
A Calculus for Overloaded Functions with Subtyping(extended abstract)Giuseppe CastagnaDipartimento d'Informatica - PisaLIENS(CNRS)-DMIe-mail: castagna@dmi.ens.fr Giorgio GhelliDipartimento d'InformaticaCorso Italia 40, Pisa, ITALYe-mail: ghelli@di.unipi.it Giuseppe LongoLIENS(CNRS)-DMI45 rue d'Ulm, Paris, FRANCEe-mail: longo@dmi.ens.frApril 14, 1992AbstractWe present a simple extension of typed �-calculuswhere functions can be overloaded by adding di�er-ent \pieces of code". In short, the code of an over-loaded function is formed by several branches of code;the branch to execute is chosen, when the function isapplied, according to a particular selection rule whichdepends on the type of the argument. The crucialfeature of the present approach is that a subtyping re-lation is de�ned among types, such that the type of aterm generally decreases during computation, and thisfact induces a distinction between the \compile-time"type and the \run-time" type of a term. We study thecase of overloaded functions where the branch selec-tion depends on the run-time type of the argument,so that overloading cannot be eliminated by a staticanalysis of code, but is an essential feature to be dealtwith during computation. We obtain in this way atype-dependent calculus, which di�ers from the var-ious ��calculi where types do not play, essentially,any rôle during computation. We prove Con
uenceand Strong Normalization for this calculus as well asa generalized Subject-Reduction theoremThe de�nition of this calculus is driven by the un-derstanding of object-oriented features and the con-nections between our calculus and object-orientednessare extensively stressed. We show that this calculusprovides a foundation for typed object-oriented lan-guages which solves some of the problems of the stan-dard record-based approach. It also provides a type-discipline for a relevant fragment of the \core frame-work" (see [Kee89]) of CLOS.In 1992 ACM Conference on LISP and Functional Program-ming. San Francisco, June 1992.Permission of copy all or part of this material is granted pro-vided that the copies are not made or distributed for directcommercial advantage, the ACM copyright notice and the ti-tle of the publication and its date appear, and notice is giventhat copying is by permission of the Association for ComputingMachinery. To copy otherwise, or to republish requires a feeand/or speci�c permission

1 Introduction.An important distinction has been extensively usedin language theory since a couple of decades, betweenparametric (or universal) polymorphism and \ad hoc"polymorphism (see [CW85]). Both the Proof The-ory and the semantics of the �rst kind of polymor-phism have been widely and deeply investigated bymany authors (with some contribution also by two ofthe authors of the present paper), on the grounds ofearly work of Hindley, Girard, Reynolds and Milnerand developed into robust programming practice. Thesecond kind, with the notable exceptions of [WB89],[MOM90] and [Rou90], has deserved little theoreticalattention and, consequently, its very wide use has beenlittle a�ected by any comparable in
uence as the oneexerced by implicit and explicit polymorphism in pro-gramming. Probably, the name itself, \ad hoc", has adiscouraging connotation for any mathematical inves-tigation. We believe though that time is mature fora theoretical analysis, and thus a \uniform and gen-eral" one, also of this programming feature. It turnsout that the challenges it poses are non trivial: in-deed, this paper is just a preliminary step towards atheoretical universe still to be discovered and which,we claim, may also a�ect language design. We presenthere a formalismwhere functions can be overloaded byadding a di�erent \piece of code". Thus the code of anoverloaded function is formed by several branches ofcode. The branch to execute is chosen when the func-tion is applied, according to a particular selection rule.In general this rule depends on the type of the argu-ment the function is applied to. We do not present ageneral treatment for overloaded functions (this can bepartly found in [Ghe91]), but we develop a purely func-tional approach that better suits the characteristics ofobject-oriented programming. In fact, our main goalis the de�nition of a kernel functional language for thestudy of some features of object-orientedness, such assubtyping, inheritance and message-passing. Since theapproach is entirely novel, we �rst felt the need, by this1

preliminary, proof-theoretic analysis, to develop thenon trivial investigation of key functional properties.We focus thus on normalization, Church-Rosser prop-erty and \subject-reduction" (i.e. termination, consis-tency and \how types evolve during computation"), inthe setting of a truly type dependent calculus. Indeed,\type dependency" (the fact that terms and valuesmay depend on types) is the key property of the cal-culus. The various (higher order) calculi, such as Gi-rard's System F or its extensions, allow type variables,abstraction w.r.t. type variables and the application ofterms to types, but the \value" of an expression doesnot depend on the types which appear in it or, if pre-ferred, they are compiled in the same machine-code.Indeed, this \type-erasure" property plays a crucialrole in the basic proof-theoretic property of these cal-culi: the normalization (cut-elimination) theorem. Inthe semantic interpretations, this essential type inde-pendence of computations is understood by the factthat the meaning of polymorphic functions is given byessentially constant functions (see [AL91]). It is clear,instead, that overloaded functions express computa-tions which depend on types, as di�erent codes maybe applied on the basis of input types. This is so invarious imperative as well as functional languages; ourmotivation, though, comes from considering overload-ing as a key feature of object-oriented programming,when methods are viewed as \global" functions. Let'stry to be more speci�c. In object-oriented languagesthe computation evolves on objects. Objects are pro-gramming items grouped in classes and possessing aninternal state that is modi�ed by sending messagesto the object. When an object receives a messageit invokes the method (i.e., code or procedure) as-sociated to that message. The association betweenmethods and messages is described by the class theobject belongs to. Thus objects are implemented aspairs (internal state , class name). Now, thereare two possible ways to implement message-passing:the �rst is to consider classes as arrays that associateto each message a method. Therefore when a mes-sage m is passed to an object obj then the methodassociated to m in the class of obj is looked for. Aconceptual simpli�cation can be made by substitutingthe �eld class name in the implementation of an ob-ject by the array of the corresponding class: in thisapproach, an object has the form shown in Figure 1:objectinternal statemessage 1 method 1... ...message n method nFigure 1: Objects as records

This implementation has been extensively studiedand corresponds to the \objects as records" analogyof [Car88] (see also [CL90]). The second way to im-plement message-passing, as shown in Figure 2, isto consider messages as names of overloaded func-tions: according to the class (or more generally, thetype) of the object the message is passed to, a dif-ferent method is chosen (this is the approach usedin CLOS: see [DG87]). By this, in a sense, we in-message iclass name 1 method 1... ...class name n method nFigure 2: Messages as overloaded functionsverse the previous situation: instead of passing mes-sages to objects we now pass objects to messages. Ob-jects are still implemented by pairs (internal state, class name) and become in this way arguments ofoverloaded functions. This di�erent approach seemsto have, at the �rst sight, some advantages w.r.t. the\objects as records" paradigm, at least in a proof-theoretical study of the typed case. Indeed in the �rstapproach objects carry methods with them; thus thetypes of the objects contain also the functionality ofthe value. This causes some problems and requiresan excessive use of recursion. On the contrary, inthe overloading approach, the type of an object is nolonger blurred by functional types. The functional-ity is fully expressed by methods as global, overloadedfunctions. Of course other problems arise, especially inthe modeling of the encapsulation of the state, thoughthey do not seem overwhelming. On the other hand,the full expressiveness of records is recovered, as recordtypes and values are derivable notions in our approach.Brie
y, in this paper we develop a simple extensionof the typed ��calculus meant to formalize the be-havior of overloaded functions in a type discipline thatuses also subtyping. The basic idea is that an over-loaded function consists of a �nite collection of ordi-nary functions that are stuck together to form the dif-ferent branches. Its type will be the set of the types ofits branches. Therefore we add to ordinary ��terms,new terms such as (M&N) that represents the over-loaded function composed by two branches M and N(more branches can be added by iterating the & asfor (M1&M2& . . .&Mn)). In the following we will calla term of the form (M&N) an \&-term". The syn-tax of types will be enriched by �nite sets of arrowtypes fV 01 ! V 001 ; . . . ; V 0n ! V 00n g (sometimes denotedby fV 0i ! V 00i gi2I), where every arrow designates thetype of a di�erent branch. Overloaded types, though,must satisfy relevant consistency conditions, which,among others, take care, in our view, of the long-

standing debate concerning the use of covariance orcontravariance of the arrow type in its left argument.The subtyping relation introduced is a complex (butexpressive) feature of the calculus: it allows multiplechoices, as a type may be a subtype of several typesand subtyping is used to chose branches of overloadedterms.In section 2 we describe the combination of over-loading and subtyping and stress the advantages oftheir interaction. Section 3 presents the syntax of thesystem as well as the reduction rules. Sections 4 dealswith the crucial (and di�cult) normalization theoremand other syntactic properties. In section 5 we givesome more intuition on how our calculus �ts object-oriented programming, hinting how to implement sub-typing and message-passing by the constructs of ourcalculus. In this abstract, proofs have been entirelyomitted.2 Overloading and SubtypingOverloading by itself (i.e. without subtyping), doesnot increase the expressiveness of the language: anoverloaded function can be substituted by the appro-priate code, at compile-time; in this case, overloadingseems more a notational trick than a programmingconstruct. If combined, though, with subtyping, itbecomes a very
exible and powerful tool. The ideais that if we have an overloaded function whose nbranches have respectively type Ui ! Vi (i = 1::n)and we pass it an argument of type U , the chosenbranch j is the one that \best approximates"U , that issuch that Uj = mini2IfUijU � Uig. Now it is knownthat, in presence of a subtyping relation, the type ofa term is no longer the same during computation, butit may decrease, see [CG92]. This \shrinking of therun-time type" corresponds to the increase of infor-mation (better, of \understandability") that charac-terizes the evolving of computation. Thus the choiceof the branch can no longer be performed at compiletime since the type of the argument may change dur-ing the computation and thus the designated branchas well (and indeed we want the choice to be performedon the most informative type of the argument, that isthe one of its normal form). For this purpose, we dis-tinguish for a term two kinds of types: the static typeof a term i.e. the one which can be deduced lookingat the term before its computation, and its run-timetypes i.e. these which it will possess looking at theterm at di�erent phases of its computation. The run-time types will be used in the selection of the branchesof overloaded functions, while the static typing of aterm is enough to assure that the computation will betype-error free as stated by theorem 4.1 (note thoughthat the static type doesn't su�ce to �gure out howthe computation will evolve). To satisfy this condition

not every overloaded type should be accepted: indeed,we must require a \consistency" condition and avoidambiguity, in case multiple choices are possible. Inshort, an overloaded type fUi ! Vigi2I will be well-formed if and only if for all i; j 2 I it satis�es thefollowing conditions:Ui � Uj) Vi � Vj (1)Ui + Uj) there exists a unique h 2 Isuch that Uh = inffUi; Ujg (2)where Ui + Uj means that Ui and Uj are downwardcompatible, i.e. they have a common lower bound.Condition (1) is a consistency condition, which as-sures that during computation the type of a term mayonly decrease. In a sense, this takes care of the com-mon need for some sort of covariance of the arrow inthe practice of programming. More speci�cally if wehave a two-branched overloaded function M of typefU1 ! V1; U2 ! V2g with U2 < U1 and we pass it aterm N which has the compile-time type U1 then thecompile-time type of MN will be V1; but if the nor-mal form of N has type U2 then the run-time type ofMN will be V2 and therefore V2 < V1 must hold. Thesecond condition concerns the selection of the correctbranch: we said before that if we apply an overloadedfunction of type fUi ! Vigi2I to a term of type Uthen the selected branch has type Uj ! Vj such thatUj = mini2IfUijU � Uig; condition (2) assures theexistence and uniqueness of this branch.These restrictions have a surprisingly natural in-terpretation when we consider the connection withobject-oriented programming (see section 5).3 The �&�calculusIn this section we de�ne the extension of the typedlambda calculus we will study in the rest of the paper.We �rst de�ne a set of Pretypes and then among themwe will select those that satisfy the conditions aboveand that will constitute the types.PreTypesV :: = A jV ! V j fV 01 ! V 001 ; . . . ; V 0n ! V 00n gwhere by A we denote an atomic type.3.1 Subtyping rules.We de�ne a subtyping relation on the set of Pretypes.This relation is used to de�nes the types. The idea isthat one may start from a partial order prede�ned onatomic (pre)types and extend it to all Pretypes: therelation is obtained by adding the rules of transitiveand re
exive closure to the following ones:U2 � U1 V1 � V2U1 ! V1 � U2 ! V2

8i 2 I; 9j 2 J U 00i � U 0j and V 0j � V 00ifU 0j ! V 0j gj2J � fU 00i ! V 00i gi2IIntuitively if we consider two overloaded types U andV as a set of functional types then the second rulestates that U � V if and only if for every type in Vthere is one in U smaller than it.3.2 TypesOn the base of the previous de�nition we select thosePretypes which satisfy the conditions of section 2:1. A 2 Types2. if V1; V2 2 Types then V1 ! V2 2 Types3. if for all i; j 2 Ia. (Ui; Vi 2 Types) andb. (Ui � Uj) Vi � Vj) andc. (Ui+Uj) there is a unique h 2 Isuch that Uh = inffUi; Ujg)then fUi ! Vigi2I 2TypesThe intuition on which overloaded types are basedis the following. An overloaded type is inhabited byfunctions made out of di�erent pieces of code. Whenan overloaded function is applied to an argument, achoice is made of the code that will be actually usedin the computation. The choice is based on the typeof the argument and the condition of 3.c assures itsunicity.3.3 TermsRoughly speaking terms correspond to terms of theclassical lambda calculus plus an operation which con-catenates two di�erent branches and forms an over-loaded term. Since we want the branches of an over-loaded function to be ordered, then we construct themas customary with lists, i.e. we start by an emptyoverloaded function and add branches, concatenatedby ampersands. We also distinguish the usual appli-cation M �M of lambda-calculus from the applicationof an overloaded function M�M since they constitutetwo completely di�erent mechanisms: indeed to theformer is associated a notion of variable substitutionwhile in the latter there is the notion of selection of abranch. This is stressed also by the proof-theoreticalviewpoint where these constructors correspond to twodi�erent elimination rules. Finally, a further di�er-ence, speci�ed in the reduction rules, is that over-loaded application is associated to call by value, whichis not needed by the ordinary application. For thesame reason we must distinguish between the typeU ! V and the overloaded function type with justone branch fU ! V g.Terms M :: = xV j �xV:M jM�M j " jM&VM jM�M

The type which indexes the & is a technical trick toallow the reduction inside overloaded function, as ex-plained in [CGL92].3.4 Type checkingThe rule to type-check the calculus are shown in Table1 in the next page.As the reader will have noticed, we do not use thesubsumption rule in our presentation of the type rules.However our system enjoys the subsumption property,i.e. for any U � V and for any context C[] and termsM :Uand N :V , if C[M] is well-typed then C[N] iswell-typed too. This means that our system could bepresented using the subsumption rule. Notice, though,that with the subsumption rule the run-time type ofa term (used only in the reduction rules, to performbranch selection), should be de�ned as the minimumtype of a closed normal term,as terms would possessmany types. In our system instead one has:Theorem 3.1 Every well-typed �&�term possesses aunique type3.5 ReductionIn order to simplify the de�nition of the reduction, weconsider the types of overloaded functions as orderedsets. The order corresponds to the order in whichbranches appear, i.e. in which they are \constructed"according to the rules. Also, we will allow a reductionof the application of an overloaded function only whenits argument is in normal form. This is a crucial point.If the argument of an overloaded function is reduced,its type may change (indeed, decrease by theorem 4.1).Therefore a di�erent branch of the overloaded func-tion might be chosen. As a matter of fact, in objectoriented languages one can send messages only to ob-jects in normal form. For example, in Smalltalk theexpressionobject message1 message2 . . . messagenis evaluated as(. . . ((object message1) message2) . . . messagen)since the �rst message is passed to the object objectthe second to the object which is the result of theprevious message-passing (in SmallTalk the result ofevery message is another object) an so on, but themessage is sent after that the previous object has beencalculatedIn short, we de�ne the reduction relation > :�) (�xS :M)N >M [xS := N]�&) If N :U is closed and in normal form and Uj =minfUijU � Uig then((M1&fUi!Vigi=1::nM2)�N)>� M1�N for j < nM2 �N for j = n

[Taut] ` xV :V[! Intro] `M :V` �xU:M :U ! V[! Elim(�)] `M :U ! V ` N :W � U`M �N :V[Taut"] ` ": fg[fgIntro] `M :W1 � fUi ! Vigi�(n�1) ` N :W2 � Un ! Vn` (M&fUi!Vigi�nN): fUi ! Vigi�n[fgElim] `M : fUi ! Vigi2I ` N :U Uj = mini2IfUijU � Uig`M�N :VjTable 1: Type checking rules for the �&-calculuscontext) If M1 >M2 then(M1N) > (M2N)(NM1) > (NM2)(�xU :M1) > (�xU :M2)(M1&N) > (M2&N)(N&M1) > (N&M2)The reasons of the two restrictions in the (�&) is that,in our approach, two operations may change the typeof a term: namely, reduction and substitution. Sincewe want the type of the argument of an overloadedfunction to be �xed, we require that it is in normalform in order to avoid reductions and that it is closedin order to avoid substitutions.The intuitive operational meaning of (�&) is easilyunderstood when looking at the simple case, i.e. whenthere are as many branches as arrows in the overloadedtype. In this case, under the assumptions (and thetyping) in the rule, one has(M1& . . .&Mn)(N) >�MjNThe nested formalization above of (�&) is needed asM1 may be an application P1Q1, i.e. the \externaloperation" in M1 is application, instead of an &.3.6 Deriving recordsIn various approaches to object-oriented programmingrecords play a very important rôle. In particular,current functional treatments of object-oriented fea-tures formalize objects directly as records. Moreover,if records are not included in a calculus, the subtyp-ing relation may turn out to be quite trivial. In our

system, records can be encoded in a straightforwardway. Let L1; L2; . . . be an in�nite list of atomic types.Assume that they are isolated (i.e., for any type V ,if Li � V or V � Li, then Li = V), and introducefor each Li a constant `i:Li. It is now possible to en-code record types, record values and record selection,respectively, as follows:hh`1:V1; . . . ; `n:Vnii � fL1 ! V1; . . . ; Ln ! Vngh`1=M1; ::: ; `n=Mni� ("&�xL1:M1&:::&�xLn:Mn)(xLi 62 FV (Mi))M:` �M�`Since L1 . . .Ln are isolated, then the subtyping rulefor records is a special case of the corresponding rulefor overloaded types:V1 � U1 . . .Vk � Ukhh`1:V1; . . . ; `k:Vk; . . . ; `k+j:Vk+jii � hh`1:U1; . . . ; `k:UkiiThe type-checking rules are similarly derivable:`M1:V1 . . . `Mn:Vn` h`1 = M1; . . . ; `n = Mni: hh`1:V1; . . . ; `n:Vnii`M : hh`1:V1; . . . ; `n:Vnii`M:`i:ViFinally, the rewriting rules (�) and (recd) below arejust special cases of (�&) and (context) respectively.�) h`1 = M1; . . . ; `n =Mni:`i >Mi (0 � i � n)recd) M >M 0)M:` >M 0:`h:::` = M:::i > h:::` = M 0:::i

4 Main TheoremsIn this section we present the main theoretical resultsfor our calculus. We omit the proofs of the theoremseven if they would deserve a wider treatment in viewof the insight they can give in the understanding ofthe system; in fact the crucial properties of the over-loaded types are heavily used in these proofs which ac-tually suggested some of the latest features we addedto our calculus. Though, to this further insight of thesystem correspond many technical di�culties whosetreatment requires at least twice the space at our dis-posal here. The interested reader can refer to [CGL92]where, besides the proofs, she/he can also �nd an ex-tensive discussion on the key features of our approachsuch as the distinction between run-time types andcompile-time types, the dualism covariance vs. con-travariance and some proof-theoretical aspects withhints to the semantics of type dependencies.We start with a generalization of the subject reduc-tion theorem which states that if a term is typeablethen it can reduce only to typeable terms and theseterms have a type lesser than or equal to the type ofthe redex.Theorem 4.1 (Generalized Subject Reduction)Let M :U . If M >� N then N :U 0, where U 0 � U .This theorem is important because it states that thecomputation well-behaves w.r.t. to types.Next we have the Strong Normalization therorem.As well known, strong normalization cannot be provedby induction on terms, since �-reduction potentiallyincreases the size of the reduced term. For this reasonwe introduce, along the lines of [Mit86], a di�erentnotion of induction on typed terms, called typed in-duction, proving that every typed-inductive propertyis satis�ed by any typed term. This notion is shapedover reduction, so that some reduction related prop-erties, like strong normalization or con
uence, can beeasily proved to be typed-inductive. We entirely omitthe proof and just note that the main lemma for it,which proves that every typed-inductive property issatis�ed by any typed term, is related to the normal-ization proofs due to Tait, Girard, Mitchell and others.We had to avoid, though, the notions of saturated setand of logical relation, which do not seem to generalizeeasily to our setting. This new methodology requiredsome original technical insight.Theorem 4.2 Terms strongly normalize.Finally we can also prove the (syntactical) consis-tency of the calculusTheorem 4.3 (Church-Rosser) If M > P andM >Q then there exists N such that P >�N Q >�N .

The proof of this theorem is technically the easiestof the three since it is not di�cult to show that thecalculus is weakly Church-Rosser. Then, by the New-mann's lemma, one directly derives the Church-Rosserproperty for it. This theorem is important since as-sures that no matter how the calculus is implementedit always returns the same result. Thus it behaves ina deterministic way.5 Overloading and Object-Oriented ProgrammingWe already explained in the introduction the relationbetween object-oriented languages and our investiga-tion of overloading. We discuss here some more thisrelation: by now, it should be clear that we representclass-names as types, and methods as overloaded func-tions that, according to the type (class-name) of theirargument (the object the message is sent to), executea certain code.There exist many techniques to represent the inter-nal state of objects in this overloading-based approachto object oriented programming. Since this is not themain concern of this research, we follow a rather primi-tive technique: we suppose that a program (�&-term)may be preceded by a declaration of class types: aclass type is an atomic type, which is associated toa unique representation type, which is a record type.Two class types are in subtyping relation if this rela-tion has been explicitly declared and it is feasible, inthe sense that the respective representation types arein subtyping relation too. In other words class typesplay the role of the atomic types from which we startup, but in addition we can select �elds from a valuein a class type as if it belonged to its representationrecord type, and we have an operation classType totransform a record value r:R into a class type valuerclassType of type classType, provided that the repre-sentation type of classType is R. Class types can berepresented in our system generalizing the techniqueused to represent record types, but we will not showthis fact in detail. We use italics to distinguish classtypes from the usual types, and := to declare a classtype and to give it a name; we will use � to associate aname to a value (e.g. to a function). Thus for examplewe can declare the following class types:2DPoint := hhx : Int; y : Intii3DPoint := hhx : Int; y : Int; z : Intiiand impose that on the types 3DPoint and 2DPoint wehave the following relation 3DPoint � 2DPoint (whichis feasible since it respects the ordering of the recordtypes these class types are associated to). A simpleexample of a method for these class types is Norm.

This will be implemented by the following overloadedfunction:Norm � (�self 2DPoint:p self:x2 + self:y2& �self 3DPoint:pself:x2 + self:y2 + self:z2)whose type is f2DPoint ! Real; 3DPoint ! Realg.Indeed, this is how we implement methods, asbranches of global overloaded functions. Let us nowcarry on with our example and add some more meth-ods to have a look at what the restrictions in the for-mation of the types (see section 2), become in thiscontext.The �rst condition, i.e. covariance inside overloadedtypes, expresses the fact that a version of a methodwhich receives a more informative input returns amore informative output. Consider for example amethod that updates the internal state of an object,like the method Erase which sets to zero the x com-ponent of a point:Erase �(�self 2DPoint:hx = 0; y = self:yi2DPoint& �self 3DPoint:hx = 0; y = self:y; z = self:zi3DPoint)whose type is f2DPoint ! 2DPoint ; 3DPoint !3DPointg. Here covariance arises quite naturally.Of course in the example the notation we used isquite cumbersome and redundant since we do notpossess, in this core system, powerful operations onrecords (here, the update of a �eld) as for example in[CM91] or [Wan89].As for the second restriction it simply says that incase of multiple inheritance the methods which arein common to ancestors not related by �, must beexplicitly rede�ned. For example suppose to have alsothese de�nitionsColor := hhc : Stringii2DColPoint := hhx : Int; y : Int; c : Stringiiand that we extend the ordering on the newly de-�ned atomic types in the following (feasible) way:2DColPoint�Color and 2DColPoint�2DPoint. Thenthe following function is not legal, as formation rule3.c in section 3.2 is violated:Erase �(�self 2DPoint:hx = 0; y = self:yi2DPoint& �self 3DPoint:hx = 0; y = self:y; z = self:zi3DPoint& �self Color:hc = \white"iColor)In object oriented terms, this happens since 2DCol-Point, as a subtype of both 2DPoint and Color, heirs

the Erase method from both classes. Since there isno reason to choose one of the two methods and nogeneral way of de�ning a notion of \merging" for in-herited methods, we ask that this multiply inheritedmethod is explicitly rede�ned for 2DColPoint. Noticethat some object oriented languages do not force thisrede�nition, but use some di�erent criterion to chooseamong inherited methods, usually related to the orderin which class de�nitions appear in the source code.As discussed in [Ghe91], our rule 3.c in section 3.2can be easily substituted to model these di�erent ap-proaches to the problem of choosing between inheritedmethods, allowing a formalization and a comparison ofthese approches in a unique framework. The approachwe have chosen in this foundational study is just thecleaner and the simpler one in a context where the setof atomic types is �xed.In our approach, a correct rede�nition of the Erasemethod would be:Erase �(�self 2DPoint:hx = 0; y = self:yi2DPoint& �self 3DPoint:hx = 0; y = self:y; z = self:zi3DPoint& �self Color:hc = \white"iColor& �self 2DColPoint:hx = 0; y = self:y; c = \white"i2DColPoint)which has type:f 2DPoint ! 2DPoint;3DPoint ! 3DPoint;Color! Color;2DColPoint ! 2DColPoint gThe way we have written these methods may seemcomplicated with respect to the simplicity and modu-larity of object-oriented languages. Indeed the termsabove can be regarded as the result of a compilation(or translation) of the following higher-level object-oriented program:class 2DPointstatex:Int;y:IntmethodsNorm = sqrt(self.x^2 + self.y^2);;Erase = x <- 0;;interfaceNorm: Real;Erase: Likeselfendclassclass 3DPoint is 2DPoint andstatez:Int

methodsNorm = sqrt(self.x^2+self.y^2+self.z);;interfaceNorm: Realendclassclass Colorstatec:StringmethodsErase = c <- "white";;interfaceErase: Likeselfendclassclass 2DColPoint is Color, 2DPoint andmethodsErase = x <- 0; c <- "white";;endclassAs for inheritance, note that this crucial feature ofobject-oriented programming is implemented here bythe use of branch selection and code reusing. Recallnow that, in our approach, the code of methods iscentralized in the overloaded functions, as \global"functions, instead of being duplicated in every object,as the \objects as records" analogy seems to suggest.Then, when a message is sent to a receiver (in ourlanguage: an overloaded function is applied to an ar-gument) exactly the code (the branch) de�ned in thesuperclass (supertype) of the class (the type) of theinput is executed.Thus, inheritance relies �rst on the fact that, whenan overloaded function is applied to an argument, thebranch selected is the minfUijU � Uig, where U isthe class (type) of the argument. If this minimumis exactly U , this means that the receiver uses themethod that has been de�ned in its class; otherwise,i.e. if this minimum is strictly greater, then the re-ceiver uses the method that its class, U , has inher-ited from this minimum (a superclass); in other terms,the code written for the class which resulted to bethe minimum, is reused by the objects of the classU1. Consider, say, the type 2DColPoint and send themessage Norm to it. Then the branch selected is theone de�ned for 2DPoint. Indeed, Norm: f2DPoint !Real; 3DPoint ! Realg and the minimum type amongthose types greater than 2DColorPoint is 2DPoint;thus the branch selected is exactly the one which hasbeen de�ned for 2DPoint's.1Of course, real code-sharing depends on the implementa-tion; in the previous example, when de�ning the class 2DCol-Point, the overloaded function Erase does not need to be com-pletely rede�ned, as the new two branches are appended to theexisting code

By this, we may say that inheritance is branch se-lection and code-reusing.It is well known that problems arise when, in ex-amples as the ones above, one tries to de�ne a bi-nary method like Equal. Let us see what happens inthe \objects as records" analogy: if we add a methodEqual to 2DPoint and 3DPoint then, in the notationtypical of formalisms built around this analogy, we ob-tain the following recursive record types (we forget theother methods):2DEPoint �hhx : Int; y : Int;Equal : 2DEPoint! Boolii3DEPoint �hhx : Int; y : Int; z : Int;Equal : 3DEPoint! Booliiand in this case the two types are not comparable be-cause of the contravariance of the arrow type in Equal :since one would expect 2DEPoint to be larger, asrecord, than 3DEPoint, the type at the left of theouter arrow in 2DEPoint should be larger, impossi-ble by contravariance.2 By the way, this is not to beconsidered a
aw in the system but a desirable prop-erty, since a subtyping relation between the two typescould cause a run-time type error (see [CL91] for anexample). The problem with the \object as record"analogy is that there is no way to write a method asEqual and compare, by subtyping, the two classes.Our system is essentially more
exible, in this case.Indeed if we set 3DPoint�2DPoint then an equalityfunction,with type:Equal: f2DPoint! (2DPoint ! Bool);3DPoint ! (3DPoint ! Bool)gwould not be well-typed in our system either, since3DPoint � 2DPoint while 2DPoint ! Bool �3DPoint ! Bool. This expresses the fact that a com-parison function cannot be chosen only on the basis ofthe type of the �rst argument. In our system insteadwe can write an equality function where the code ischosen on the basis of both argumentsEqual � (�(p; q)2DPoint�2DPoint: (p:x = q:x)AND(p:y = q:y)& �(p; q)3DPoint�3DPoint:(p:x = q:x)AND(p:y = q:y)AND(p:z = q:z))the function above has type:2Recursive types should be considered as denotations fortheir in�nite expansion, and an in�nite type is a subtype ofanother one when all the �nite approximation of the �rst oneare subtypes of the corresponding �nite approximation of thesecond one; see [AC90].A better notation for the types above would have been2DEPoint � �thhx : Int; y : Int;Equal : t ! Boolii and3DEPoint � �shhx : Int;y : Int; z : Int;Equal : s! Boolii

f(2DPoint � 2DPoint)! Bool;(3DPoint � 3DPoint)! Boolgwhich is well formed3.In presence of a subtyping relation, the covarianceversus the contravariance of the arrow type, w.r.t.the left argument (domain), is a delicate and classicaldebate. Semantically (categorically) oriented peoplehave no doubt: the hom-functor is contravariant in the�rst argument. Moreover, this nicely �ts with typedmodels constructed over type-free universes, wheretypes are subsets or subrelations of the type-free struc-ture and type-free terms model runtime computations.Also the common sense of the type-checking suggestscontravariance: if we consider one type subtype ofanother if and only if all expressions of the formertype can be used in the place of expressions of thelatter, then type-error free computations can be ob-tained only if contravariance is used for arrow types.However, practitioners often have a di�erent attitude.In OOP, in particular, the \overriding" of a methodby one, say, with a smaller domain (input type) leadsto a smaller codomain (output type), in the spirit ofa \preservation of information". Indeed, in our ap-proach, we take care of both view points, as they areboth correct, when viewed in the \right" frame.As a matter of fact, our general arrow types (thetypes of ordinary functions) are contravariant in the�rst argument, as required by common sense andmathematical meaning. However, the families of ar-row types which are glued together in overloaded typesform covariant collections, by our conditions on theformation of these types (see 3.2). Besides the justi-�cation of this at the end of section 2, consider, say,the practice of overriding. Roughly, the implementa-tion of a method in a superclass is substituted witha more speci�c implementation in a subclass. For ex-ample, the \+" operation, on di�erent types, may begiven by two di�erent implementations: one imple-mentation of type Int � Int ! Int , the other of typeReal�Real ! Real. In our approach, we can glue theseimplementations together in a unique global method,exactly because their types satisfy the required covari-ance condition.We have already noticed that part of the expres-sive power of our system derives from the ability ofchoosing one implementation on the basis of the typesof many arguments. This ability makes it possibleeven to decide explicitly how to implement \mixedbinary operations". For example, besides implement-ing \pure" equality between 2DPoint 's and between3DPoint 's, we can also decide how we should compare3This is not surprisingas, even if the types of the two versionsof equal are componentwise isomorphic, in general isomorphismsof types do not preserve subtyping: an iso may be a ratherinvolved operation which has nothing to do with inheritance orrelated matters

a 2DPoint and a 3DPoint, as below:Equal �(�(p; q)2DPoint�2DPoint: :::& �(p; q)3DPoint�3DPoint: :::& �(p; q)2DPoint�3DPoint:(p:x = q:x)AND(p:y = q:y)& �(p; q)3DPoint�2DPoint:(p:x = q:x)AND(p:y = q:y)AND(p:z = 0))The ability to choose a method on the basis of moreobject parameters is called, in object oriented jargon,multiple dispatch.We conclude this brief excursion in the object ori-ented world with a hint on the use of coercions. Inobject oriented programming a mechanism is often of-fered to choose a speci�c implementation for a method;the super identi�er can be used inside method de�ni-tions to refer to the implementation of a method in anancestor. To allow choosing a speci�c implementationfor a method we o�er a \run-time coercion" operatorwhich changes the run-time type of an object, so thatto get the Norm of a three-dimensional pointM as if itwhere a two-dimensional one, the following expressioncan be used: Norm�(coerce 2DPoint(M))These run-time coercions are di�erent from the onesused in [BL90, CG92] since they are not used onlyto change the type of expressions but their run-timebehavior too. Note that the use of coercions is more
exible than super as modelled in [CHC90, Mit90]since it is possible to remount farther than the directancestor, and it can be used everywhere and not onlyinside method de�nitions 4. Furthermore, in a forth-coming paper we will show how, by using coercions,it is possible to encode the powerful calculi on recordvalues presented in [CM91] and [Wan87].Finally a pointer must be given to CLOS sinceour system provides a possible type-discipline fora fragment of this language including generic func-tions formed by primary multi-methods and whosedispatch never uses the Class Precedence List (see[DG87, Kee89]).6 Conclusion: intersections,products and their semanticsThis work is just the starting point of a new type dis-cipline to be more extensively explored. We tried to4This is not the exact behavior of super in object orientedlanguages, since in oo-languages the branch selected by superworks on the object which received the message, while in ourcase it works on a coercion of that object. This topic indeeddeserves further work

present our motivations in the introduction, by stress-ing the need to found also the so called \ad hoc" poly-morphism onto decent mathematical grounds, in par-ticular in view of its role in the understanding of someobject-oriented features. Reference has been given tothe work we are aware of in the subject, which, bythe way, has an entirely di�erent perspective. Oneshould also quote possible connections to other typedisciplines, in particular the intersection types, origi-nated in [CDCV81]. Indeed, at �rst glance, an over-loaded type, in our sense, may seem an intersectionof types: recent applications of intersection types in[Pie90] and in the programming language Forsythe,may suggest this analogy. However, this is not so. Aterm living in an intersection type loses the type in-formation: semantically, from an intersection of types(sets), one cannot recover the collection of types (sets)which form the intersection nor the value of a term inan intersection may depend on a speci�c (input) type.This is a crucial point for our approach, where valuesdepend on types (of inputs), and makes its semanticschallenging and worth exploring. Note that \terms de-pending on types" is a novel and entirely di�erent con-cept from \types depending on terms", as described inthe (�rst order) types of Martin-L�of type theory or ofthe Calculus of Constructions.Further work should also lead to a detailed investi-gation of \compile-time vs. run-time" types. In thecomplete version of this paper, [CGL92], we proposea simple view of this \dualism", which �ts our ap-proach. More should be said, though, in particularin connection with subtyping, coercions etc., i.e. withthe various ways of dealing with \types evolving dur-ing computations".As for the use of recursion, surely a very importanttool for smooth programming practice, we believe thatthe theoretic investigation of complex issues, like this,should be made into two steps, if possible. First, ana-lyze type disciplines were some \unshakable grounds"can be set: following the analogy \types as propo-sitions" in �-calculus, this means consistency proofs,via normalization, say, and related facts, as we triedto do here. Then, if everything works �ne, add recur-sion, when really needed for computations, both fortypes and terms. This is another \methodological"point which distinguishes our approach to the currenttheoretical treatments of object-oriented features.Acknowledgments. G. Castagna would like tothank Maribel Fern�andez for her comments on an earlydraft and Roberto Di Cosmo for his help in the workand patience in sharing an o�ce. A very special thankto Franca and Nico, too.

References[AC90] R. Amadio and L. Cardelli. Subtyping Re-cursive Types. Technical Report, DigitalSystem Research Center, August 1990.[AL91] A. Asperti and G. Longo. Categories,Types and Structures: An Introduction toCategory Theory for the Working Com-puter Scientist. MIT-Press, 1991.[BL90] K.B. Bruce and G. Longo. A modest modelof records, inheritance and bounded quan-ti�cation. Information and Computation,87(1/2):196{240, 1990. A �rst version canbe found in 3rd Ann. Symp. on Logic inComputer Science, 1988.[Car88] Luca Cardelli. A semantics of multiple in-heritance. Information and Computation,76:138{164, 1988. A �rst version can befound in Semantics of Data Types, LNCS173, 51-67, Springer-Verlag, 1984.[CDCV81] M. Coppo, M. Denzani-Ciancaglini, and B.Venneri. Functional characters of solvableterms. Zeit. Math. Logik, 27:45{58, 1981.[CG92] P. L. Curien and G. Ghelli. Coherence ofsubsumption. Mathematical Structures inComputer Science, 2(1), 1992.[CGL92] G. Castagna, G. Ghelli, and G. Longo. Acalculus for overloaded functions with sub-typing. Technical Report 92-4, Laboratoired'Informatique, Ecole Normale Sup�erieure- Paris, February 1992.[CHC90] W.R. Cook, W.L. Hill, and P.S. Canning.Inheritance is not subtyping. 17th Ann.ACM Symp. on Principles of Program-ming Languages, January 1990.[CL90] L. Cardelli and G. Longo. A semantic ba-sis for Quest. Technical Report, DigitalSystem Research Center, February 1990.LISP and FP, Nice, July 1990; Journal ofFunctional Programming, 1(4):417-458 (toappear).[CL91] G. Castagna and G. Longo. From in-heritance to Quest's type theory. InEcole Jeunes Chercheurs du GRECO deProgrammation, Sophia-Antipolis (Nice),April 1991.[CM91] L. Cardelli and J.C. Mitchell. Operationson records. Mathematical Structures inComputer Science, 1(1):3{48, 1991.

[CW85] L. Cardelli and P.Wegner. On understand-ing types, data abstraction and polymor-phism. Computing Surveys, 17(4):471{522,December 1985.[DG87] L.G. DeMichiel and R.P. Gabriel. Com-mon lisp object system overview. In Proc.of ECOOP '87 European Conference onObject Oriented Programming, 1987.[Ghe91] G. Ghelli. A static type system for messagepassing. In Proc. of OOPSLA '91, 1991.[Kee89] S.K. Keene. Object Oriented Programmingin Common Lisp: A Programming Guideto CLOS. Addison-Wesley, 1989.[Mit86] J. C. Mitchell. A type inference approachto reduction properties and semantics ofpolymorphic expressions. In ACM Con-ference on LISP and Functional Program-ming (LFP), pages 308{319, 1986.[Mit90] J.C. Mitchell. Toward a typed foundationfor method specialization and inheritance.17th Ann. ACM Symp. on Principles ofProgramming Languages, January 1990.[MOM90] N. Mart��-Oliet and J. Meseguer. Inclu-sions and Subtypes. Technical Report, SRIInternational, Computer Science Labora-tory, December 1990.[Pie90] B. Pierce. Intersection and Union Types.Technical Report, Carnegie Mellon Uni-versity, 1990.[Rou90] F. Rouaix. ALCOOL-90, Typage de la sur-charge dans un langage fonctionnel. PhDthesis, Universit�e PARIS VII, December1990.[Wan87] Mitchell Wand. Complete type inferencefor simple objects. In 2nd Ann. Symp. onLogic in Computer Science, 1987.[Wan89] Mitchell Wand. Type inference for recordconcatenation and multiple inheritance. In4th Ann. Symp. on Logic in Computer Sci-ence, 1989.[WB89] Philip Wadler and Stephen Blott. Howto make \ad-hoc" polymorphism less \ad-hoc". In 16th Ann. ACM Symp. on Princi-ples of Programming Languages, pages 60{76, 1989.

