
A Spatial Logi for Querying GraphsLua Cardelli, Philippa Gardner and Giorgio Ghelli1Abstrat. We study a spatial logi for reasoning about labelled diretedgraphs, and the appliation of this logi to provide a query language foranalysing and manipulating suh graphs. We give a graph desriptionusing onstruts from proess algebra. We introdue a spatial logi inorder to reason loally about disjoint subgraphs. We extend our logi toprovide a query language whih preserves the multiset semantis of ourgraph model. Our approah ontrasts with the more traditional set-basedsemantis found in query languages suh as TQL, Strudel and GraphLog.1 IntrodutionSemi-strutured data plays an important role in the exhange of informationbetween globally distributed appliations: examples inlude BibTex �les andXML douments. Whilst the researh ommunity mostly agree on de�ning semi-strutured data using labelled direted graphs or trees with `graphial' links, thestudy of how to query, modify and manipulate suh data is still very ative.Motivating Examples A standard example used by the semi-strutured dataommunity [ABS00℄ is a bibtex �le with an artile entry of the form:
x

y

citation

Buneman

Suciu

author

title
date

Abiteboul
‘Data on the Web’

‘2000’

publication

The global name (objet identi�er) x denotes the itation name of the publi-ation, whih is used to refer to the partiular bibtex entry. The itation entrymight be a simple text entry, or might point to another entry in the bibtex �le.Another example with a more graphial emphasis is the orrespondene betweenounties and towns, where ounties ontain towns and towns are in ounties. Amore ompliated example is given by links between web pages, where namesorrespond to URLs. Suh links display all manner of graphial linking. Thesesimple examples illustrate that the typial data models for semi-strutured dataare either labelled direted graphs, or labelled trees with `graphial links'. Inthis paper, we fous on labelled direted graphs.1 Cardelli's address: Mirosoft Researh, Cambridge. Gardner's address: Imperial Col-lege of Siene, Tehnology and Mediine, London. Supported by an EPSRC Ad-vaned Fellowship. Ghelli's address: University of Pisa, Pisa.

Graph Model We use a well-known graph desription based on onstrutsfrom proess algebra [CMR94℄. The models onsist of labelled edges and twokinds of nodes: the global nodes identi�ed with unique names x; y; z and the lo-al nodes whose identi�ers are not known. In our bibtex example, the itation xorresponds to a global node labelled x, whereas the author �eld has no expliititation. Similarly, the Internet's Domain Name Servie globally registers IP ad-dresses, but not all IP addresses are global. Our notation for desribing graph (a)is a(x; y) j b(y; x), where a(x; y) denotes an edge and j is the usual ompositionoperator for proesses used in this ase to desribe multisets of edges.
Graph(a) Graph(b)a ax by x bGraph (b) is given by (loal y)(a(x; y) j b(y; x)). The loal operator is analogousto restrition in the �-alulus. It means that the previously identi�ed nodeannot now have any more edges attahed to it.Spatial Logi for Graphs Spatial logis were introdued by Caires, Cardelliand Gordon for reasoning about trees and proesses [CG00,Cai99℄, and alsoby O'Hearn and Reynolds for reasoning about pointers [IO01,Rey00℄ using thebunhed logi of O'Hearn and Pym [OP99℄. Suh logis provide loal reasoningabout disjoint substrutures. We introdue a spatial logi for analysing graphs.It ombines standard �rst-order logi with additional strutural onnetives. Thestrutural formula � j spei�es that a graph an be split into two parts: one partsatisfying �, the other . Composition allows us to ount edges. For example,9x;y; z;u: a(x;y) j b(y; z) j a(z;u) j true (y)spei�es that there are at least three di�erent edges in the graph, with a followingb following a. In ontrast, onjuntion allows us to desribe paths with9x;y; z;u: (a(x;y) j true) ^ (b(y; z) j true) ^ (a(z;u) j true)desribing the existene of a path a followed by b followed by a. The path formulais satis�ed by graph (a), but the omposition formula (y) is not.Our graph logi (without reursion) sits naturally between �rst-order logiFOL and monadi seond-order logi MSOL: in FOL we an only quantify oversingle edges; in our logi, the formula � j true existentially quanti�es a property� over all subgraphs; in MSOL we an arbitrarily nest quanti�ations over sets ofedges. Our logi an be viewed as a sublogi of MSOL. However, we an reasonloally about disjoint subgraphs. FOL and MSOL require omplex disjointnessonditions to reason about suh subgraphs: for example, the omposition formula(y) requires suh onditions to speify that the three edges are disjoint. Dawar,Gardner and Ghelli are studying expressivity results for the graph logi. Oururrent results are reported in [CGG01℄.

Query Language We de�ne a query language based on pattern mathing andreursion. Our approah integrates well with our graph desription, and ontrastswith the standard set-based approah found in Cardelli and Ghelli's TQL, aquery language based on the ambient logi [CG01a℄, and the graphial querylanguages StruQL [FFK+97℄ and GraphLog [CM90℄ based on �rst-order logi.To illustrate the standard approah, onsider a simple query input graph �?a(x;y) j true: This query asks for a substitution � suh that the satisfationrelation input graph �� a(x;y) j true holds in our logi. For example, if the inputgraph is a(x; y) j b(y; x), then there are two solutions:(a 7! a; x 7! x; y 7! y) or (a 7! b; x 7! y; y 7! x)The from/selet expressions take suh solutions and build new graphs. For ex-ample, the expressionfrom input graph �? a(x;y) j true selet a(y;x) (�)takes every substitution � whih satis�es the query, and reates a new graphonsisting of the omposition of the edges a�(y�;x�). In our example, the result-ing new graph is a(y; x) j b(x; y). Given the input graph a(x; y) j a(x; y) instead,there is one substitution � : x 7! x;y 7! y whih satis�es the query. The result-ing graph is just a(y; x). This ollapse of information an be an advantage. Itdoes mean however that we annot aurately take a opy of a graph.Instead we de�ne a query language based on queries and transduers. Queriesbuild new graphs from old. Transduers relate input graphs with output graphs.A basi transduer � V Q relates any input graph satisfying � with the queryQ whih might depend on witnesses from �. For example, the transduer9a;x;y: (a(x;y) j true V a(y;x))relates an input graph with edge a�(x�;y�) with the output graph a�(y�;x�).Given the input graph a(x; y) j b(y; x), there are two possible output graphs,either a(y; x) or b(x; y). This example does the pattern-mathing part of thefrom/selet expression (�). It does not ombine the inverted edges. Instead thisrole is played by reursion. Consider the transduerR def= (nilV nil) _ (9a;x;y: (a(x;y) V a(y;x)) jR)Either the input graph is empty and relates to the empty output graph. Or theinput graph an be split into an edge and the rest of the graph. The outputgraph onsists of the inverted edge omposed with the output assoiated withthe remaining graph. Given input graph a(x; y) j a(x; y) for example, the outputgraph is the exat inverted opy a(y; x) j a(y; x).We study two query languages: a basi language whih an express our mo-tivating examples, and a general language whih has a simple formalism but istoo expressive to implement. We were surprised to observe that the from/seletexpressions an be embedded in our general language.

2 Labelled Direted GraphsWe use a simple graph algebra [CMR94℄ to desribe labelled direted graphs.Assume an in�nite set X of names ranged over by u; : : : ; z, and an in�nite setof edge labels A ranged over by a; b; . We also use the notation ~z to denote asequene of names, and j~z j to denote the length of the sequene.Definition 1The set G(X ;A) of graph terms generated by X and A is given by the grammarG ::= nil emptya(x; y) edgeG jG omposition(loal x)G hidingWe sometimes write G instead of G(X ;A). The de�nitions of free and boundnames are standard: the hiding operator (loal x)G binds x in G; x is free inproess a(x; y). We write fn(G) to denote the set of free names in G. We use theapture-avoiding substitution, denoted by Gfy=xg.Our graph model is based on a multiset semantis, with the graph terma(x; y) j a(x; y) denoting a graph with two edges. We give a natural struturalongruene on graph terms (de�nition 2) whih orresponds to the usual notionof graph isomorphism [CMR94℄. Our hoie ontrasts with the approah taken inthe query language StruQL, whih has a set-based semantis with a(x; y) j a(x; y)orresponding to a(x; y). It also ontrasts with the language UnQL [BDHS96℄,whih is based on graph bisimulation rather than graph isomorphism.Definition 2The strutural ongruene between graph terms, written �, is the smallest on-gruene losed with respet to j and (loal x) , and satisfying the axioms:G j nil � G (loal x)(loal y)G � (loal y)(loal x)G(G1 jG2) jG3 � G1 j (G2 jG3) (loal x)(G1 jG2) � (loal x)G1 jG2; x 62 fn(G2)G1 jG2 � G2 jG1 (loal x)nil � nil(loal x)G � (loal y)Gfy=xg; y 62 fn(G)2.1 Comparison with CourelleWe give a set-theoreti desription of graphs in the spirit of Courelle [Cou97℄,whih is equivalent to our graph desription. We have made some di�erent hoiesto Courelle, whih we will disuss after the de�nition. We assume disjoint in�-nite sets of verties V , edge identi�ers E , edge labels A, and names X .

Definition 3The graph struture GS = hV [E [A; fedge � E �A� V � V g; sr : X ! V iis de�ned by1. V � V , E � E , A � A, X � X are �nite sets;2. eah edge identi�er has a unique label, domain node and odomain node:8e; ai; vi; wi:edge(e; a1; v1; w1)^ edge(e; a2; v2; w2)) a1 = a2 ^ v1 = v2 ^w1 = w2;3. the edge identi�ers, edge labels and verties are related using edge:8d 9d1; d2; d3:edge(d; d1; d2; d3) _ edge(d1; d; d2; d3) _ edge(d1; d2; d; d3) _ edge(d1; d2; d3; d)4. sr is an injetive funtion.This de�nition di�ers from Courelle's approah in several ways. Courelle per-mits nodes to be unattahed to edges. He onsiders both �nite and in�nitegraphs, whereas we use the �nite ase sine it is enough for this paper. He alsodoes not treat A as part of the domain. Instead, he de�nes a family of relationsedgea � E � V � V . This last point is signi�ant when omparing our di�erentlogis for reasoning about graphs. Courelle onsiders two systems, one where sris injetive and one where it is not. The graphs presented here orrespond to theinjetive ase; the non-injetive ase orresponds to adding name fusions x = yto our graphial desription, as introdued by Gardner and Wishik [GW00℄.In [Cou97℄, Courelle studies a graph grammar whih is similar to ours. Cour-elle's motivation is to explore the expressive power of MSOL. In ontrast, ourmotivation is to use our graphs to model semi-strutured data, and to introduea spatial logi for loally reasoning about suh data.3 The Graph LogiWe will only onsider the simple ase of graphs without hiding. It is possible toinorporate a quanti�er for reasoning about hidden nodes [CC01,CG01b℄, and webelieve that our query language will extend. For the rest of this paper, G rangesover the terms generated by the simple grammar: G ::= nil j a(x; y) j G jG.The set G(X ;A) denotes the set of all suh terms.3.1 Logial FormulaeFormulae are onstruted from a name set X and label set A. They also dependon the disjoint sets of name variables VX , label variables VA and parametrisedreursion variables VR. A reursion variable R omes with a �xed arity jRj.Definition 4 (Logial formulae)The set of pre-formulae Fpre(X ;A) is given by the grammarsname expressions � ::= x name, x 2 Xx name variablelabel expressions � ::= a label, a 2 Aa label variable

formulae �; ::= nil empty�(�1; �2) edge� j ompositiontrue true� ^ onjuntion:� lassial negationquanti�ers 9x:� exist. quant. over names9a:� exist. quant. over labelsreursion R(~�) jRj = j~�j(�R(~x): �)~� least �x-pt; j~�j = j~xj = jRj;R(~�) ours positively,equality tests �1 = �2; �1 = �2 equalitiesThe sets of free variables are standard. The set of formulae F(X ;A) are thosepre-formulae with no free reursion variables. The order of binding preedeneis = ; : ; j ; ^ , with negation binding strongest. We write x 6= y for:(x = y). The sope of 9x: and �R(~x): is always the maximum possible.The nil formula spei�es the empty graph. The edge formula �(�1; �2) spei�esthat a graph is just one edge. The omposition formula � j spei�es that agraph an be split into two parts with one part satisfying � and the other .The other formulae should be familiar. It is also logially natural to add otheronnetives suh as a spatial negation and impliation [OP99,CG00℄.3.2 Satisfation RelationThe satisfation relation determines whih graphs satisfy whih formulae. It isde�ned by an interpretation funtion whih maps pre-formulae to sets of graphs.Definition 5 (Satisfation)We assume name set X and edge set A. Let � : VX ! X denote a substitutionfrom name and label variables to names and labels respetively, and let � sendreursion variables of arity n to elements of the set of funtions (Xn ! P(G)).The satisfation interpretation [[℄℄�;� : Fpre ! P(G) is de�ned indutively by:[[nil℄℄�;� = fG : G � nilg[[�(�1; �2)℄℄�;� = fG : G � ��(�1�; �2�)g[[� j ℄℄�;� = fG : G � G1 jG2 ^G1 2 [[�℄℄�;� ^G2 2 [[℄℄�;�g[[true℄℄�;� = G[[� ^ ℄℄�;� = [[�℄℄�;� \ [[℄℄�;�[[:�℄℄�;� = G=[[�℄℄�;�[[9x: �℄℄�;� = [x2X [[�℄℄�;x7!x;�

[[9a: �℄℄�;� = [a2A[[�℄℄�;a7!a;�[[R(~�)℄℄�;� = R�(~��); j~�j = n; R� : Xn ! P(G)[[(�R(~x):�)~�℄℄�;� = (fS 2 (X j~xj ! P(G)) : (�~y: [[�℄℄�;~x7!~y;�;R 7!S) v Sg)(~��)where S v S0 i� 8~y 2 X j~xj: S(~y) � S0(~y)[[�1 = �2℄℄�;� = G; if �1� = �2�; ; otherwise[[�1 = �2℄℄�;� = G; if �1� = �2�; ; otherwiseDe�nition 5 is shown to be well-de�ned by strutural indution on formulae. Forthe reursive ase, observe that the set of all pointwise-ordered total funtions oftype X j~xj ! P(G) is a omplete lattie. De�ne the satisfation relation G �� �for formula � if and only if G 2 [[�℄℄�; , where denotes an arbitrary �.Proposition 6 (Satisfation Properties)The satisfation relation satis�es the following standard properties:G �� nil , G � nilG �� �(�1; �2), G � ��(�1�; �2�)G �� � j , 9G1; G2 2 G: (G � G1 jG2 ^ G1 �� � ^G2 ��)G �� true , G 2 GG �� � ^ , G �� � ^ G �� G �� :�, :(G �� �)G �� 9x:�, 9x 2 X : G �� �fx=xgG �� 9a:�, 9a 2 A: G �� �fa=agG �� (�R(~x): �)(~�), G �� �f~�=~xg[(�R(~x):�)=R℄G �� �1 = �2 , �1� = �2�G �� �1 = �2 , �1� = �2�The reursion ase requires a substitution and monotoniity lemma showing thatthe funtion �~y: [[�℄℄�;~x7!~y;�;R7!S is monotone in S. Then we apply the �x-pointtheorem.Definition 7 (Derived Formulae)We give some derived formulae whih are used throughout the paper:false def= :true � jj def= :(:� j :)� _ def= :(:� ^ :) subgraph9(�) def= � j true�) def= :� _ subgraph8(�) def= � jj false8x: � def= :9x::�The onnetive jj is the de Morgan dual of j . The binding preedene is ^ ,_ ,) , with onjuntion binding strongest. The sope of 8x: is the maximumpossible.

Example We revisit the two examples disussed in the introdution:9x;y; z;u: a(x;y) j b(y; z) j a(z;u) j true9x;y; z;u: (a(x;y) j true) ^ (b(y; z) j true) ^ (a(z;u) j true)Reall that the �rst formula spei�es that a graph has at least three di�erentedges; the seond that a graph has a path of three edges.Example We speify the property that there exists a path from x to y in ourlogi without reursion. This is interesting sine it is not expressible in �rst-orderlogi without reursion. First we give some preliminary derived formulae:no edge into x in0(x) def= :9y; a: a(y; x) j truen+ 1 edges into x inn+1(x) def= 9y; a: a(y; x) j inn(x)a minimal graph satisfying � min(�) def= � ^ :(� j :nil)x is a node in the graph in graph(x) def= 9y; a: (a(x;y) _ a(y; x)) j trueThe formulae outn(x) are de�ned similarly to inn(x). We now give a formulawhih spei�es that a graph is just a straight path from x to y and does notontain a yle (when x = y the formula is satis�ed by the empty graph):straight path(x;y) def= min[x = y _ (in0(x) ^ out1(x) ^ in1(y) ^ out0(y)^8z: z 6= x ^ z 6= y ^ in graph(z)) out1(z) ^ in1(z))℄This formula spei�es that the graph ontains one start node x, one end nodey and all the other nodes must have one inoming and one outgoing edge(hene no yles). Minimality ensures that there are no disonneted yles. Theproperty that there exists a path from x to y is now spei�ed by the formulaexists path(x;y) def= subgraph9(straight path(x;y)).ExampleWe give an equivalent formula to exists path(x; y) using reursion|weuse the notation R(~x) def= �, as an abbreviation for R(~�) def= (�R(~x): �)(~�):exists path(x;y) def= x = y _ (9z; a: a(x; z) j exists path(z;y)):This ombination of omposition and reursion an be regarded as an indutionon the graph struture. Consider the graph a(x; z) j b(z; z) j (z; y). There are justtwo ways to hek that this graph satis�es the formula: either by heking thatedge a is followed by ; or that a is followed by b is followed by .Example A lassi property assoiated with ompiler optimisation is `a node zdominates node y i� every path from some delared initial node x to y passesthrough z'. First we speify the property that a graph is a path from x to y:path(x;y) def= (x = y ^ nil) _ (9z; a: a(x; z) jpath(z;y))The addition of nil ensures that all the edges are heked. For example, in grapha(x; z) j b(z; z) j (z; y) the only way that path(x;y) is satis�ed is by hekingthat a follows b follows . It is now simple to speify the property we seek:dominates(x; y; z) def= subgraph8(path(x; y)) in graph(z)):

4 A Query LanguageOur basi language onsists of queries and transduers. Queries build new graphsfrom old. Transduers assoiate input graphs with output graphs. These oneptsare related. The basi transduer � V Q relates input graphs satisfying � withoutput graphs given by Q. The query (apply � to Q) applies the transduer �to the input graphs given by Q, to yield the orresponding set of output graphs.Definition 8 (Query Language)The sets of pre-queries and pre-transduers, denoted Qpre(X ;A) and Tpre(X ;A)respetively, are given by the grammars from de�nition 4 and the grammars:Q ::= queries � ::= transduersG graph variable �V Q basi transduernil empty graph �G:Q abstration�(�1; �2) edge graph � j � transduer ompositionQ jQ omposition � _ � disjuntionapply � to Q appliation 9x:� exist. quant. of names9a:� exist. quant. of labelsRT reursion�RT: � least �x-pt, RT positiveThe sets of queries and transduers, denoted by Q(X ;A) and T (X ;A), ontainthose pre-queries and pre-transduers with no free reursion variables. We useRT def= � to denote RT def= �RT: � . We overload notation: j denotes the ompo-sition of formulae, queries and transduers. The onnetive V has the weakestbinding strength; the other onnetives are as before. A glaring omission is theabsene of a renaming tehnique for node identi�ers, suh as Skolemization. Ourapproah is enough for this paper. Other transduer onnetives are feasible. Ourhoie was determined by our aim to have a simple language in whih to expressour motivating examples. We desribe a more general approah in setion 4.1.Definition 9 (Query interpretation)Assume name set X and label set A. Let � denote a substitution from name andlabel variables to names and labels respetively, let Æ denote a substitution fromgraph variables to elements of G, and let funtion � map transduer reursionvariables to the set P(G � G). The query interpretation [[℄℄�;� ;� : Qpre ! P(G)and the transduer interpretation [[℄℄�;�;� : Tpre ! P(G � G), are de�ned by asimultaneous indution on the struture of pre-queries and pre-transduers:[[G℄℄�;Æ;� = fG : G � GÆg[[nil℄℄�;Æ;� = fG : G � nilg[[�(�1; �2)℄℄�;Æ;� = fG : G � ��(�1�; �2�)g[[Q1 jQ2℄℄�;Æ;� = fG : G � G1 jG2 ^G1 2 [[Q1℄℄�;Æ;� ^G2 2 [[Q2℄℄�;Æ;�g[[apply � to Q℄℄�;Æ;� = fG0 : 9G: (G;G0) 2 [[� ℄℄�;Æ;� ^G 2 [[Q℄℄�;Æ;�g

[[�V Q℄℄�;Æ;� = f(G;G0) : G 2 [[�℄℄�; ^G0 2 [[Q℄℄�;Æ;�g[[�G: Q℄℄�;Æ;� = f(G;G0) : G0 2 [[Q℄℄�;Æ;G7!G;�g[[�1 j �2℄℄�;Æ;� =f(G;G0) : G � G1 jG2 ^G0 � G01 jG02 ^ (G1; G01) 2 [[�1℄℄�;Æ;� ^ (G2; G02) 2 [[�2℄℄�;Æ;�g[[�1 _ �2℄℄�;Æ;� = [[�1℄℄�;Æ;� [[[�2℄℄�;Æ;�[[9x:� ℄℄�;Æ;� = Sx2X [[� ℄℄�;x7!x;Æ;�[[9a:� ℄℄�;Æ;� = Sa2A[[� ℄℄�;a7!a;Æ;�[[RT℄℄�;Æ;� = RT�[[�RT: �℄℄�;Æ;� = TfS 2 P(G � G) : [[�℄℄�;Æ;�;RT 7!S � SgExample: inverting edges Consider the transduer9a;x;y: a(x;y) j true V a(y;x)It returns one inverted edge of any non-empty input graph. The transduer isnon-deterministi: given input graph a(x; y) j b(y; x), the set of possible outputgraphs is fa(y; x); b(x; y)g. Now onsider the queryapply (9a;x;y: a(x;y) j true V a(y;x)) to input graphWhen the input graph is a(x; y) j b(y; x) the resulting output is either a(y; x) orb(x; y); when the input graph is a(x; y) j a(x; y) the result an only be a(y; x).Example: ase analysis The onnetive _ an be used for ase analysis:(nilV nil) _ (9a;x;y: a(x;y) j true V a(y;x))Either the input graph is empty and we return the empty output graph. Or theinput graph is non-empty and we return an inverted edge.Example: exat inverted opy We an exeute a query against every edge.For example, the transduer relating an input graph with its inverted opy isRT def= (nilV nil) _ (9a;x;y: a(x;y) V a(y;x)) jRTEither the input graph is empty and we return the empty graph. Or the graphan be split into an edge and the rest of the graph. We return the invertededge and exeute the transduer on the smaller graph. Given the input grapha(x; y) j a(x; y), we return the exat inverted opy.We an adapt this example to exeute a query against every edge providedit satis�es a ertain logial formula. For example, onsider the transduerRT def= (nilV nil) _(9a;x;y: ((a(x;y) ^ x 6= y V a(y;x)) _ (a(x;y) ^ x = y V nil)) jRT)Either the input graph is empty and we return the empty graph. Or the inputgraph is non-empty and we pik an edge. If the domain and odomain of the

edge are di�erent then return the inverted edge; if they are the same then returnthe empty graph. Apply the transduer to the remaining smaller graph.Example: transitive losure A standard example is the transitive losure ofa graph. It illustrates the power of mixing abstration with reursion. For thisexample only, we assume the edge labelled set A = fag. The following transduer,when applied to graph G, returns the minimum graph TC whih ontains G andsatis�es the property: if a(x; y) and a(y; z) are in TC then so is a(x; z):RT def= �G: (:9x;y; z: (a(x;y) j true ^ a(y; z) j true ^ :(a(x;y) j true))V G) _9xy; z: a(x;y) j true ^ a(y; z) j true ^ :(a(x; z) j true)V apply RT to (G j a(x; z))4.1 Generalised TransduersWe generalise the de�nition of transduers (de�nition 8). Our approah is simple,but too expressive to implement. The semanti interpretation (de�nition 11)gives us the exibility to adapt our hoie of basi language if we wish.Definition 10 (Generalised Transduers)Assume name set X and label set A. The set of generalised pre-transduers, de-noted GT pre(X ;A), is given by the grammar:� ::= id identity nil empty input graph�1; �2 omposition . . . analogous ases from de�nition 4G graph variable 9G:� existential quanti�ation over graphsGeneralised transduers relate input and output graphs. A logial formula � re-garded as a generalised transduer relates input graphs satisfying � to arbitraryoutput graphs. The identity transduer relates struturally ongruent graphs.The transduer omposition �1; �2 is relational omposition. Identity and om-position allows us to speify properties of the output graphs. For example, thetransduer true; (�^ id) relates arbitrary input graphs with output graphs satis-fying �. Queries orrespond to suh generalised transduers.Definition 11 (Interpretation of Generalised Transduers)Assume name set X and label set A. The query interpretation [[℄℄�;Æ;� : GT !P(G � G), where � denotes a substitution from name and label variables tonames and labels respetively, Æ maps graph variables to graphs, and funtion �maps reursion variables of arity n to funtions Xn ! R(G � G), is de�ned byindution on the struture of the extended formulae:[[id℄℄�;Æ;� = f(G;G0) : G � G0g[[�1; �2℄℄�;Æ;� = f(G;G0) : 9G1: (G;G1) 2 [[�1℄℄�;Æ;� ^ (G1; G0) 2 [[�2℄℄�;Æ;�g[[G℄℄�;Æ;� = fG : GÆ = Gg � G[[nil℄℄�;Æ;� = fG : G � nilg � G[[�(�1; �2)℄℄�;Æ;� = fG : G � ��(�1�; �2�)g � G[[�1 j �2℄℄�;Æ;� =f(G;G0) : G � G1 jG2 ^G0 � G01 jG02 ^ (G1; G01) 2 [[�1℄℄�;Æ;� ^ (G2; G02) 2 [[�2℄℄�;Æ;�g

[[true℄℄�;Æ;� = G � G[[�1 ^ �2℄℄�;Æ;� = [[�1℄℄�;Æ;� \ [[�2℄℄�;Æ;�[[:� ℄℄�;Æ;� = (G � G) n [[� ℄℄�;Æ;�[[9x:� ℄℄�;Æ;� = Sx2X [[� ℄℄�;x7!x;Æ;�[[9a:� ℄℄�;Æ;� = Sa2A[[� ℄℄�;a7!a;Æ;�[[9G:� ℄℄�;Æ;� = SG2G[[� ℄℄�;Æ;G 7!G;�[[R(~�)℄℄�;Æ;� = R�(~��)[[(�R(~x): �)(~�)℄℄�;Æ;� = (fS 2 X j~xj ! P(G � G) : �~y: [[� ℄℄�;~x7!~y;Æ;�;R7!S v Sg)(~��)where S v S0 i� 8~y 2 X j~xj: S(~y) � S0(~y)[[�1 = �2℄℄�;� = G � G if �1� = �2�; ; otherwise[[�1 = �2℄℄�;� = G � G if �1� = �2�; ; otherwiseProposition 12There exists embeddings ()Æ : Qpre ! GT pre, ()Æ : F ! GT pre and ()Æ : Tpre !GT pre suh that1. for all queries Q, [[QÆ℄℄�;Æ;� = G � [[Q℄℄�;Æ;�;2. for all logial formulae �, [[�Æ℄℄�;Æ;� = [[�℄℄�; � G;3. for all basi transduers � , [[�Æ℄℄�;Æ;� = [[� ℄℄�;Æ;� :Proof. The embeddings are give in [CGG01℄. The query (apply � to Q) is inter-preted by the sequential omposition. The basi transduer �V Q is interpretedby onjuntion. The abstration �G: Q by the existential quanti�ation on G.Example Consider the derived transduers:subgraph def= id j (nilV true) strit subgraph def= id j (nilV :nil)�1;; �2 def= :(�1;:�2) min out (�) def= � ^ :(� ; strit subgraph)�nite lub (�) def= min out(� ;; subgraph)The transduer subgraph relates G1 to G2 if and only if G1 � G2: that is,G1 jH � G2 for some H . The strit subgraph is the strit version. The onnetive;; is the de Morgan dual of ;. Unravelling the de�nition, it states that(G;G0) 2 [[�1;; �2℄℄�;Æ;� , (8G1: (G;G1) 2 [[�1℄℄�;Æ;�) (G1; G0) 2 [[�2℄℄�;Æ;�)This operator allows us to work with all output graphs assoiated with a giveninput. For example, the transduer � ;; subgraph relates a graph G with all the�nite upper bounds of [[� ℄℄(G) (where [[� ℄℄(G) is the set of all graphs G0 suhthat (G;G0) 2 [[� ℄℄). These �nite upper bounds do not neessarily exist, in whihase [[� ;; subgraph℄℄(G) is the empty set. We may adapt our �nite semantis to thein�nite ase, by using the in�nite version of the set-theoreti presentation given insetion 2.1. Themin out(�) transduer relates a graphG with the minimal graphsin [[� ℄℄(G). The transduer �nite lub (�) relates a graph G with the minimal �niteupper bound of [[� ℄℄(G), when it exists. The in�nite semantis would give rise to

a least upper bound. In the introdution, we disuss a standard set-theoretilanguage based on from/selet expressions. These expressions are embeddable inour general language using this �nite-lub onstrution [CGG01℄.We must give an in-depth omparison between our query language and otherquery languages based on graphs [FFK+97,CM90,BDHS96℄. Our language islosely related to XDue [HP01℄, a proessing language for XML doumentsbased on pattern-mathing and a simple typing sheme analogous to the stru-tural omponent of our spatial logi. Our ambitious aim is to ahieve a level ofunderstanding of query languages for semi-strutured data whih rivals that oflanguages assoiated with the relational model.Referenes[ABS00℄ S. Abiteboul, P. Buneman, and D. Suiu. Data on the Web. Morgan Kauf-mann, 2000.[BDHS96℄ P. Buneman, S. Davidson, G. Hillebrand, and D. Suiu. A query lan-guage and optimization tehniques for unstrutured data. In SIGMOD,LNCS 2044, pages 505{515, 1996.[Cai99℄ L. Caires. A Model for Delarative Programming and Spei�ation with Con-urreny and Mobility. PhD thesis, University of Lisbon, 1999.[CC01℄ L. Caires and L. Cardelli. A spatial logi for onurreny (part 1). In TACS,LNCS 2215. Springer, 2001. Journal paper to be in Information and Comp.[CG00℄ L. Cardelli and A. Gordon. Anytime, anywhere: Modal logis for mobileambients. In POPL. ACM, 2000.[CG01a℄ L. Cardelli and G. Ghelli. A query language based on the ambient logi. InESOP/ETAPS, LNCS 2028. Springer, 2001.[CG01b℄ L. Cardelli and A. Gordon. Logial properties of name restrition. In TLCA,LNCS 2044. Springer, 2001.[CGG01℄ L. Cardelli, P. Gardner, and G. Ghelli. A spatial logi for querying graphs.Fuller version found at http://www.do.i.a.uk/~pg, 2001.[CM90℄ M. Consens and A. Mendelzon. Graphlog: a visual formalism for real lifereursion. In Priniples of Database Systems, pages 404{416. ACM, 1990.[CMR94℄ A. Corradini, U. Montanari, and F. Rossi. An abstrat mahine for onur-rent modular systems: Charm. TCS, 122:165{200, 1994.[Cou97℄ Bruno Courelle. The expression of graph properties and graph transfor-mations in monadi seond-order logi. Graph grammars and omputing bygraph transformations, 1:313{400, 1997.[FFK+97℄ M. Fernandez, D. Floresu, J. Kang, A. Levy, and D. Suiu. Strudel: Aweb-site management system. In SIGMOD Management of Data, 1997.[GW00℄ P. Gardner and L. Wishik. Expliit fusions. MFCS, LNCS 1893, 2000.Journal version submitted to Theoretial Computer Siene.[HP01℄ H. Hosoya and B. Piere. Regular expression pattern mathing for xml. InPOPL. ACM, 2001.[IO01℄ S. Ishtiaq and P. O'Hearn. Bi as an assertion language for mutable datastrutures. In POPL, 664. ACM, 2001.[OP99℄ P. O'Hearn and D. Pym. The logi of bunhed impliations. Bulletin ofSymboli Logi, 5(2):215{244, 1999.[Rey00℄ J.C. Reynolds. Intuitionisti reasoning about shared mutable data struture.Millenial Perspetives in Computer Siene, Palgrove, 2000.

