-time expression E0. We only specify one of the rules for this judgement; the other
are similar, and are obtained by modifying the corresponding type rule in the same way
as in this case.

Run-time expressions:

(run-time select)
� ` S ! S0 : seq (<> view [X1 : T1; : : : ;Xn : Tn])

�;X1 : T1; : : : ; Xn : Tn ` E ! E0 : T

� ` select E from S ! selectX1::Xn E0 from S0 : seq T

Now the semantics is de�ned by judgements with the shape C;�;E ! l; �0. Here, C
is a context, i.e. a function from variable names to locations, � is a store, i.e. a function
from locations to storable values, and E is a run-time expression. The evaluation of an
expression, with respect to a context and a store, yields a modi�ed store �0 and a location
l, which may be thought of as a pointer to the value of E. The context is used to evaluate
the identi�ers: C;�;X ! C(X); �. The store is used to represent any complex data
structure. For example, an object role is represented by a location l which points to a
quintuple. This quintuple contains:

|a tag \OR" which says that it represents an object,

|the object type lX ,

7In the following de�nition of the Galileo97 operational semantics, static strong typing does not
hold, since message passing to removed objects may fail, and the inX operationmay fail too, when
an object already possesses the type X. Hence, we should add two reductions to known-error for
those two cases, and prove that no other errors may be generated.
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|its method suite F ,

|a pointer to the object history lh,

|the object status.

This is formalized as

�(l) = OR<lX ; F; lh; status>:

The object history is a sequence of pairs type-role pointer, tagged by \H()". For example,
if two roles l1 and l2 represent, in �, the two roles of an object, then the following conditions
hold:

�(l1) = OR<lX ; F; lh; valid>
�(l2) = OR<lY ;G; lh; valid>
lh = H(<lX ; l1> �<lY ; l2>)

Essentially, a location l represents an arrow in the store model, while �(l) represents the
box pointed by that arrow, which may contain other pointers. Hence the three equations
above can be represented by the picture in Figure 11 (see also Figure 2).

lyl1 l2lxH

l1

l2

F

ly

Valid

OR

lh

F

lx

Valid

OR

lh

Fig. 11. The graphical representation of a store con�guration.

The method suite F is represented by a record of closures, i.e. by a function which
associates to a �nite set of labels a set of methods; we write this fact as:

F 2 X
�n
* L F maps labels to locations.

8A 2 X: F (A) # If F (A) is de�ned,
) �(F (A)) = M<C 0; fXig

i2I ; E> then F (A) points to a method.

Here, F (A) # means that F is de�ned on A, i.e. that A is a label in the record F .
M<C 0; fXig

i2I ; E> is the representation of a method in the store: M is the tag for those
closures which represent methods, C 0 is the context as it was when the method with body
E has been de�ned; it will be used to evaluate the non local identi�ers in E. fXig

i2I

are the formal parameters of the method, which must be bound to the actual parameters
before evaluating E.
A store � is a �nite partial function from the set of locations L to the set of all storable

values SV, as de�ned by the following grammar. In this grammar, the metavariables
L, C, E, and F range, respectively, over locations, contexts, expressions, and \semantic
records", i.e. �nite partial functions from identi�ers to something else. � is also required
to be de�ned over four locations, lnil, ltrue, lfalse, lTop, which are required to be pairwise

di�erent. We do noy deal here with the representation of integers.

The storable values

SV ::= Storable values
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S(L1 � � �Ln) a sequence
R(F ) a record, i.e. a �nite function from identi�ers

to values (locations) (F : X
�n
* L)

V(L) a variable (updatable location)
F,M<C; fXig

;E> a function (F) or a method (M) de�ned in a
context (C), with parameters fXig

i2I and body E
D<C;E> a derived values de�ned in a context C

OR<L;F; a role with its type L, method suite F : X
�n
* L,

L0; fvalid j removedg> history L0, and status
H(<L1; L

0
1> � � �<Ln; L

0
n>) a history, i.e. an ordered sequence of type-role

pairs (the �rst element is the last acquired role)
VE<F;L> a virtual extended object, with new methods

and a reference to the base object
VR<F;L> a virtual renamed object, with name mapping

F : X
�n
* X and a reference to the base object

VT<F;L;L> a virtual times object, with name mapping

F : X
�n
* f0; 1g and references to two base objects

T<X;L> �(lX ) = T<X; lY >means that the type
represented by lX is a subtype of the one
represented by lY ; X is its name

The semantics is de�ned by four judgements.

(1) The expression evaluation judgement C;�;E ! l; �0, described above.

(2) The declaration judgement C;�;D ! C 0; �0, which means that the evaluation of
the declaration D transforms � into �0 and produces a context C 0; this judgements is
related to the previous one by the rule (program).

(3) The auxiliary judgement C;�; l(l1; : : : ; ln)
?A
! l0; �0, where ? may be either : or !,

used to evaluate the e�ect of a message passing operation E?A(E1; : : : ; En) when E
evaluates to l and Ei evaluates to li.

(4) The auxiliary judgement lX �� lY , which returns true if the object type represented
by lX in � is a subtype of the one represented by lY .

Contexts:

C ::= Context
; empty context
�;X := l X is bound to l

Judgements:

C;�;D ! C 0; �0 D, in context C and store �, produces C 0; �0

C;�;E ! l; �0 E, in context C and store �, evaluates to l
and produces �0

C;�; l(l1; : : : ; ln)
?A
! l; �0 the message ?A (where \?" is either \." or \!")

sent to l with parameters l1; : : : ; ln yields l; �0

lX �� lY lX represents a subtype of lY

Programs:

(program)
C;�;D ! C 0; �0 C 0; �0; E ! l; �00

C;�; (D;E) ! l; �00

We �rst de�ne the subtyping judgement. l represents an immediate subtype of the object
type represented by l0 when l refers to a pair T<X; l0 >. These pairs are stored when
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object type de�nitions are evaluated (see rules (object top) and (object sub)). Subtyping
is re
exive and transitive.

Inclusion:

(Re
 �)
�(l) = T<X; lY >

l �� l

(Trans �)
l �� l

0 l0 �� l
00

l �� l
00

(Base �)
�(l) = T<X; lY >

l �� lY

Before presenting the rules which govern message passing, let us de�ne two auxiliary
functions, down and up. downlX� (A)(H) searches in the history H for the last acquired
role whose type is a subtype of lX and whose method suite has a method for A, and
returns the role and the method for A. uplX� (A)(H) searches in the history H for the �rst
role whose type is a supertype of lX and whose method suite has a method for A, and
returns the method only.

down�(A)(;) = " (unde�ned)

downlX� (A)(H(<lY ; lobj> �Rest)) = <lobj; lmeth>

if lY � lX ; �(lobj) = OR< ;F; ; >; F (A) = lmeth
downlX� (A)(H(<lY ; lobj> �Rest)) = downlX� (A)(H(Rest))

if lY � lX ; �(lobj) = OR< ;F; ; >; F (A) ="

up�(A)(;) = " (unde�ned)
uplX� (A)(H(<lY ; lobj> �Rest)) = lmeth

if lX � lY ; �(lobj) = OR< ;F; ; >; F (A) = lmeth
uplX� (A)(H(<lY ; lobj> �Rest)) = uplX� (A)(H(Rest))

if lX � lY ; �(lobj) = OR< ;F; ; >; F (A) ="

Message sending:

When (a) l is a real object whose run-time role type is lX and (b) a search in its history
reveals a method for A in a subrole lobj, then that method is evaluated, in a context where

self is not bound to l but to lobj (for the sake of simplicity the binding of super is not

considered here).

(real object, down method)

�(l) = OR<lX ; ; lh; valid> downlX� (A)(�(lh)) =<lobj; lmeth>

�(lmeth) = M<C1; fXig
i2I; E>

(C1 � fXi 7! lig
i2I � self 7! lobj); �;E ! l0; �0

C;�; l(l1; : : : ; ln)
:A
! l0; �0

If (a) l is real, (b) the \method" is found in the downward search, and (c) it is just a
stored function, then it is evaluated without any self parameter.

(real object, down function)

�(l) = OR<lX ; ; lh; valid> downlX� (A)(�(lh)) =<lobj; lmeth>

�(lmeth) = F<C1; fXig
i2I ; E>

(C1 � fXi 7! lig
i2I); �;E ! l0; �0

C;�; l(l1; : : : ; ln)
:A
! l0; �0

If (a) l is real, (b) the \method" is found by downward search, (c) it is just a stored
�eld, and (d) there are no parameters, then the stored �eld is returned with no further
evaluation.
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(real object, down �eld)

�(l) = OR<lX ; ; lh; valid> downlX� (A)(�(lh)) =<lobj; lmeth>

�(lmeth) 6= M<: : :>

C; �; l()
:A
! lmeth; �

When downward search fails, then upward search must be used.

(real object, down to up)

�(l) = OR<lX ; ; lh; valid> downlX� (A)(�(lh)) ="

C;�; l(l1; : : : ; ln)
!A
! l'; �

0

C;�; l(l1; : : : ; ln)
:A
! l'; �

0

When the method is found during upward search, then self is bound to l.

(real object, up method)
�(l) = OR<lX ; ; lh; valid> uplX� (A)(�(lh)) = lmeth
�(lmeth) = M<C1; fXig

i2I; E>

(C1 � fXi 7! lig
i2I � self 7! l); �;E ! l0; �0

C;�; l(l1; : : : ; ln)
!A
! l0; �0

(real object, up function)
�(l) = OR<lX ; ; lh; valid> uplX� (A)(�(lh)) = lmeth
�(lmeth) = F<C1; fXig

i2I ; E>
(C1 � fXi 7! lig

i2I); �;E ! l0; �0

C;�; l(l1; : : : ; ln)
!A
! l0; �0

(real object, up �eld)
�(l) = OR<lX ; ; lh; valid> uplX� (A)(�(lh)) = lmeth �(lmeth) 6=M<: : :>

C; �; l(l1; : : : ; ln)
!A
! lmeth; �

When the object is a virtual extended object with a method suite F , there are two possi-
bilities. If the method is de�ned in F , then it is executed, binding me with l. Otherwise,
the method is delegated to the base object lb.

(Extended object 1)
�(l) = VE<F; > F (A) =M<C1; fXg

i2I; E>
(C1 � fXi 7! lig

i2I � me 7! l); �;E ! l0; �0

C;�; l(l1; : : : ; ln)
?A
! l0; �0

(Extended object 2)
�(l) = VE<F; lb> F (A) ="

C;�; lb(l1; : : : ; ln)
?A
! l0; �0

C;�; l(l1; : : : ; ln)
?A
! l0; �0

When the object is a virtual renamed object with a renaming function F , and A is one of
the renamed attributes, then the call to A becames a call to F (A). Otherwise, the call is
delegated to the base object lb.

(Renamed object 1)

�(l) = VR<F; lb> F (A) = A0 C;�; lb(l1; : : : ; ln)
?A0

! l0; �0

C;�; l(l1; : : : ; ln)
?A
! l0; �0

(Renamed object 2)

�(l) = VR<F; lb> F (A) =" C;�; lb(l1; : : : ; ln)
?A
! l0; �0

C;�; l(l1; : : : ; ln)
?A
! l0; �0
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When the object is a times-built virtual object, its F component is used to redirect a
message to one of its two base objects.

(Times)

�(l) = T<F; lb0; lb1> F (A) = i C; �; lbi(l1; : : : ; ln)
?A
! l0; �0

C;�; l(l1; : : : ; ln)
?A
! l0; �0

We give some examples of the e�ect of declarations. We start with two simple cases, and
then de�ne the crucial cases (object top) and (object sub). Class declarations are not
presented.
Declarations:

(value)
C;�;E ! l; �0

C;�; let X := E ! (C � X 7! l); �0

A derived declaration creates a new structure in the store. The function newlocn(�) =<
�0; l1; : : : ; ln > takes a store � and returns n unused locations and a store �0 which is �
extended with arbitrary values for these new locations. The derived declaration binds X
with such a new location l into the context, and binds l with a closure into �0 (but �
may be used as well). This closure will be evaluated every time X is accessed (see rule
(ide derived) in the section on functions, variables, identi�ers). As usual in language with
static scoping, the closure stores the current context C which will be used when E will be
evaluated.

(derived)
newloc1(�) =< �0; l >

C; �; let X := derived E ! (C � X 7! l); (�0 � l 7! D<C;E>)

An object type declaration creates four new structures. The �rst records that X is a sub-
type of lTop. The second contains a closure which is associated with mkX. This closure

receives a formal parameter called $x, and executes an \internal" operation $mk which
takes, as parameters, the type X and a record which associates to each message either
a value ($x:Ai) or a method ($m:Bj).

8 The de�nitions of the methods are collected in
a record lmeth. dropX is associated to a function which executes the internal operation
$drop (we will later de�ne the semantics of $mk, but not that of $drop). vars(�) returns
the sequence of the parameter names in the signature �.

(object top)
newloc4(�) =< �0; lX ; lmkX; lmeth; ldropX >

C;�; let X $ [fAi : Tigi2I; fBj = meth(�j) : Uj is Ejgj2J ]
! C+ � (C � X 7! lX � mkX 7! lmkX � dropX 7! ldropX);

�0 � lX 7! T<X; lTop>

� lmkX 7! F< (C+ � $m 7! lmeth);
f$xg; $mk(X; [fAi := $x:Aig

i2I ; fBj := $m:Bjg
j2J ])>

� lmeth 7! R(fBj 7! M<C+; vars(�j); Ej>g
j2J)

� ldropX 7! F<;; f$xg; $drop(X; $x)>

The operation $mk is the one which actually builds an object. It takes a type lX , a method
suite lR, and a new location lh and uses them to build an object role which contains that

8Note that $m is an identi�er which we must associate with the location lmeth, since the $mk(: : :)
component of the closure is a Galileo expression, which needs to go through an identi�er to be
able to access a value.
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method suite and whose history contains only the role itself.

($mk)
C;�;X ! lX ; �

0 C;�0; E ! lR; �
00 �00(lR) = R(F )

newloc2(�00) =< �000; l; lh >

C;�; $mk(X;E)
! l; (�000 � l 7! OR<lX ; F; lh; valid>� lh 7! H(<lX ; l>))

A subtype declaration expands mkY (x) simply into InX(mkY (x); x). The In operator is
dealt with by an internal operation $in, similar to $mk.

(object sub)
newloc5(�) =< �0; lX ; lmkX; linX; lmeth; ldropX >

C;�; let X $ is Y and [fAi : Tig
i2I ; fBj = meth(�j) : Uj is Ejg

j2J ]
! C+ � (C � X 7! lX � mkX 7! lmkX � inX 7! linX � dropX 7! ldropX);

�0 � lX 7! T<X; lTop>

� lmkX 7! F<C+; f$xg; InX(mkY ($x); $x)>
� linX 7! F< (C+ � $m 7! lmeth);

f$obj; $xg;
$in(X;$obj; [fAi := $x:Aig

i2I; fBj := $m:Bjg
j2J ])>

� lmeth 7! R(fBj 7! M<C; vars(�j); Ej>g
j2J)

� ldropX 7! F<;; $x; $drop(X;$x)>

The operation $in takes a type X, an object role O and a method suite E, acquires a new
location l, checks that no X role is in the old O history, builds a new object role referenced
by l, adds a pointer to l into the history of O, and returns l.

($in)
C;�;X ! lX ; �

0 C;�0;O ! lo; �
00 �00(lO) = OR<lY ; F; lh; valid>

�00(lh) = H(OldH) <lX ; > =2 OldH
C;�00; E ! lR; �

000 �000(lR) = R(F ) newloc1(�000) =< �0000; l >

C; �; $in(X;O;E)
! l; (�0000 � l 7! OR<lX ; F; lh; valid>� lh 7! H(<lX ; l> �OldH))

Functions, variables, identi�ers

If an identi�er denotes a derived closure, the closure must be evaluated, in the original
context C and in the current store �. Otherwise, the value of the identi�er is found in the
context.

(Ide derived)
C(X) = l �(l) = D<C 0; E> C 0; �;E ! l0; �0

C;�;X ! l0; �0

(Ide)
C(X) = l �(l) 6= D< ; >

C;�;X ! l; �

Variable rules are simple. The update operation always returns the location lnil which
represent the only value of type null.

(var)
C;�; E 7! l; �0 newloc1(�0) =< �00; l0 >

C;�; var E ! l0; (�00 � l0 7! V(l))

(at)
C;�;E 7! l; �0 �0(l) = V(l0)

C;�;at E ! l0; �0
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(update)
C;�;L 7! l; �0 C;�0; E 7! l0; �00

C;�; L E ! lnil; (�
00 � l 7! V(l0))

The de�nition of a function builds a closure which remembers the context as it was when
the function has been de�ned. Function application uses that context, enriched with the
values of the actual parameters, to evaluate the body of the function.

(function)
newloc1(�) =< �0; l >

C; �; fun(X1 :T1; : : : ;Xn :Tn) is E ! l; (�0 � l 7! F<C; fXig
i21::n; E>)

(application)
C;�;E ! l; �1 �1(l) = F<C 0; fXig

i21::n; E0>
8i 2 1::n: C; �i; Ei ! li; �i+1

(C 0 � fXi 7! lig
i21::n); �n+1; E

0 ! l0; �0

C;�;E(E1; : : : ; En) ! l0; �0

Before de�ning the semantics of object operations, we need an auxiliary function hist
which, given an object, returns the concatenation of all of the histories of its base objects.
The function is needed to de�ne the semantics of the As and isalso operations. Notice
how, in a times object, the history of the �rst component partially overrides the history
of the second one.

hist(OR< ; ; lh; >; �) = �(lh)
hist(VE< ; l>;�) = hist(l; �)
hist(VR< ; l>; �) = hist(l; �)
hist(VT< ; l1; l2>;�) = hist(l2; �)� hist(l1; �)

Record, object, and view operations:

(record)
8i 2 1::n: C; �i; Ei ! li; �i+1 newloc1(�n+1) =< �0n+1; l >

C; �1; [fAi := Eig
i21::n] ! l; (�0n+1 � l 7! R(fAi 7! lig

i21::n))

(dot / !)

C;�;E ! l; �1 C;�i; Ei ! li; �i+1 C;�n+1; l(l1; : : : ; ln)
?A
! l0; �0

C;�; E?A(E1; : : : ; En) ! l0; �0

(dot / !, no parameters)

C;�; E ! l; �1 C;�i; Ei ! li; �i+1 C;�n+1; l()
?A
! l0; �0

C;�;E?A ! l0; �0

(As)
C;�; E ! l; �0 C;�0;X ! lX ; �

0 <lX ; l
0>2 hist(�0(l); �0)

C;�;E As X ! l0; �0

(isalso true)
C;�; E ! l; �0 C;�0;X ! lX ; �

0 <lX ; l
0>2 hist(�0(l); �0)

C;�; E isalso X ! ltrue; �
0

(isalso false)
C;�; E ! l; �0 C;�0;X ! lX ; �

0 <lX ; l
0> 62 hist(�0(l); �0)

C;�;E isalso X ! lfalse; �
0

The extend operation evaluates all the non-method �elds, while the methods are stored
as closures.
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(extend)
C;�;E ! lb; �1 C;�i;Di ! li; �i+1 newloc(�n+1) =< �0n+1; fljg

j2J >

C;�;E extend [fAi := Dig
i21::n; fBj = meth(�j) : Uj is Ejg

j2J ]
! l; ( �0n+1

� lj 7! M<C; vars(�j); Ej>
� l 7! VE<fAi 7! lig

i21::n � fBj 7! ljg
j2J ; lb>)

(rename)
C;�;E ! lb; �

0 newloc1(�0) =< �00; l >

C; �; E rename (fAi ) Big
i2I) ! l; (�00 � l 7! VR<fBi 7! Aig

i2I ; lb>)

The semantics of the times operation depends on the static typing of the two components.
All the messages which are statically detected in the type of E are redirected to the cor-
responding base object (fAi 7! 0gi2I), and the same for E0. This is essential to ensure
the type safety of the language, i.e. to avoid that one component may capture a message
which is type-safe for the other component only.

(times)
C;�;E ! lb; �

0 C;�0; E0 ! l0b; �
00 newloc1(�00) =< �000; l >

C; �;E timesX1::Xn ;X
0

1
::X0

m E0

! l; (�000 � l 7! VT<fXi 7! 0gi21::n � fX 0
i 7! 1gi21::m ; lb; l

0
b>)

Query operations:

To evaluate selectX1::Xn F from E we �rst evaluate E and obtain a sequence ls. Then,
for every element lsj of the sequence we evaluate F in a context where every label Xi of the
sequence element type is associated with a derived expression which, whenever is used in-
side F , triggers the evaluation of $x:Xi, where $x is an identi�er bound to the location lsj .
The semantics does not require the sequence elements to be accessed in any speci�c order;
at each step j, F is evaluted w.r.t. the element lsb(j). The condition b : f1::mg $ f1::mg
(i.e., b is a bijection over f1::mg) ensures that every sequence element is accessed exactly
once. This makes the semantics non-deterministic, and gives the optimizer the possibility
to exploit access structures which may be de�ned for the sequence.

(select from)
C;�;E ! ls; �0 �0(ls) = S(ls1 � � � l

s
m) newlocn+1(�0) =< �1; l

r; ld1 ; : : : ; l
d
n >

b : f1::mg $ f1::mg
8j 2 1::m :((C � fXi 7! ldi g

i21::n);
(�j � fl

d
i 7! D<(C � $x 7! lsb(j)); $x:Xi>g

i21::n); F ! lrj ; �j+1)

C;�; selectX1::Xn F from E ! lr; (�m+1 � lr 7! S(lr1 � � � l
r
m)

To evaluate E whereX1::Xn B we behave essentially as in selectX1::Xn B from E and we
put in the result every lsj which makes B equal to ltrue.

(where)
C;�;E ! ls; �0 �0(ls) = S(ls1 � � � l

s
m) newlocn+1(�0) =< �00; lr; ld1 ; : : : ; l

d
n >

b : f1::mg $ f1::mg
8j 2 1::m :( (C � fXi 7! ldi g

i21::n);
(�j � fl

d
i 7! D<(C � $x 7! lsb(j)); $x:Xi>g

i21::n);B ! lbj ; �
0
j+1

where �1 = �00 � lr 7! S(())
and �j+1 = �0j+1 � lr 7! S(lsb(j) �Res)

if �j+1(l
r) = S(Res); lbj = ltrue

�j+1 = �0j+1 if lbj 6= ltrue )

C;�;E whereX1::Xn B ! lr ; �m+1

The XIn E operation creates one record with just one �eld X associated to lsj for every
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element lsj of the value of E, and collects all these records in a sequence lr.

(In)
C;�;E ! ls; �0 �0(ls) = S(ls1 � � � l

s
m) newlocm+1(�0) =< �00; lr; lr1 ; : : : ; l

r
m >

C;�;XIn E ! lr; (�00 � lr 7! S(lr1 � � � l
r
m)� fl

r
j 7! R(fX 7! lsjg)g

j21::m)


