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Abstract

We study subtype checking for recursive types in system kernel Fun, a typed λ-
calculus with subtyping and bounded second-order polymorphism. Along the lines
of [AC93], we define a subtype relation over kernel Fun recursive types, and prove
it to be transitive. We then show that the natural extension of the algorithm in-
troduced in [AC93] to compare first-order recursive types yields a non complete
algorithm. Finally, we prove the completeness and correctness of a different algo-
rithm, which lends itself to efficient implementations.

Key words: type theory and type systems, subtyping, recursive types, kernel Fun.

1 Introduction

1.1 Results

Recursive types are supported by all typed languages, since they are needed
to define fundamental data structures, such as lists and trees, and occur in
common programming patterns, such as the subject-observer [Cop].

Two different approaches to recursive types have been studied in the litera-
ture. Given a recursive definition let rec X = T [X], the strong (or equality
based) approach makes X equal to T [X] ([Nel91, AC93]), while the weak (iso-
morphism based) approach ([GMW79, Gun92]) only gives the programmer a
pair of functions foldT [X]: T [X] → X and unfoldT [X]: X → T [X]. The weak
approach makes type and subtype checking very easy. The strong approach



is easier for programmers to use, but makes subtype checking much more
challenging, and is the one we study in this paper.

The combination of subtyping and recursive types has a significant practical
relevance. Both notions appear in every typed object-oriented language, and
are even useful for the compilation of languages that do not have a subtype
relation (as in the ML to JavaVM compilation project at Persimmon IT,
where subtyping between strongly recursive types is used in the intermediate
language for optimization purposes [Ken98, BKR98]).

In [AC93] Amadio and Cardelli studied the problem of defining and checking
a subtype relation between first-order strongly recursive types. In that paper
they defined a subtyping algorithm which is sound and complete with respect
to several equivalent axiomatizations of the subtype relation.

In this paper we study the integration of strong recursion in a second-order
type system with subtyping. For this purpose we refer to system kernel Fun,
an abstract version of Fun [CW85], a language that combines subtyping with
parametric polymorphism, and that allows the definition of bounded quanti-
fied types, i.e. polymorphic types whose quantifier ranges over a set of subtypes
of a given type. Languages of the Fun family, with their extensions, were the
first foundational tools used to model object-oriented languages with expres-
sive and strong types (see, for example, [AC96, BCP96, DT88, FM96, Ghe91,
GM94]). Although most current languages are based on some variant of type-
comparison by name, the structural approach to type-comparison that has
been pursued by the type-theoretical community has some advantages, espe-
cially in the context of open systems [AC93], where the structural approach
allows type checking to be performed independently of the particular environ-
ment where data and programs migrate. Moreover, the study of the structural
approach lays the foundations for a full understanding of comparison by name.

The main results of this paper are:

• We define a subtype relation over recursive kernel Fun, and we prove that
this subtype relation is transitive; transitivity is the key property needed to
prove that ‘well-typed programs do not go wrong’.

• We define an algorithm to check this subtype relation, and we prove that it
is correct and complete. The algorithm is not obvious, and the proof of its
correctness is very challenging.

• We show that the most natural algorithm for the same problem is incomplete
(Section 4.1), while its obvious generalization is incorrect (Section 4.2), even
if we restrict ourselves to a limited subset of system kernel Fun.

• We show that our algorithm can be implemented in an efficient way.

Our algorithm is obtained by a non-trivial extension of the first-order Amadio-
Cardelli algorithm. Their algorithm is based on the idea of keeping track of
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the pairs of compared types that are met during the subtype-checking process,
so that it can stop when the ‘same’ pair is met for the second time. We show
that the obvious extension of their algorithm to kernel Fun fails to be com-
plete when ‘sameness’ is generalized to α-equivalence (or, even worse, simply
syntactical equality), and it fails to be correct when sameness is generalized
to a quite natural notion of ‘similarity’. However, we obtain a correct and
complete algorithm if we generalize sameness to this similarity relation, but
stop execution only when a similar pair is met for the third time.

In this study we do not examine the complexity of our algorithm. We know
that it may have an exponential behavior [Ghe96], and we suspect it may be
made polynomial, but in this paper this will remain an open issue.

1.2 Related Work

The problem of subtyping first-order recursive types was first addressed by
Amadio and Cardelli in [AC93], where they defined a subtype relation over
recursive types, and a sound and complete subtyping algorithm. In [KPS93] a
more efficient subtyping algorithm is described.

In [BH97] another possible axiomatization of the subtype relation between
first-order recursive types is presented, which is equivalent to the one de-
fined in [AC93]. The main difference is that while in [BH97] the subtype rela-
tion is defined by means of deduction rules that are interpreted coinductively,
in [AC93] the subtype relation is based on a notion of preorder over infinite
trees representing the infinite unfolding of recursive types.

In this paper we define the subtype relation between recursive types by means
of deduction rules, as in [BH97], but we generalize that work to second-order
systems. This kind of definition lends itself to be transformed into a set of rules
that define a subtyping checking algorithm. Moreover, the strong similarity
between the rules that define the subtype relation and the rules that define
the subtyping algorithm facilitates the proofs of completeness and soundness
of the latter with respect to the former.

In [GLP00] an introduction to recursive types and subtyping algorithms is
presented; in particular, the authors highlight the connection between coin-
ductive structures, used to deal with recursion, and the framework of non-
recursive types and ordinary subtyping. In [AF96], first-order recursive types
are studied from a syntactic perspective and the two possible approaches to
recursion, equality-based and isomorphism-based, are compared. In particular,
the equivalence between the two approaches is proved.

Turning now to papers dealing with the subtype relation for recursive types
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in second-order systems, a negative result was given in [Ghe93]: any attempt
to extend system F≤ [Ghe90] with recursive types leads to the definition of
a non conservative extension of the system. This is due to the fact that the
inductive and the co-inductive interpretation of the subtyping rules of F≤ yield
two different relations (and this is the main reason behind the undecidability
of subtyping in this system [Pie94, Ghe95]). Other papers where second-order
recursive types are studied do not deal with the subtype checking problem in
much depth. In [BCP96], a recursive extension of system F<:ω [Car90, CL91]
is defined, but only as a tool to compare different models of object-oriented
languages. Hence, the algorithmical aspects of the subtyping problem are not
considered, and the system defined is far less powerful than our extension
of the system in [AC93]. The extension of kernel Fun with recursive types
is studied in [Car89] from a semantical point of view, and it is proved that
extending the system with recursive types is consistent.

To our knowledge, the extended abstract of this paper published in [CG99]
was the first paper to address the problem of subtype checking second-order
recursive types, i.e. how to actually check that two such types are in the
subtype relation. This paper extends that abstract in that:

• we present here, for the first time, the proof of all our results, which con-
stitutes the main body of this paper; although the proof is complex, its
reduction to this (relatively) manageable form was the most challenging
aspect;

• we prove the transitivity of the type system we define; transitivity of sub-
typing is the key lemma in order to prove subject-reduction for kernel Fun
terms.

Building on the results of [CG99], Alan Jeffrey [Jef01] defines a subtype rela-
tion between F≤ types that conservatively extends the relation we defined on
recursive kernel Fun, and gives a characterization of this relation by means of
polar bisimulations between labeled transition systems. Based on this bisim-
ulation, he defines a subtyping algorithm for recursive F≤ that is partially
correct: if it terminates it returns the right answer. As implied by the non-
conservativity theorem of [Ghe93], Jeffrey’s system is not a conservative ex-
tension of F≤, and indeed it terminates with success over F≤ judgements that
are not provable in non-recursive F≤. In the special case of kernel Fun re-
cursive types, Jeffrey’s algorithm is correct and complete. Jeffrey’s algorithm
is more general than ours, since it deals with a subset of F≤ that is strictly
larger than kernel Fun, but is based on variable renaming and α-conversion.
Our algorithm avoids variable renaming and α-conversion, and this property,
as we explain later, is extremely important for its performance.

A different strand of research deals with a notion of subtyping where an in-
stance of a polymorphic type is a supertype of the type itself. In such a system,
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the subtyping problem for second-order languages is undecidable even when
quantification is unbounded [TU96]. We do not comment on papers in this
family since their results and techniques cannot be applied to the subtype
checking of languages in the Fun family.

1.3 Structure of the Paper

The paper is organized as follows. In Section 2 we present a recursive version of
system kernel Fun. We extend the Amadio-Cardelli first-order subtype system
to system kernel Fun, adopting the style of [BH97]: we present a set of rules
whose coinductive interpretation defines the subtype relation. In Section 3 we
introduce a new version of the coinductive rules where every type occurrence
is labeled. These labels are used both to rename types in a way that makes it
easier to test for type ‘similarity’, and also to reason about the properties of the
proofs in this type system. In Section 4 we first prove that the most natural
algorithm to solve the subtype checking problem is not complete, then we
prove that an algorithm that stops when a ‘similar’ pair is met for the second
time is not sound. Finally, we define our algorithm, which stops the third time
a similar pair is met.

In Section 5 we prove the completeness and soundness of our algorithm. In
Section 6 we prove that the subtype relation is transitive. Finally, in Section 7
we outline our conclusions and areas of future research.

2 Recursive Kernel Fun

2.1 Syntax

Here we only present the kernel Fun types, since the type and reduction rules
for terms are not affected by the introduction of recursion; for a complete
introduction to the system see [CW85, Ghe90, CG92, CMMS94].

We will use lower case letters (t, u, v, . . .) to indicate type variables, and
upper case letters (X, Y, K, . . .) for recursion variables. Types are defined as
follows:

Types T, U ::= > | t | X | µX.∀t≤T.U | µX.T → U

> is the top type, the supertype of all types. µX.∀t ≤ T.U is a universally
quantified type where the type variable t ranges over the subtypes of T and is
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bound in U . µX.T → U denotes the type of all functions from values of type
T to values of type U .

In a type µX.∀t ≤ T.U , or µX.T → U , an occurrence of X in T or in U
recursively denotes the whole type, µX.∀t≤T.U , or µX.T → U , respectively.
This means for example that, in any interpretation that respects this intuition,
the following equations must hold 1 :

µX.T = [µX.T/X] T = [[µX.T/X] T/X] T . . .

The notation [U/X] T is standard and indicates capture-free variable substi-
tution.

We consider a grammar where only function types or bounded quantified types
can be the body of a recursive type; as an alternative we may only add µX.T
to kernel Fun type language, with formation rules that forbid empty types
such as µX.X. This is mainly a stylistic choice, with no major effect on either
the power of the language or the difficulty of the problem.

Notation 2.1 Hereafter ∀t. T will be used as an abbreviation for ∀t≤>. T .

In type theory, two types that only differ in the names of their bound variables
(α-equivalent types) are usually identified. We will consider such types as
different (although one will be a subtype of another), because variable names
play a central role in our subtyping algorithm. Moreover, we require that
all variables in a single type have different names, and we say that a type
that satisfies this condition is an “R-Type” (well-formed Recursive Type).
This condition is not restrictive with respect to the usual presentation of the
system, where types are interpreted modulo α-equivalence, since every type
is α-equivalent to an R-Type. Variable uniqueness is enforced to guarantee
some good formation properties during subtype checking (Section 4.4) and to
simplify the definition of the termination conditions of our subtyping algorithm
(Section 4.3).

Definition 2.2 A type belongs to R-Types if and only if all its variables have
different names.

Definition 2.3 On R-Types we define DV(T ) and FV(T ), the defined and

1 With a notational abuse, we will also use T as a metavariable for the body ∀t ≤
T.U or T → U of a recursive type.
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free variables of T respectively, as follows:

DV(>) = ∅
DV(t) = ∅
DV(X) = ∅
DV(µX.∀t≤T ′.U ′) = {X, t} ∪DV(T ′) ∪DV(U ′)

DV(µX.T ′ → U ′) = {X} ∪DV(T ′) ∪DV(U ′)

FV(>) = ∅
FV(t) = {t}
FV(X) = {X}
FV(µX.T ′ → U ′) = (FV(T ′) ∪ FV(U ′))− {X}
FV(µX.∀t≤T ′.U ′) = (FV(T ′) ∪ (FV(U ′)− {t}))− {X}

The syntax of our system also includes the following definitions.

Pre-Judgements P ::= Γ B Env | Γ B T Type | Π B T ≤ U

Judgements J ::= Γ ` Env | Γ ` T Type | Π ` T ≤ U

Bi-Environments Π ::= () | Π, (t, u)≤(T, U) | Π, (X =T, Y =U)

Environments Γ ::= () | Γ, t≤T | Γ, X =T

Following [Ghe96], in our system we distinguish between pre-judgements and
judgements. Pre-judgements represent the input for the subtype and good
formation checking process; a judgement indicates that the corresponding pre-
judgement holds.

The main judgement is Π ` T ≤ U , stating that, with respect to the bi-
environment Π, T is a subtype of U . The corresponding pre-judgement is
Π B T ≤ U .

In Π B T ≤ U and Π ` T ≤ U the environment Π defines (i.e. binds) type
and recursion variables occurring free in T and U . In particular, it contains
assumptions of shape (t, u) ≤ (T ′, U ′). Given Π B T ≤ U , an assumption
(t, u) ≤ (T ′, U ′) in Π defines t in T and u in U . Moreover, the assumption
implies that t is a subtype of u and u is a subtype of t, and indicates that T ′

and U ′ are the bounds for t and u, respectively.

The use of bi-environments in subtyping judgement is another feature we
borrow from [Ghe96]. They are adopted to reduce the need for variable re-
naming during the subtype checking process. For example, the pre-judgement
() � (∀t≤>.t) ≤ (∀u≤>.u) is proved by reducing it to

(t, u)≤(>,>) � t ≤ u
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where t and u are unified in the environment, without renaming them with
a common name. This allows us to keep the original name of type variables
during subtyping checking, thus easing similarity checking (to be defined later)
among the generated pre-judgements. As already stated, similarity checking
is crucial in our subtyping algorithm.

In Π B T ≤ U and Π ` T ≤ U , recursive variable definitions in Π have
the form (X = T ′, Y = U ′), stating that each free occurrence of X in T (Y
in U) stands for the type T ′ (the type U ′). In this case no relationship is
implied between X and Y ; definitions are paired because we only compare
one recursive type with another one.

A bi-environment Π can be seen as the composition of two distinct environ-
ments, one for each of the two compared types. For this reason we call it a
bi-environment, and use the traditional term environment for environments
Γ, which define variables one at a time. Environments appear in type well-
formation judgements Γ ` T Type, which essentially state that every variable
in T is defined and that, if the definition of a variable is in the scope of another
one, then their names differ.

The two environments into which a bi-environment Π can be divided are
respectively denoted by Left(Π) and Right(Π), defined in 2.4. We also use
the notation Π ` T, U Type as a shortcut for Left(Π) ` T Type ∧ Right(Π)
` U Type.

Definition 2.4 We consider the following operations over bi-environments.
We define them on bi-environment elements. They are lifted to the whole bi-
environment in the obvious element-wise way.

(t, t′)≤(T, T ′) (X =T, Y =T ′)

Def (t, t′) (X, Y )

Swap (t′, t)≤(T ′, T ) (Y =T ′, X =T )

Left t≤T X =T

Right t′≤T ′ Y =T ′

where (t, t′) and (X, Y ) are ordered pairs of variables.

These bi-environment operations will be used to define good formation and
subtyping rules in the next two sections. Moreover, we will use the following
operators on environments.

Definition 2.5 Γ(t) indicates the bound of t in Γ, i.e. the type T such that
t≤T ∈ Γ.
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Definition 2.6 On environments Γ, Def(Γ) denotes the set of variables de-
fined in Γ. Def(Γ) is defined in the following way

Def() = ∅
Def(Γ, t≤T ) = Def(Γ) ∪ {t}
Def(Γ, X =T ) = Def(Γ) ∪ {X}

2.2 Good Formation

The good formation rules we present strictly resemble standard ones [Ghe96,
Ghe90]. The differences are that there are new rules for recursion plus a notion
of well-formedness, which we borrow from [Ghe96], which is stronger, in some
sense, than the traditional one — in rule (T-VarForm), as discussed below.

2.2.0.1 Good formation rules

() ` Env
(Γ EmptyForm)

t 6∈ Def(Γ) Γ ` T Type

Γ, t≤T ` Env
(Γ BoundForm)

X 6∈ Def(Γ) Γ ` T Type

Γ, X =T ` Env
(Γ EqForm)

t ≤ T ∈ Γ Γ ` T Type

Γ ` t Type
(T-VarForm)

Γ ` Env

Γ ` > Type
(> Form)

X ∈ Def(Γ) Γ ` Env

Γ ` X Type
(R-VarForm)

Γ, X => ` T Type Γ, X => ` U Type

Γ ` µX.T → U Type
(→ Form)

Γ, X =>, t≤T ` U Type

Γ ` µX.∀t≤T.U Type
(∀ Form)

Note the particular definition of (T-VarForm). In the standard presentation
of the system, variable good formation is defined by the following rule:

Γ ` Env t ∈ Def(Γ)

Γ ` t Type
(WeakVarForm)

Here, we adopt a stronger good formation property. Later (Property 4.14), we
show that when this stronger well-formedness is satisfied by a pre-judgement,
then all pre-judgements created during the subtype-checking process are still

9



well-formed, without any need for renaming; this is not true with the tradi-
tional weak notion of well-formedness. For example, consider the judgement
() ` T ≤ U with T = ∀t≤ (∀u.u).∀u.t and U = ∀t′ ≤ (∀u′.u′).∀s.(∀v.v). We
have () ` T ≤ U Type if (WeakVarForm) is used instead of (T-VarForm),
but () ` T ≤ U is reduced in three steps to the ill-formed judgement (t, t′) ≤
. . . , (u, s) ≤ (>,>) ` ∀u.u ≤ ∀v.v. This judgement is ill-formed because the
type variable u is defined twice, once in the environment and once in the com-
parison. In any case, the stronger notion of good formation we adopt is not
restrictive, since every weakly well-formed pre-judgement has a corresponding
α-equivalent strongly well-formed judgement.

The combined use of bi-environments, R-Types, and strong well-formedness
will allow us to confine the use of variable renaming to subtyping rules that
unfold recursive types.

Regarding rules (→ Form) and (∀ Form) note that, in their premises, the
environment Γ is enriched with X = > instead of X = µX.∀t ≤ T.U (or
X = µX.T → U). So we just extend Γ with some information telling us that
the environment defines the recursion variable X. This is the only information
needed to check good formation.

It is not difficult to prove that these rules define a terminating good formation
checking algorithm; the proof is essentially the same as the termination proof
of kernel Fun subtype checking (see [Ghe95, KS92]).

2.3 Subtyping

In [AC93], a recursive type has been defined as a subtype of another if the
possibly infinite subtype comparison among their unfoldings does not fail. This
idea can be formalized in different ways (see [BH97, AC93]); in this paper we
formalize it by means of a set of coinductive subtyping rules, which essentially
consists of the standard algorithmical rules for kernel Fun [CW85, Ghe96]
enriched with rules to deal with recursion. Before presenting them, we make a
brief formal digression on inductive and coinductive subtyping (see [GLP00]
for a broader discussion on this topic).

Given a set of subtyping rules S, the well-formedness relation

WF = {(Π, T, U) : Π ` T, U Type}

and a generating function FS defined on subsets R of WF in the following
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way

FS(R) = {(Π, T, U) | Π ` T ≤ U is a conclusion of a ground instance r

of a rule in S and all the premises of r are in R }

we say that a relation R ⊆ WF is compatible with S if and only if R is a fixed
point of FS, i.e. R = FS(R).

The existence of both least and greatest fixed points, denoted by µFS and νFS

respectively, is guaranteed by Knaster-Tarski theorem [Tar55], provided that
FS is monotone:

R ⊆ R′ ⇒ FS(R) ⊆ FS(R′)

This will be the case for the subtyping rules we are going to introduce.

The least fixed point (inductive subtyping) only contains subtyping judge-
ments with a finite proof, while the greatest fixed point (coinductive subtyp-
ing) may also contain judgements with an infinite proof. Our subtype relation
is defined by the greatest fixed point and contains such judgements.

The Knaster-Tarski theorem provides a way to construct the greatest fixed
point as the limit:

νFS =
∞⋂
i=1

F i
S(WF)

and this means that νFS can be constructed by starting from the full relation
WF and by eliminating, at each stage i, all pre-judgements that cannot be
deduced by FS. The pre-judgements that are not eliminated at any stage are
in νFS.

We may also express this fact by saying that a pre-judgement Π�T ≤ U holds
— (Π, T, U) ∈ νFS — if either a finite or an infinite proof for it exists. This
is the interpretation of subtyping that we will adopt here (see Definition 3.25
for the formal definition). Of course this is not an “algorithmic” definition.

The set of subtyping rules we consider is defined below. We assume some famil-
iarity with kernel Fun and subtyping recursive types [CW85, AC93, GLP00].

Notation 2.7 (Type equality: T $ U) We define:

Π ` T $ U ⇔def Π ` T ≤ U ∧ Swap(Π) ` U ≤ T

Notation 2.8 (Fresh renaming: Π ` T ↑≤ U and Π ` T ≤ U ↑) In the
following, Π ` T ↑ ≤ U means that there exists an R-type T ′ which is α-
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equivalent to T , such that no variable bound in T ′ is bound in Left(Π), and
such that Π ` T ′ ≤ U . The definition of Π ` T ≤ U ↑ is analogous.

Equivalently, we can say that T ↑ denotes an arbitrary R-type obtained from
T by renaming its bound variables with variables that are fresh w.r.t. Left(Π).
Inspection of the type rules shows that the specific choice of the fresh variables
is irrelevant.

2.3.0.2 Subtyping rules

Π ` T,> Type

Π ` T ≤ >
(>≤)

(t, u) ∈ Def(Π) Π ` t, u Type

Π ` t ≤ u
(Id≤)

(t, u)≤(T ′, U ′) ∈ Π

for all X. (U 6= X) U 6= > U 6= u Π ` T ′ ≤ U

Π ` t ≤ U
(VarTrans≤)

Π′ = (Π, (X=µX.T → U, Y =µY.T ′ → U ′))

Swap(Π′) ` T ′ ≤ T Π′ ` U ≤ U ′

Π ` µX.T → U ≤ µY.T ′ → U ′ (→≤)

Π′ = (Π, (X=µX.∀t≤T.U, Y =µY.∀t′≤T ′.U ′))

Π′ ` T $ T ′ Π′, (t, t′)≤(T, T ′) ` U ≤ U ′

Π ` µX.∀t≤T.U ≤ µY.∀t′≤T ′.U ′ (∀≤)

X =T ∈ Left(Π) Π ` T ↑≤ U

Π ` X ≤ U
(LUnf≤)

for all X. (T 6= X) Y =U ∈ Right(Π) Π ` T ≤ U ↑
Π ` T ≤ Y

(RUnf≤)

Since we are interested in solving the subtype-checking problem, we will com-
ment on the rules with respect to their backward reading (where the problem
of proving the conclusion is reduced to the problem of proving the premises).
Of course, the forward reading of the same rules makes perfect sense as well.

Reflexivity of subtyping follows by rule (Id≤) and structural induction on the
type structure. (In this context, reflexivity means that Left(Π) = Right(Π)
and Π ` T, T Type imply that Π ` T ≤ T .) Moreover, instead of a general
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transitive rule

Left(Π′) = Left(Π)

Right(Π′) = Left(Π′′)

Right(Π′′) = Right(Π)

Π′ ` T ≤ V Π′′ ` V ≤ U

Π ` T ≤ U
(Trans≤)

we only impose transitivity in the specific case t ≤ U (rule (VarTrans≤)).
This is necessary since the greatest fixed point of a set of rules that includes
transitivity is the total relation (see [GLP00]). We will prove later (Section 6)
that the (VarTrans≤) rule is sufficient to make our system transitive.

When quantified types are compared, kernel Fun requires equality of bound
types and, with this restriction, the subtyping algorithm for non recursive
types always terminates [Ghe96]. In our definition of the (∀≤) rule, equality of
bound types is expressed in the premises by the mutual subtyping judgement
Π′ ` T $ T ′.

In system F≤ [Ghe90] the inclusion between quantified types is checked by the
rule:

Γ ` T ′ ≤ T Γ, t′≤T ′ ` [t′/t]U ≤ U ′

Γ ` ∀t≤T.U ≤ ∀t′≤T ′.U ′ (∀≤)F≤

where the equality of bounds required in kernel Fun is relaxed to a less re-
strictive subtyping requirement. As shown in [Ghe95], the existence of such
a rule makes the F≤ subtyping algorithm diverge when particular pairs of
types are compared. Moreover, in [Ghe93] it is shown that the existence of
such divergent pre-judgements makes it difficult to extend F≤ with recursive
types: the extended system is not conservative with respect to F≤, that is,
there are some non-provable judgements in F≤ that become provable in F≤
enriched with recursion. For this reason, in this paper we restrict our attention
to kernel Fun.

In order to guarantee well-formedness, in the premises of rules (∀≤) and (→≤)
the bi-environment is extended with the equation defining the types occurring
in the conclusion. Moreover, the (∀≤) rule unifies the type variables t and t′

of the two compared types.

The symbol T ↑in ( Unf≤) rules denotes a copy of T where every bound variable
t or Y is renamed with an arbitrary fresh name (Notation 2.8). This renaming
cannot, in general, be avoided since otherwise the backward application of
the rules would produce ill-formed pre-judgements. As an example, consider
a comparison involving the type µX.∀t≤>.t → X. After applying rules (∀≤)-
(→≤)-( Unf≤)-(∀≤) we would end up with two definitions for X and t in the
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bi-environment. In the next section we will define a systematic way to perform
the renaming T ↑.

Backward rule application is deterministic: as it is easy to check, determin-
ism is guaranteed by inequality conditions stated in rules (VarTrans≤) and
(RUnf≤); in rules (VarTrans≤) and (RUnf≤), the statement for all X. (T 6= X)
means that T is not a recursion variable. Rule determinism implies that there
is a unique proof tree (modulo α-equivalence) for every judgement.

The rules also define a reduction system on pre-judgements. P
(R)−→ P ′ indicates

that P is reduced to P ′ by backward application of a rule called (R), i.e. P ′

is one of the premises, and P is the conclusion, of a ground instance of (R).

P → P ′ means that P
(R)−→ P ′ for some (R). The symbol � indicates the

reflexive and transitive closure of →.

By rule determinism, Π ` T ≤ U if and only if Π � T ≤ U is never reduced
to a pre-judgement Π′ � T ′ ≤ U ′ that does not match the conclusion of any
rule. However, this criterion does not define a subtyping algorithm since the
unfolding rules ( Unf≤) make the system diverge whenever, for example, two
equal recursive types are compared. In Section 4.3 we see how this divergence
can be stopped.

To simplify our study we will restrict ourselves to prejudgements P that satisfy
the following conditions: exist T ′ and U ′ such that () B T ′ ≤ U ′ = P or
() B T ′ ≤ U ′ � P , and:

• T ′ and U ′ are closed types
• DV(T ′)∩ DV(U ′) = ∅.

3 Labeled Recursive Kernel Fun

In this section we introduce a labeled variant of recursive kernel Fun that we
use as a bridge between the “official” system and the algorithm we are going
to present. The labeled system is based on a set of labeled types defined below,
where α and β range over paths (elements of {0, 1}∗). Every variable tα, Xα

will contain, in its name, an occurrence label α that makes it unique in the
unfolding; moreover every leaf >, tα, and Xα of the type will also be marked
by its occurrence β, indicated as >β, tα|β, Xα|β. The full grammar is:

T, U ::= >β | tα|β | Xα|β | µXα.∀tα ≤ T.U | µXα.T → U

In Section 3.1 we give the formal definition of labels and we define a mapping
from non-labeled types to labeled types. In Section 3.2 we define the subtype
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relation over labeled recursive types.

3.1 Adding Labels

To move toward our subtype algorithm, in this section we define a specific
variable renaming technique to be used in the unfolding rules. Informally, we
interpret the repeated backward application of the subtyping rules starting
from () B T ≤ U , with T and U closed types, as a descent along the infi-
nite unfolding of T and U , and we label every type occurrence in a derived
pre-judgement with the path α which corresponds to that occurrence in the
unfolding of T or U . In this way, every different definition of a variable X (or
t) in the unfolding is associated with a different label α, and we can rename
that variable as Xα (or tα). Hence, we obtain variable uniqueness, and we also
preserve, inside tα, the original name t of the variable it comes from; we will
call such t the “face” of the labeled variable tα. Similar considerations hold
for variables Xα.

Since types are ordered binary trees, we represent paths on types by sequences
in {0, 1}∗, ranging over by small Greek letters (α, β, η, . . .); the empty path is
denoted by nil.

In the figure below we have a tree representation of the type T = µX.∀t≤
>.µY.t → X where the root is associated with a generic path α:

�
�

�
�

cα.0 A
A
A
A

cα.1>

�
�

�
�

cα
A
A
A
A µY. →

c
α.1.0

c
α.1.1

Xt

µX.∀t

According to this figure we label the type T as follows:

Tl = µXα.∀tα≤>α.0.µY α.1.(tα.1.0 → Xα.1.1)

which corresponds to the following variable renaming:

Tr = µXα.∀tα≤>.µYα.1.(tα → Xα).

where each variable has been renamed in accordance with the labeling of the
occurrence of its binder.
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Finally, we will use the following notation to represent the result of both
labeling and renaming a type (we avoid superscripts Xα for typographical
reasons).

Tr|l = µXα.∀tα≤>α.0.µYα.1.(tα|α.1.0 → Xα|α.1.1).

Observe that in a type variable occurrence tα|β, tα is the variable itself, while
β is an occurrence label; the same holds for Xα|β. Also, observe that in tα|β
the occurrence path β is related to α by ∃β′. β = α.1.β′. For an occurrence
Xα|β of a recursion variable Xα, the relation ∃β′. β = α.β′ holds.

Hereafter, for variables tα|β and Xα|β, labels α and β will be respectively called
variable label and position label.

For type variables, the position label will be used to prove some good-formation
properties of the labeled system we will define (Lemma 4.8 and Corollary 4.9).
For recursion variables, the position label will be used to perform renaming in
the unfolding rules of the labeled system (Definition 3.11): a recursion vari-
able Xα|β will be expanded to a type obtained from µXα.T (the type defining
the binding for Xα|β) by updating the root α to β and all the internal labels
accordingly, without changing variable faces.

Below, we first define a mapping from non-labeled to labeled types and then
we define renaming. Hereafter, χ will indicate either a labeled variable tα or
Xα.

To label a type T we have to specify the label β of the root, and a set L that
contains the variable label of each free variable in T . Hereafter, such a pair
will be denoted as [L, β] and called labeling pair. Labeling pairs must satisfy
a well-formedness condition, which we specify in Definition 3.4.

Definition 3.1 A labeling set L is a finite set of labeled variables:

L = {χ1, . . . , χn}

Definition 3.2 Over {0, 1}∗ we consider the relations �p (prefix ordering),
�rl (right-left ordering), and � (expansion ordering) defined as the least rela-
tions such that

(�p) ∀α, β ∈ {0, 1}∗ α �p α.β

(�rl) ∀α, β, δ ∈ {0, 1}∗ α.1.δ �rl α.0.β

(�) ∀α, β ∈ {0, 1}∗ α � β ⇔ α �p β or α �rl β

As usual, ≺p, ≺rl, ≺ will denote the irreflexive versions of the corresponding
relations.
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It is not difficult to prove that � is a reflexive, asymmetric, transitive, and
total relation over {0, 1}∗. Indeed, this total order corresponds to a depth-first
visit of a binary tree where each node is visited before its descendants and
where the right subtrees have priority over the left ones.

Definition 3.3 For each labeled type T , Erase(T ) is the type obtained by eras-
ing each label from variables and >β that occur in T . Moreover, for each set
A of labeled types, Erase∗(A) is the set {Erase(T ) | T ∈ A}.

Definition 3.4 (Labeling Pair) A pair [L, β], where L = {χ1, . . . , χn}, is a
labeling pair for T ∈R-Types if the following conditions hold, for i, j = 1 . . . n:

1. χi = tα ⇒ α.1 �p β (β is in the scope of ∀tα)

2. χi = Xα ⇒ α.0 �p β ∨ α.1 �p β (β is in the scope of µXα)

3. FV(T ) ⊆ Erase∗(L) (every free var. in T is defined in L)

4. DV(T ) ∩ Erase∗(L) = ∅ (no defined variable is defined twice)

5. i 6= j ⇒ Erase(χi) 6= Erase(χj) (variables in L have different faces)

We can now define the labeling operator [L, β] (T ).

Definition 3.5 (Labeling) Let T ∈R-Types, if [L, β] is a labeling pair for
T then [L, β] (T ) is defined by structural induction as follows:

[L, β] (>) = >β

[L, β] (t) = tα|β where tα ∈ L

[L, β] (X) = Xα|β where Xα ∈ L

[L, β] (µX.∀t≤T.T ′) = µXβ.∀tβ≤ [L′, β.0] (T ). [L′ ∪ {tβ}, β.1] (T ′)

[L, β] (µX.T → T ′) = µXβ. [L′, β.0] (T ) → [L′, β.1] (T ′)

where L′ = L ∪ {Xβ}.

It is easy to see that the labeling pairs applied to T ′ and T ′′ in cases ∀ and →
respect Definition 3.4, hence Definition 3.5 is correct.

The result of labeling R-Types is called LR-Types (Labeled Recursive Types):

Definition 3.6 (LR-Types)

LR-Types = {T | exists T ′ ∈ R-Types and a labeling pair [L, β] for T ′

such that T = [L, β] (T ′)}
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Property 3.7 (Face determinism) For any type T ∈LR-Types, if χ and χ′

both occur in T then Erase(χ) = Erase(χ′) ⇒ χ = χ′.

Proof. By induction on the structure of T and by using Erase(T )∈R-Types
and uniqueness of variable names in R-Types.2

Definition 3.8 For each type T ∈LR-Types we define DV(T ) and FV(T ), as
follows:

DV(>β) = ∅
DV(tα|β) = ∅
DV(Xα|β) = ∅
DV(µXα.∀tα≤T ′.U ′) = {Xα, tα} ∪DV(T ′) ∪DV(U ′)

DV(µXα.T ′ → U ′) = {Xα} ∪DV(T ′) ∪DV(U ′)

FV(>β) = ∅
FV(tα|β) = {tα}
FV(Xα|β) = {Xα}
FV(µXα.T ′ → U ′) = (FV(T ′) ∪ FV(U ′))− {Xα}
FV(µXα.∀tα≤T ′.U ′) = (FV(T ′) ∪ (FV(U ′)− {tα}))− {Xα}

The labeling operator allows an R-Type to be transformed into an LR-Type.
We will also use a relabeling operator that takes an LR-Type T and a label β
and updates the root label of T to β, and every other bound variable accord-
ingly; this operator does not modify the variable label of the free variables,
but only their position labels.

We now define when a pair 〈L, β〉 is a relabeling pair for T .

Notation 3.9 If T ∈LR-Types, Root(T ) is the root label of T . Formally, if

T = >β | tα|β | Xα|β | µXβ.∀tβ≤T ′.U ′ | µXβ.T ′ → U ′

then Root(T ) = β.

Definition 3.10 The pair 〈L, β〉 is a relabeling pair for T ∈LR-Types if and
only if the following conditions hold:

1. Root(T ) �p β

2. [L, β] is a labeling pair for Erase(T )

Relabeling of LR-Types is defined as follows.
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Definition 3.11 Let T ∈LR-Types, if 〈L, β〉 is a relabeling pair for T, then
〈L, β〉 (T ) is defined as follows:

〈L, β〉 (T ) = [L, β] (Erase(T ))

Lemma 3.12 If T ∈LR-Types and 〈L, β〉 is a relabeling pair for T, then
〈L, β〉 (T ) ∈LR-Types.

Proof. By definition of LR-Types and by observing that if 〈L, β〉 is a relabeling
pair for T, then [L, β] is a labeling pair for Erase(T ).2

As already stated, relabeling is used when an occurrence of a recursion vari-
able Xα|β is substituted with its body µXα.T , during subtype checking. In
this case, we will guarantee the uniqueness of variables by expanding Xα|β to
〈FV(µXα.T ), β〉 (µXα.T ).

Notation 3.13 Hereafter, 〈FV(µXα.T ), β〉 (µXα.T ) will be abbreviated with
(µXα.T )↑β.

Over LR-Types we consider the following equivalence relation.

Definition 3.14 (Similarity) For T, U ∈LR-Types, T ' U ⇔def Erase(T )
= Erase(U).

The relation T ' U (T similar to U) will be used to define the stop condition
of our subtype checking algorithm (Sections 4.2-4.3).

Definition 3.15 For each T ∈LR-Types and A, B ⊆LR-Types, we say that
T ∈' A (T is in A modulo ' relation) if Erase(T )∈ Erase∗(A), A ⊆' B if
Erase∗(A) ⊆ Erase∗(B), while A ∩' B denotes the set Erase∗(A)∩Erase∗(B).

We now give some properties concerning types in LR-Types, which will be
used in the rest of the paper to prove soundness of the subtyping algorithm
we are going to present. First we need the following definition.

Definition 3.16 For each T ∈LR-Types, SE(T ) denotes the set of all subex-
pressions of T:

SE(>β) = {>β}
SE(tα|β) = {tα|β}
SE(Xα|β) = {Xα|β}
SE(µXα.∀tα≤T.U) = {µXα.∀tα≤T.U} ∪ SE(T ) ∪ SE(U)

SE(µXα.T → U) = {µXα.T → U} ∪ SE(T ) ∪ SE(U)

Observe that for each T ∈LR-Types, SE(T ) is a finite set.
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Lemma 3.17 If T ∈LR-Types then SE(T ) ⊆LR-Types.

Lemma 3.18 If T ∈LR-Types, then for each T ′, U ′ ∈ SE(T ):

Root(T ′) �p Root(U ′) ⇔ U ′ ∈ SE(T ′)

Proof. By structural induction on T and by definition of labeling (Definition
3.5).2

Lemma 3.19 If T ∈LR-Types, then for any tβ and Xβ:

tβ ∈ FV(T ) ⇒ β ≺p Root(T ) Xβ ∈ FV(T ) ⇒ β ≺p Root(T ) (1)

tβ ∈ DV(T ) ⇒ Root(T ) �p β Xβ ∈ DV(T ) ⇒ Root(T ) �p β (2)

Proof. By structural induction on T and by definition of labeling (Definition
3.5).2

Lemma 3.20 If T ∈LR-Types, then for each T ′, U ′ ∈ SE(T ):

FV(T ′) ∩DV(U ′) 6= ∅ ⇒ T ′ ∈ SE(U ′)

Proof. Let χ ∈ FV (T ′) ∩DV(U ′), where χ = uβ or χ = Yβ; by Lemma 3.19,

Root(U ′) �p β ≺p Root(T ′);

the claim follows by Lemma 3.18.2

Lemma 3.21 If T ∈LR-Types, then for each T ′, U ′ ∈ SE(T ):

FV(T ′) ∩' DV(U ′) 6= ∅ ⇒ T ′ ∈ SE(U ′)

Proof. By hypothesis we have two variables χ and χ′ with the same face such
that χ ∈ FV(T ′) and χ′ ∈ DV(T ′) and both occur in T . By Property 3.7 (face
determinism), this implies that χ = χ′, hence FV(T ′)∩DV(U ′) 6= ∅, therefore
Lemma 3.20 can be applied.2

The lemma just proved can be generalized to the following corollary, where ∈
is substituted by ∈'.

Corollary 3.22 If T ∈LR-Types, then for each T ′, U ′∈' SE(T ):

FV(T ′) ∩' DV(U ′) 6= ∅ ⇒ T ′∈' SE(U ′)

Proof. By hypothesis there exist T ′′, U ′′ ∈ SE(T ) such that T ′′ ' T ′ and
U ′′ ' U ′ with FV(T ′′) ∩' DV(U ′′) 6= ∅. Hence, by Lemma 3.21, T ′′∈ SE(U ′′),
which implies T ′∈' SE(U ′) by T ′′ ' T ′ and U ′′ ' U ′.2
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3.2 The Labeled Subtype Relation

We are now ready to provide a precise definition of labeled recursive kernel
Fun. This system is strictly related to the one defined in Section 2. One novel
feature is variable labeling and relabeling, which is used to perform renaming
in the unfolding rules. Moreover, in this variant, when a comparison Xα|β ≤ U
or T ≤ Yν|η is met during subtype checking, this information is saved in the
bi-environment. This is only done for uniformity with the algorithmic version
of the next section, where this information will be used to stop the subtype-
checking process. In this abstract version, this information is not used.

Hereafter, TX,α will denote a type µXα.∀tα≤T ′.U ′ or µXα.T ′ → U ′, while 3

will range over ≤ and ≥; if 3 is ≤ (≥), then 3−1 is ≥ (resp., ≤).

The syntax for types, pre-judgements and judgements is as follows:

Types T, U ::= >β | tα|β | Xα|β | µXα.∀tα≤T.U

| µXα.T → U

Pre-Judgements P ::= Γ B` Env | Γ B` T Type | Π B` T ≤ U

Judgements J ::= Γ `` Env | Γ `` T Type | Π `` T ≤ U

Bi-Environments Π ::= () | Π, (tα, uβ)≤(T, U)

| Π, (Xα =TX,α, Yδ =UY,δ)

| Π, Xα|β � T | Π, T �Xα|β

Environments Γ ::= () | Γ, tα≤T | Γ, Xα =TX,α | Γ, T

The Def, Left, Right and Swap operations are now defined as in the following
table; observe that now the Swap operation, used in rule (→≤), also swaps
positions of types in assumptions Xα|β ≤ T and T ≤ Xα|β without changing
their meaning, thus yielding T ≥ Xα|β and Xα|β ≥ T , respectively.

(tα, uβ)≤(T,U) (Xα=T, Yδ=U) T3U

Def (tα, uβ) (Xα, Yδ)

Swap (uβ, tα)≤(U, T ) (Yδ=U,Xα=T ) U3−1T

Left tα≤T Xα=T T

Right uβ≤U Yδ=U U

We now present the rules that define our subtype relation over recursive types;
we will call this set of rules <∞. These rules will be interpreted coinductively
(Definition 3.25).
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Hereafter, uν|− indicates that the position label is an arbitrary label; likewise
for >−.

3.2.0.3 Subtyping rules

Π `` T,> Type

Π `` T ≤ >β

(>≤)
(tα, uν) ∈ Def(Π) Π `` tα|β, uν|η Type

Π `` tα|β ≤ uν|η
(Id≤)

(tα, uν)≤(T ′, U ′) ∈ Π

for all Xθ|δ. (U 6= Xθ|δ) U 6= uν|− U 6= >− Π `` T ′ ≤ U

Π `` tα|β ≤ U
(VarTrans≤)

Π′ = Π, (Xα=µXα.T → U, Yν=µYν .T
′ → U ′)

Swap(Π′) `` T ′ ≤ T Π′ `` U ≤ U ′

Π `` µXα.T → U ≤ µYν .T ′ → U ′ (→≤)

Π′ = Π, (Xα=µXα.∀tα≤T.U, Yν=µYν .∀uν≤T ′.U ′)

Π′ `` T $ T ′ Π′, (tα, uν)≤(T, T ′) `` U ≤ U ′

Π `` µXα.∀tα≤T.U ≤ µYν .∀uν≤T ′.U ′ (∀≤)

Xα =T ∈ Left(Π)

Π, Xα|β ≤ U `` T ↑ β ≤ U

Π `` Xα|β ≤ U
(LUnf≤)

for all Xθ|δ. (T 6= Xθ|δ) Yν =U ∈ Right(Π)

Π, T ≤ Yν|η `` T ≤ U ↑ η

Π `` T ≤ Yν|η
(RUnf≤)

Observe that the unfolding rules now use the relabeling operation to rename
the unfolded types. We will see (Corollary 4.9) that this renaming is sufficient
to avoid name clashes and to preserve well-formedness. Moreover, we will give
sufficient and non restrictive conditions that will make this renaming always
applicable (Definition 3.23). Observe that no renaming is performed by rule
(VarTrans≤).

If a pre-judgement P is reduced to P ′ by one backward application of an <∞
rule called (R), then we indicate this fact with

P
(R)−→∞ P ′
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while P �∞ P ′ means that either P = P ′ or P is reduced to P ′ by one or
more backward applications of <∞ rules.

As for the non-labeled system, rule application is made deterministic by in-
equality conditions expressed in rules (VarTrans≤) and (RUnf≤).

The restriction to closed judgement we made in Section 2 is formally extended
to the labeled system by definitions 3.23 and 3.24 .

Definition 3.23 We call Start-J the set of pre-judgements () B` T ≤ U where
T, U are closed LR-Types and:

DV(T ) ∩' DV(U) = ∅

The non restrictive condition of uniqueness of type faces will be helpful later
in simplifying the statement of some properties (see Lemma 5.19).

Definition 3.24 We define Start-J∞ as the set of all subtyping pre-judgements
that we obtain by reducing a pre-judgement in Start-J by backward applications
of <∞ rules. Formally:

Start-J∞ = {P ′ : ∃P ∈ Start-J s.t. P �∞ P ′}

The Start-J∞ pre-judgements satisfy some invariants that we prove in Sec-
tion 4.4; in particular, they are well-formed.

We now give our definition of inclusion between labeled recursive types; a
failure pre-judgement is a pre-judgement that is not equal to the conclusion
of any ground instance of any rule. We indicate with Π `∞` T ≤ U the fact
that Π `` T ≤ U holds with respect to <∞ rules.

Definition 3.25 For each pre-judgement Π B` T ≤ U in Start-J∞:

Π `∞` T ≤ U ⇔ @ a failure pre-judgement Π′ B` T ′ ≤ U ′

s.t. Π B` T ≤ U �∞ Π′ B` T ′ ≤ U ′

Since every judgement has only one rule that may be used to prove it (rule
determinism), the previous definition can be restated as: Π `∞` T ≤ U if either
a finite or an infinite proof tree exists for it.

Good formation rules for the labeled system are the following. (Γ TypeForm)
has been added to check that types coming from assumptions T � U are well
formed.
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3.2.0.4 Labeled good formation rules

() `` Env
(Γ EmptyForm)

tα 6∈ Def(Γ) Γ `` T Type

Γ, tα≤T `` Env
(Γ BoundForm)

Γ `` T Type

Γ, T `` Env
(Γ TypeForm)

Xα 6∈ Def(Γ) Γ `` T Type

Γ, Xα =T `` Env
(Γ EqForm)

tα≤T ∈ Γ Γ `` T Type

Γ `` tα|β Type
(T-VarForm)

Γ `` Env

Γ `` >β Type
(> Form)

Xα ∈ Def(Γ) Γ `` Env

Γ `` Xα|β Type
(R-VarForm)

Γ, Xα =>α `` T Type Γ, Xα =>α `` U Type

Γ `` µXα.T → U Type
(→ Form)

Γ, Xα =>α, tα≤T `` U Type

Γ `` µXα.∀tα≤T.U Type
(∀ Form)

Note that in the premise of (T-VarForm) and (R-VarForm) we ignore the
position label; as stated before, this label is only needed for renaming in the
subtyping rules.

The labeled system we have presented here is equivalent to the system defined
in Section 2, which means that the same closed judgements hold modulo la-
beling. To prove equivalence we need the following definition, where we define
equality up to variable names between R-Types and LR-Types; in the same
definition we extend this equality to non-labeled bi-environments and labeled
bi-environments.

Definition 3.26 For any injective function f from non-labeled variables to
labeled variables, we define the binary relation

.
=f ⊆ R-Types×LR-Types as

follows

> .
=f >α

t
.
=f t′α|β ⇔ f(t) = t′α

X
.
=f X ′

α|β ⇔ f(X) = X ′
α

µX.T → U
.
=f µX ′

α .T ′ → U ′ ⇔ T
.
=f T ′, U

.
=f U ′, f(X) = X ′

α

µX.∀t≤T.U
.
=f µX ′

α.∀t′α ≤T ′.U ′ ⇔ T
.
=f T ′, U

.
=f U ′, f(X) = X ′

α,

f(t) = t′α
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We extend
.
=f to bi-environments and pre-judgements as follows

()
.
=f ()

Π, (t, u)≤(T, U)
.
=f Π′, (f(t), f(u))≤(T ′, U ′) ⇔ Π

.
=f Π′, T

.
=f T ′,

U
.
=f U ′

Π, (X =T, Y =U)
.
=f Π′, (f(X)=T ′, f(Y )=U ′) ⇔ Π

.
=f Π′, T

.
=f T ′,

U
.
=f U ′

Π
.
=f Π′, T ′ � U ′ ⇔ Π

.
=f Π′,

Π′ `` T ′, U ′ Type

Π B T ≤ U
.
=f Π′ B` T ′ ≤ U ′ ⇔ Π

.
=f Π′, T

.
=f T ′,

U
.
=f U ′

Now we can prove equivalence.

Theorem 3.27 For each injective function f and each pre-judgement Π B
T ≤ U in recursive kernel Fun,

Π B T ≤ U
.
=f Π′ B` T ′ ≤ U ′ ⇒ (Π ` T ≤ U ⇔ Π′ `∞` T ′ ≤ U ′)

Proof. Observe that, for any f and Π B T ≤ U :

Π B T ≤ U
.
=f Π′ B` T ′ ≤ U ′ ∧ Π B T ≤ U

(R)−→ Π1 B T1 ≤ U1

⇒ ∃f ′, Π′
1, T

′
1, U

′
1. Π1 B T1 ≤ U1

.
=f ′ Π′

1 B` T ′
1 ≤ U ′

1 ∧

Π′ B` T ′ ≤ U ′ (R)−→∞ Π′
1 B` T ′

1 ≤ U ′
1

Π B T ≤ U
.
=f Π′ B` T ′ ≤ U ′ ∧ Π′ B` T ′ ≤ U ′ (R)−→∞ Π′

1 B` T ′
1 ≤ U ′

1

⇒ ∃f ′, Π1, T1, U1. Π1 B T1 ≤ U1
.
=f ′ Π′

1 B` T ′
1 ≤ U ′

1 ∧

Π B T ≤ U
(R)−→ Π1 B T1 ≤ U1

and observe that Π B T ≤ U
.
=f Π′ B` T ′ ≤ U ′ implies that one judgement

is a failure judgement if and only if the other one is. Then conclude that
Π′ B` T ′ ≤ U ′ is reduced to a failure judgement if and only if Π B T ≤ U is
reduced to a failure judgement as well.2

Corollary 3.28 For each closed pre-judgement () B` T ≤ U ,

() `∞` T ≤ U ⇔ () ` Erase(T ) ≤ Erase(U)

25



Corollary 3.29 For each closed pre-judgement () B T ≤ U in recursive ker-
nel Fun,

() ` T ≤ U ⇔ () `∞` [{}, α] (T ) ≤ [{}, α] (U)

4 A Subtyping Algorithm

In this section we provide an alternative set of rules for defining the subtype
relation over labeled recursive types. This set of rules defines an algorithm
since at most one rule can be selected for any pre-judgement, and the backward
application of these rules always terminates.

The rules presented in the previous section record the pairs Xα|β ≤ U or
T ≤ Yν|η in the bi-environments. Thus, following [AC93], we can use this
information to stop backward rule application when such a pair of types is
met for the second time. Due to renaming, we cannot expect exactly the same
pair to be met twice. Hence the most natural idea is to stop when we meet a
pair that matches an already met pair modulo α-renaming.

This algorithm is very inefficient because of the high cost of α-equivalence
comparison, but, prior to this study, it was regarded as the best guess for
a correct and complete algorithm. We will show in Section 4.1 that this is
not the case, and we consider this as an important, though negative, result.
This algorithm is correct, but it is not complete since there exist provable
judgements that, during subtype checking, produce infinitely many pairs that,
though in some sense “similar”, always fail to be α-equivalent to a previously
met pair.

The counterexample in Section 4.1 suggests that, in order to define a com-
plete subtyping algorithm, one may look for a more “syntactical” equivalence
relation to be used in the stop condition in place of α-equivalence. Similarity
(i.e. erasure equality ') is the first candidate for this task. Unfortunately, it is
too weak. The resulting algorithm is complete, i.e. it always terminates, but
is not correct, as shown in Section 4.2.

However, the algorithm becomes complete and correct if we use similarity but,
instead of stopping the second time we meet a pair, we wait until the same
pair is met, modulo similarity, for the third time, as formalized in Section 4.3.
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4.1 Divergence of the α-equivalence Based Algorithm

We show here that the algorithm that stops when it meets a pair that is α-
equivalent to an already met pair is incomplete, i.e. it diverges on a provable
judgement.

To define the α-equivalence based algorithm we consider the following end-rule
to be added to <∞; the resulting set of rules will be called <alg-α; α-equivalence
“'α” is defined as usual: free variables must be equal, while bound variables
can be freely renamed.

T ′ ≤ U ′ ∈ Π T 'α T ′ U 'α U ′ Π `` T, U Type

Π `` T ≤ U
(Endα

≤)

Our complete algorithm (see Section 4.3) records a pair T ≤ U only when the
unfolding rule is applied, which gives the end-rule fewer possibilities of being
applicable, but is still enough to make it complete. We show here that the
incompleteness of the α-based algorithm is not a consequence of this choice,
by showing the divergence of an algorithm that records every met pair.

To preserve determinism, we assume that the (Endα
≤) rule takes priority over

all the other ones except for the termination rules (Id≤) and (>≤). No sub-
typing is lost since (Endα

≤), (Id≤) and (>≤) are all termination rules.

The two relations
(R)−→alg-α, �alg-α are defined similarly to

(R)−→∞ and �∞. In
the <alg-α system, a prejudgement () B` T ≤ U is provable if and only if
the <alg-α backward reduction process starting from () B` T ≤ U terminates
without failing.

The () B` T ≤ U system is not complete: the stop condition expressed by
the (Endα

≤) rule does not guarantee termination, not even for <∞ provable
pre-judgements. We prove this fact by showing a <∞ provable pre-judgement
that makes the algorithm diverge.

To this end, we first fix some conventions that we will use in the proof. Here-
after we assume that:

• ∀tα.T denotes the type body ∀tα≤>.T where tα may occur free in T ;
• ∀.T denotes a type body ∀tα≤>.T where tα does not occur free in T ;
• µ.T denotes a type µXα.T where Xα does not occur free in the body T.

Moreover, for simplicity, in variables tα|β and Xα|β we omit position labels β
and only retain variable labels α. Each time a variable is renamed, new labels
are simply indicated with new names (e.g. tα is renamed in tρ with α 6= ρ).
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To simplify things, in the diverging pre-judgement we will use a type ⊥ that
is the subtype of every type, associated with the following termination rule:

Π `` ⊥β, T Type

Π `` ⊥β ≤ T
(⊥≤)

We will also use pair types µXα.T × U with the usual covariant rule, corre-
sponding to the following pair of reduction rules, where Π′′ is defined as in
rule (→≤) and where it is explicitly indicated if the reduction is to the left or
right premise.

Π B` µXα.T × U ≤ µYν .T
′ × U ′ (×≤)l

−→ alg-α Π′′ B` T ≤ T ′

Π B` µXα.T × U ≤ µYν .T
′ × U ′ (×≤)r

−→ alg-α Π′′ B` U ≤ U ′

For product types we will also use the following notation:

• T × U denotes a product type µXα.T × U where Xα does not occur free in
T × U .

Pair and bottom types make our counterexample much more readable, and we
can encode both of them in system kernel Fun, provided that ⊥ is not used
as the bound of a type variable (see Appendix C).

We can now present the diverging pre-judgement:

() B` T ≤ U

where

T = µ.∀.µXα.∀tα.(⊥× µZγ.∀.µ.∀.((⊥× tα ×Xα)× Zγ))

U = µYθ.∀uθ.µKτ .∀.((uθ ×>×Kτ )× Yθ)

Since these types are quite complex, we will split them, and will name their
parts as follows. Each name is parametrized with respect to the variables that
appear free in the corresponding type.

T = µ.∀.µXα.∀tα. (AXα,tα) AXα,tα = (⊥× µZγ.∀.µ.∀. BXα,tα,Zγ )

BXα,tα,Zγ = (CXα,tα × Zγ) CXα,tα = (⊥× tα ×Xα)

U = µYθ.∀uθ.µKτ .∀. (DYθ,uθ,Kτ ) DYθ,uθ,Kτ = (Euθ,Kτ × Yθ)

Euθ,Kτ = (uθ ×>×Kτ )
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Both types T and U are characterized by the nesting pattern µX.∀t. µZ. TX,t,Z :
a type variable is defined between two recursion variables, and the three of
them appear in the internal scope. As we will see, this binder alternation
is crucial in order to make both systems, <∞ and <alg-α, diverge, and this
divergence makes the pre-judgement provable in system <∞ and not in system
<alg-α.

The behavior of the type-checking algorithm is better explained through a
figure. Figure 1 illustrates how T and U are compared, and how they are
unfolded during the comparison. It shows how the repeated unfolding of the
two trees generates two long skeletons that have exactly the same structure,
along which the comparison goes on forever. Indeed, after six levels, similar
types are found, and similar pairs of types are subject to the application
of the same rule, producing another similar pair, and so on. There is only
one situation where similar comparisons may be reduced differently by the
subtyping rules, which is variable-to-variable comparison: uα ≤ tβ is similar
to uγ ≤ tδ, but rule (Id≤) may be applicable to the first while rule (VarTrans≤)
is applicable to the other (or vice versa), as exemplified in the next section.
But no variable-to-variable comparison is performed here, since variables are
only compared with ⊥ or with >. And no pair of compared types is ever
going to be α-similar to one that has been met before. Consider for example
the two similar pairs met at the second and eighth levels of the tree (we use
superscripts like α, ρ, etc., to distinguish among α-equivalent types that have
no free variables to write in the subscript):

Lα ≤ RYθ,uθ
i.e. µXα.∀tα. (AXα,tα) ≤ µKτ .∀. (DYθ,uθ,Kτ )

Lρ ≤ RYβ ,uβ
i.e. µXρ.∀tρ. (AXρ,tρ) ≤ µKφ.∀. (DYβ ,uβ ,Kφ

)

The comparison does not stop here, since RYθ,uθ
is not α-equivalent to RYβ ,uβ

,
because of the different sets of free variables. After a couple of steps, in the
tenth line, the right-hand-side R′ν gets rid of the free variables, and becomes α-
equivalent to R′β met at the fourth level. But, at this point, the left-hand-side
L′Xρ,tρ has acquired two free variables that make it non equivalent to L′Xα,tα .
These free variables will stay until the next repetition of the L− ≤ RY ,u pair.

We now give a more formal and detailed account of this divergence. We first
present an initial part of the infinite <alg-α reduction chain that originates
from T ≤ U .

In each reduction step we only write the last element added to the previous
bi-environment, and we assume that the current comparison is saved in the
bi-environment, without writing this down explicitly. Finally, we omit proof
branches concerning well-formedness (as already mentioned, in Lemma 4.14
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Fig. 1. How T and U are expanded and traversed

we prove that, for Start-J∞ pre-judgements, well-formedness is always guar-
anteed).

(1) () B` µ.∀.µXα.∀tα. (AXα,tα) ≤ µYθ.∀uθ.µKτ .∀. (DYθ,uθ,Kτ )

(2)
(∀≤)−→alg-α . . . (−=T , Yθ =U), (−, uθ) ≤ (>,>) B`

µXα.∀tα.(AXα,tα) ≤ µKτ .∀.(DYθ,uθ,Kτ )
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(3)
(∀≤)−→alg-α . . . (Xα =µXα.∀tα.(AXα,tα), Kτ =µKτ .∀. (DYθ,uθ,Kτ )),

(tα,−)≤ (>,>) B`

(⊥× µZγ.∀.µ.∀. (BXα,tα,Zγ )) ≤ (Euθ,Kτ × Yθ)

(4)
(×≤)r

−→ alg-α . . . (−=(⊥× µZγ.∀.µ.∀. BXα,tα,Zγ ), −=(Euθ,Kτ × Yθ)) B`

µZγ.∀.µ.∀.(BXα,tα,Zγ ) ≤ Yθ

(5)
(RUnf≤)−→ alg-α . . . B`

µZγ.∀.µ.∀.(BXα,tα,Zγ ) ≤ µYβ.∀uβ.µKϑ.∀.(Euβ ,Kϑ
× Yβ)

(6)
(∀≤)−→alg-α . . . (Zγ =µZγ.∀.µ.∀.(BXα,tα,Zγ ),

Yβ =µYβ.∀uβ.µKϑ.∀.(DYβ ,uβ ,Kϑ
)),

(−, uβ) ≤ (>,>) B`

µ.∀.(BXα,tα,Zγ ) ≤ µKϑ.∀.(Euβ ,Kϑ
× Yβ)

(7)
(∀≤)−→alg-α . . . (−=µ.∀.(BXα,tα,Zγ ), Kϑ =µKϑ.∀.(Euβ ,Kϑ

× Yβ)),

(−,−) ≤ (>,>) B`

(CXα,tα × Zγ) ≤ (Euβ ,Kϑ
× Yβ)

(8)
(×≤)l

−→ alg-α . . . (−=CXα,tα × Zγ, −=Euβ ,Kϑ
× Yβ) B`

(⊥× tα)×Xα ≤ (uβ ×>)×Kϑ

(9)
(×≤)r

−→ alg-α . . . (−=(⊥× tα)×Xα, −=(uβ ×>)×Kϑ) B`

Xα ≤ Kϑ

(10)
(LUnf≤)−→ alg-α . . . B`

µXρ.∀tρ. AXρ,tρ ≤ Kϑ

(11)
(RUnf≤)−→ alg-α . . . B` (note that this is similar but not α-equivalent to

the pre-judgement in 2, since the free variable uβ

is different from uθ)

µXρ.∀tρ. AXρ,tρ ≤ µKϕ.∀.DYβ ,uβ ,Kϕ

(12)
(∀≤)−→alg-α . . . (Xρ =µXρ.∀tρ.AXρ,tρ , Kϕ =µKϕ.∀. DYβ ,uβ ,Kϕ),

(tρ,−)≤ (>,>) B`

⊥× µZ%.∀.µ.∀. BXρ,tρ,Z% ≤ Euβ ,Kϕ × Yβ

(13)
(×≤)r

−→ alg-α . . . (−=(⊥× µZ%.∀.µ.∀. AXρ,tρ), −=(Euβ ,Kϕ × Yβ)) B`

µZ%.∀.µ.∀.BXρ,tρ,Z% ≤ Yβ

(14)
(RUnf≤)−→ alg-α . . . B`

µZ%.∀.µ.∀.BXρ,tρ,Z% ≤ µYν .∀uν .µKω.∀.(Euν ,Kω × Yν)
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(15)
(∀≤)−→alg-α . . . (Z% =∀.µ.∀.(BXρ,tρ,Z%), Yν =µYν .∀uν .µKω.∀.(Euν ,Kω × Yν),

(−, uν) ≤ (>,>) B`

µ.∀.BXρ,tρ,Z% ≤ µKω.∀.(Euν ,Kω × Yν)

(16)
(∀≤)−→alg-α . . . (−=µ.∀.(BXρ,tρ,Z%), Kω =µKω.∀.(Euν ,Kω × Yν)),

(−,−) ≤ (>,>) B`

CXρ,tρ × Z% ≤ Euν ,Kω × Yν

(17)
(×≤)l

−→ alg-α . . . (−=CXρ,tρ × Z%, −=Euν ,Kω × Yν) B`

(⊥× tρ)×Xρ ≤ (uν ×>)×Kω

(18)
(×≤)r

−→ alg-α . . . (−=((⊥× tρ)×Xρ), −=((uν ×>)×Kω)) B`

Xρ ≤ Kω

(19)
(LUnf≤)−→ alg-α . . . B`

µXκ.∀tκ. AXκ,tκ ≤ Kω

(20)
(RUnf≤)−→ alg-α . . . B`

µXκ.∀tκ. AXκ,tκ ≤ µKι.∀.DYν ,uν ,Kι

As seen in the picture, starting from the eleventh judgement, every pair of
compared types is similar to the one that has been met nine steps before.
However, it always differs in some free variables. For example, if we consider
the last nine steps, all the judgements from 12 to 17 contain a free variable tρ
that is different from the variable tα met nine steps before. Step 18 differs from
9 due to Xρ and Kω, which differ from Xα and Kϑ . Step 19 differs from 10 due
to Kω/Kϑ. Step 20 differs from 11 due to uν and Yν . No variable-to-variable
comparison is performed; hence, once the first pair of similar comparisons is
met, we know that the reduction will go on forever, with the same structure.

Remark 1 Another kind of renaming could be used in the unfolding rules.
When Xα|β is defined by µXα.T , our unfolding rule substitutes Xα|β with
(µXα.T ) ↑ β, in accordance with the meaning we gave to recursive types. It
would also be possible, however, to substitute Xα|β with just the body T ↑ β.
This alternative way of renaming corresponds to the following chain of equiv-
alences:

µX.T = µX. [T/X] T = µX. [T/X] ([T/X] T )

rather than the following chain, which we exploit:

µX.T = [µX.T /X] T = [[µX.T /X] T /X] T . . .

In this way, we would not create a new X variable. This variant has a greater
chance of meeting an already met pair, since the outermost recursive variable
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X is not renamed. We suspect that this variant is sound, but we did not prove
this fact. Anyway, this variant is still not complete. Consider our judgement:
every time we meet a pair of types that is similar to a previous one, it differs
because of the free type variables, and this difference remains if we move to the
variant algorithm. The only exceptions are the judgements in steps 18 and 19,
which only contain free recursion variables. Indeed, with the variant algorithm,
the X at step 9 would be the same as in step 18, while in the basic algorithm
they are different variables. However, the K would still be different, since a new
µK is generated every time Y is unfolded in step 9 ∗ i + 5. Hence, the variant
algorithm is not complete either. It would be interesting to try and prove the
soundness of this alternative algorithm, since it may be more convenient in
some situations. We leave this as an open issue.

4.2 The Unsoundness of a Similarity Based Algorithm

The α-equivalence based algorithm diverges since, for some couples of pairs
T, U and T ′, U ′, it fails to recognize that the second pair will behave like the
first one; it exploits a notion of ‘sameness’ that is too strict.

Hence, it is natural to consider a weaker notion of sameness, and considering
a pair to be the same as an already seen pair when the two are in fact only
similar, according to the similarity relation '. Thanks to the condition of face
uniqueness (Definition 2.2), when we meet two similar types during subtype
checking, this implies that they are “residuals” of the same subterm of the
original judgement (or that they are both >). This makes similarity quite a
strong condition, and also makes it very efficient to check. If we are able to
represent every type as a pointer to the subterm of the original judgement from
where it comes, plus, possibly, some relabeling information, then similarity can
be checked as pointer equality, which is the kind of efficiency we would need in
actual implementations. Indeed, consider that before performing a reduction
step in the subtype checking process, we have to compare the current pair
with all the pairs in Π for sameness; hence the use of equality of pointer pairs
instead of α-equivalence makes a dramatic difference.

Definition 4.1 We say that T ≤ U ∈'n Π if the bi-environment Π contains
at least n pairs T ′

1 ≤ U ′
1, . . . T

′
n ≤ U ′

n such that T ' T ′
i and U ' U ′

i , for
i = 1 . . . n. Otherwise, we say that T ≤ U 6∈'n Π.

The next algorithm we consider is characterized by the following end rule.

T ≤ U ∈'1 Π Π `` T, U Type

Π `` T ≤ U
(End1

≤)

To preserve determinism, we define (without loss of generality) that this rule
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takes priority over all the other rules except for the termination rules (Id≤)
and (>≤).

In this section, for the sake of simplicity, we still consider an algorithm that
records every met pair. It is easy to prove that our unsoundness proof still holds
if the unfolding rules are the only ones that record the pairs met (actually, in
this case the algorithm terminates only one step later, that is in step 10).

We call this new set of rules <alg-1 . They define a subtyping algorithm for
recursive types that is complete, i.e. that always terminates.

The two relations
(R)−→alg-1 , �alg-1 are defined similarly to

(R)−→∞, �∞.

In the following sections and in the proof of termination of <alg-1 rules, we
will make use of the following definition.

Definition 4.2 (TypesIn) TypesIn(Γ) is the set of types contained in Γ;
more precisely:

TypesIn(()) = ∅
TypesIn(Γ, tα≤T ) = TypesIn(Γ) ∪ {T}
TypesIn(Γ, Xα =T ) = TypesIn(Γ) ∪ {T}
TypesIn(Γ, T ) = TypesIn(Γ) ∪ {T}

To prove termination of <alg-1 rules, we also need the following lemma, where
we prove that in any <alg-1 reduction chain starting from () B` T ≤ U ∈
Start-J, all the types created are subexpressions, modulo ' equivalence, of
the initial types T and U . Hence, if we ignore labels, no new type is created
during subtype comparison.

Lemma 4.3 For each () B` T ≤ U ∈ Start-J, if

() B` T ≤ U �alg-1 Π′ B` T ′ ≤ U ′,

then one of the following two pairs of properties holds

(a)

 TypesIn(Left(Π′)) ∪ {T ′} ⊆' SE(T )

TypesIn(Right(Π′)) ∪ {U ′} ⊆' SE(U)

or

(b)

 TypesIn(Left(Π′)) ∪ {T ′} ⊆' SE(U)

TypesIn(Right(Π′)) ∪ {U ′} ⊆' SE(T )

Proof. By induction on the derivation length and by cases on the last applied
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rule; we move between (a) and (b) when we consider (∀≤) or (→≤) as the last
applied rule.2

Lemma 4.4 (Termination) For each () B` T ≤ U ∈ Start-J, the <alg-1

reduction process starting from () B` T ≤ U always terminates.

Proof. The termination condition used in the end rule does not consider labels
in the pairs that have already been met. Thus, using <alg-1 rules, the reduction
process must terminate because: a) modulo ', only subexpressions of the
initial types can be compared (Lemma 4.3); since initial types have a finite
number of subexpressions, the unfolding rules can only be applied a finite
number of times; b) termination of kernel Fun subtype checking implies that
we cannot have an infinite reduction chain with a finite number of unfolding
rule applications. If we had such an infinite reduction chain, then by starting
from the last application of an unfolding rule we could obtain a judgement
(with no recursive types) that makes the subtyping algorithm of standard
kernel Fun diverge.2

It is not difficult to prove that the <alg-1 algorithm has the same behavior as
the one in [AC93] on first-order recursive types. But, if we consider second-
order types, this algorithm is not sound with respect to the relation defined
by <∞. We prove this fact by showing a subtyping pre-judgement that holds
according to <alg-1 but is not provable in <∞.

To simplify the presentation we still exploit the conventions used in the pre-
vious section, plus the following:

• A type µXα.∀tα.T where the variable Xα does not occur free in T , will be
denoted by ∀tα.T .

The pre-judgement is () B` T ≤ U , where

T = µZα.∀tα.(µXβ.(Xβ × (tα × Zα)))

U = µ.∀uη.µYγ.((>× (uη × (µ.∀vν .Yγ)))×>)

Note that these types have the same particular nested recursion µ-∀-µ that
characterized the pre-judgement studied in the previous section.

Using <alg-1 rules, we have the following proof for our pre-judgement.

(1) () B` T ≤ U

(2)
(∀≤)−→alg-1 (Zα =T ,−=U), (tα, uη) ≤ (>,>) B`

µXβ.(Xβ × (tα × Zα))

≤ µYγ.((>× (uη × (µ.∀vρ.Yγ)))×>)
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(3)
(×≤)l

−→ alg-1 . . . (Xβ =µXβ.(Xβ × (tα × Zα)),

Y =µYγ.((>× (uη × (µ.∀vρ.Yγ)))×>)) B`

Xβ ≤ (>× (uη × (µ.∀vρ.Yγ)))

(4)
(LUnf≤)−→ alg-1 . . . Xβ ≤ (>× (uη × (µ.∀vρ.Yγ))) B`

µXϕ.(Xϕ × (tα × Zα)) ≤ (>× (uη × (µ.∀vρ.Yγ)))

(5)
(×≤)r

−→ alg-1 . . . (Xϕ =µXϕ.(Xϕ × (tα × Zα)),

−=(>× (uη × (µ.∀vρ.Yγ)))) B`

(tα × Zα) ≤ (uη × (µ.∀vρ.Yγ))

(6)
(×≤)r

−→ alg-1
2 . . . (−=(tα × Zα), −=(uη × (µ.∀vρ.Yγ)) ) B`

Zα ≤ µ.∀vρ.Yγ

(7)
(LeftUnf≤)−→ alg-1 . . . Zα ≤ µ.∀vρ.Yγ B`

µZυ.∀tυ.(µXτ .(Xτ × (tυ × Zυ))) ≤ µ.∀vρ.Yγ

(8)
(∀≤)−→alg-1 . . . (Zυ =µZυ.∀tυ.µXτ .(Xτ × (tυ × Zυ)), −=(µ.∀vρ.Yγ) ),

(tυ, vρ) ≤ (>,>) B`

µXτ .(Xτ × (tυ × Zυ)) ≤ Yγ

(9)
(RUnf≤)−→ alg-1 . . . µXτ .(Xτ × (tυ × Zυ)) ≤ Yγ B`

µXτ .(Xτ × (tυ × Zυ)) ≤

µYθ.((>× (uη × (µ.∀vø.Yθ)))×>)

successful (since a similar pair is met in 2 and hence the rule (End1
≤) can

be applied).

All the derivations not illustrated are trivially successful, so the pre-judgement
is provable according to the <alg-1 rules. However, if we consider <∞, the
reduction continues as follows.

(10).
(×≤)l

−→∞ . . . (Xτ =µXτ .(Xτ × (tυ × Zυ)),

Yθ =µYθ.((>× (uη × (µ.∀vø.Yθ)))×>)) B`

Xτ ≤ (>× (uη × (µ.∀vø.Yθ)))

(11).
(LUnf≤)−→ ∞ . . . Xτ ≤ (>× (uη × (µ.∀vø.Yθ))) B`

µXκ.(Xκ × (tυ × Zυ)) ≤ (>× (uη × (µ.∀vø.Yθ)))

2 Note that the pre-judgement in 5 is also reduced to . . . B tα ≤ uη, which is true
by (Id≤).
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(12).
(×≤)r

−→∞ . . . (Xκ =µXκ.(Xκ × (tυ × Zυ)),−=(>× (uη × (µ.∀vø.Yθ)))) B`

(tυ × Zυ) ≤ (uη × (µ.∀vø.Yθ))

(13).
(×≤)l

−→∞ . . . (−=(tυ × Zυ),−=(uη × (µ.∀vø.Yθ))) B`

tυ ≤ uη

(14).
(VarTrans≤)−→ ∞ . . . B` > ≤ uη : fail!

Note that in 13, tυ refers to the variable defined in step 8 where tυ is unified
with vρ. Then in 13 we cannot apply (Id≤) as we did after step 5, so we have
to apply (VarTrans≤), thus obtaining the failure pre-judgement shown in 14.

The above derivation shows us that, in order to define a sound stop criterion,
correct unification of type variables is the key issue. In Section 5 we will
prove that the stop conditions we propose in the next section guarantee some
properties of variable unification that imply the correctness of the resulting
algorithm.

4.3 A Sound and Complete Algorithm

We may say that the <alg-1 algorithm was too eager to terminate; had it waited
a bit longer, it would have discovered the pending failure. Indeed, we stated
that stopping when a pre-judgement is met (modulo similarity) the third time
is a sound ending criterion that defines a sound algorithm.

The rules of our sound and complete algorithm are obtained by adding two
new termination rules to the <∞ system and by modifying the unfolding rules
as follows.

Xα|β ≤ U ∈'2 Π Π `` Xα|β, U Type

Π `` Xα|β ≤ U
(LEnd≤)

T ≤ Yν|η ∈'2 Π Π `` T, Yν|η Type

Π `` T ≤ Yν|η
(REnd≤)

Xα|β ≤ U 6∈'2 Π

Xα =T ∈ Left(Π) Π, Xα|β ≤ U `` T ↑ β ≤ U

Π `` Xα|β ≤ U
(LUnf2≤)
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T ≤ Yν|η 6∈'2 Π for all Xθ|δ. (T 6= Xθ|δ)

Yν =U ∈ Right(Π) Π, T ≤ Yν|η `` T ≤ U ↑ η

Π `` T ≤ Yν|η
(RUnf2≤)

To ensure termination, the ( End≤) rules take priority over rules ( Unf2≤) and
(VarTrans≤) — we make this explicit in the first premises of the ( Unf2≤) rules
above. To preserve determinism, we also define that (>≤) has priority over
( End≤).

With this extension we have a new set of rules that we call <alg-2 and whose
backward application defines a subtyping algorithm for recursive types. We
outline the termination proof in the next section. Hereafter we will indicate
with Π `alg-2

` T ≤ U the fact that Π `` T ≤ U holds with respect to <alg-2

rules.

4.4 Termination, Invariance of Good Formation and Non Necessity of Re-
naming

In this section we prove some basic properties of systems <∞ and <alg-2 ,
namely:

• the algorithm defined by <alg-2 always terminates;
• the backward application of both <alg-2 and <∞ rules reduces a well-formed

subtyping pre-judgement to a collection of pre-judgements that are still
well-formed;

• variable renaming is not necessary in the <alg-2 and in the <∞ system.

We will show later how to transform any <alg-2 into an <∞ proof, using a
stepwise process that produces intermediate proofs where some unfoldings are
performed according to the <∞ rule, and some are stopped according to the
<alg-2 rule. For this reason we define a system <alg|∞ where both the ( Unf2≤)
and the ( Unf≤) rules can be used, and where proofs can be finite or infinite;
hence, <alg|∞ proofs are a superset of both <alg-2 and <∞ proofs. <alg|∞ induces

two relations
(R)−→alg|∞ and �alg|∞, that relate a pre-judgement to those that

can be obtained by the backward application of a rule R (
(R)−→alg|∞) or by a

sequence of zero or more rule applications (�alg|∞).

Definition 4.5 We define Start-Jalg|∞ as the set of all pre-judgements that
can be reached starting from a Start-J pre-judgement by using �alg|∞.

Of course, Start-Jalg|∞ is a superset of both Start-Jalg-2 and Start-J∞.
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4.4.1 Termination

To prove termination of <alg-2 rules, we restate Lemma 4.3 for <alg-2 and <∞
reduction chains starting from pre-judgements () B` T ≤ U ∈ Start-J.

Lemma 4.6 For each () B` T ≤ U ∈ Start-J, if

() B` T ≤ U �alg|∞ Π′ B` T ′ ≤ U ′,

then one of the following two pairs of properties holds

(a)

 TypesIn(Left(Π′)) ∪ {T ′} ⊆' SE(T )

TypesIn(Right(Π′)) ∪ {U ′} ⊆' SE(U)

or

(b)

 TypesIn(Left(Π′)) ∪ {T ′} ⊆' SE(U)

TypesIn(Right(Π′)) ∪ {U ′} ⊆' SE(T )

Proof. By induction on the derivation length and by cases on the last applied
rule; we move between (a) and (b) when we consider (∀≤) or (→≤) as the last
applied rule.2

Property 4.7 (Termination) For each () B` T ≤ U ∈ Start-J, the <alg-2

reduction process starting from () B` T ≤ U always terminates.

Proof. Use Lemma 4.6 and proceed as in Lemma 4.4.2

4.4.2 Invariance of good formation

In this section we prove that our renaming technique guarantees that the
backward application of <alg|∞ rules preserves good formation; we also prove
a couple of quite technical lemmas, like the first one below.

Lemma 4.8 For each () B` T ≤ U ∈ Start-J, if

() B` T ≤ U �alg|∞ Π′ B` T ′ ≤ U ′,

then
1. T ′, U ′ ∈LR-Types

2. FV(T ′) ⊆Def(Left(Π′)), FV(U ′) ⊆Def(Right(Π′))

3. ∀ (tα, uβ)≤(T ′′, U ′′) ∈ Π′.
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3.0 FV(T ′′) ⊆Def(Left(Π′)), FV(U ′′) ⊆Def(Right(Π′)

3.1 T ′′, U ′′ ∈ LR-Types

3.2 Root(T ′′) = α.0, Root(U ′′) = β.0

3.3 α ≺ Root(T ′), β ≺ Root(U ′)

4. ∀ (Xα =T ′′, Yβ =U ′′) ∈ Π′.

4.0 FV(T ′′) ⊆Def(Left(Π′)), FV(U ′′) ⊆Def(Right(Π′)

4.1 T ′′, U ′′ ∈ LR-Types

4.2 Root(T ′′) = α, Root(U ′′) = β

4.3 α ≺ Root(T ′), β ≺ Root(U ′)

Proof. Points 1, 2, 3 and 4 are simultaneously proved by induction on the
derivation length and by cases on the last applied rule.
The only interesting cases are (VarTrans≤) and ( Unf≤). We consider only
the proof of properties 3.3 and 4.3; the other ones are obvious. We have to
prove that if the lemma holds for Π′ B` tϑ|ν ≤ U ′ and tϑ ≤ T ′ ∈Left(Π′),
then the lemma also holds for Π′ B` T ′ ≤ U ′. To do this, we observe that, by
hypothesis, we have tϑ|ν ∈LR-Types and then ν = ϑ.1.ν ′; moreover, we have
Root(T ′) = ϑ.0 (by the induction hypothesis 3.2) and Root(tϑ|ν) = ν = ϑ.1.ν ′.
Therefore, Root(tϑ|ν) ≺rl Root(T ′), hence Root(tϑ|ν) ≺ Root(T ′). Now the
proof follows by induction hypothesis and by transitivity of ≺. Case ( Unf≤)
is similar, but ≺p is used instead of ≺rl.2

This lemma has some interesting corollaries.

Corollary 4.9 For each () B` T ≤ U ∈ Start-J, if

() B` T ≤ U �alg|∞ Π′ B` T ′ ≤ U ′,

and

α1, α2, . . . , αn−1, αn

is the sequences of the labels of the type variables defined in Left(Π′), while

β1, β2, . . . , βm−1, βm

is the sequence of recursion variables defined in Left(Π′), then

α1 ≺ α2 ≺ . . . ≺ αn−1 ≺ αn β1 ≺ β2 ≺ . . . ≺ βm−1 ≺ βm
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The same holds for Right(Π′).

Proof. By induction on the derivation length and by cases on the last applied
rule. If we suppose that the corollary holds for Π′′ B` T ′′ ≤ U ′′ such that

() B` T ≤ U �alg|∞ Π′′ B` T ′′ ≤ U ′′ (R)→ Π′ B` T ′ ≤ U ′

then the conclusion follows by 4.8 and by observing that Π′ may differ from
Π′′ only in terms of the last element inserted by the application of rule (R).2

This corollary implies that no variable is defined twice in Π′; indeed, each label
αi is different from the others.

Corollary 4.10 For each () B` T ≤ U ∈ Start-J, if

() B` T ≤ U �alg|∞ Π′ B` T ′ ≤ U ′,

then

Def(Left(Π′)) ∩DV(T ′) = ∅

Def(Right(Π′)) ∩DV(U ′) = ∅

Proof. By contradiction and using Lemma 4.8 and Lemma 3.19.2

Corollary 4.11 For each Π′ B` T ′ ≤ U ′ ∈ Start-Jalg|∞ :

1. Π′ = Π′′, (Xα =T ′′, Yβ =U ′′), Π′′′ ⇒
Xα 6∈ (Def(Left(Π′′)) ∪Def(Left(Π′′′)))

T ′′ = µXα.A → B or T ′′ = µXα.∀tα≤A.B

DV(T ′′) ∩Def(Left(Π′′)) = ∅, FV(T ′′) ⊆ Def(Left(Π′′))

Yβ 6∈ (Def(Right(Π′′)) ∪Def(Right(Π′′′)))

U ′′ = µYβ.A′ → B′ or U ′′ = µYβ.∀uβ≤A′.B′

DV(U ′′) ∩Def(Right(Π′′)) = ∅, FV(U ′′) ⊆ Def(Right(Π′′))

2. Π′ = Π′′, (tα, uβ)≤(T ′′, U ′′), Π′′′ ⇒
tα 6∈ (Def(Left(Π′′)) ∪Def(Left(Π′′′)))

DV(T ′′) ∩Def(Left(Π′′)) = ∅, FV(T ′′) ⊆ Def(Left(Π′′))

uβ 6∈ (Def(Right(Π′′)) ∪Def(Right(Π′′′)))

DV(U ′′) ∩Def(Right(Π′′)) = ∅, FV(U ′′) ⊆ Def(Right(Π′′))
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3. Π′ = Π′′, T ′′ � U ′′, Π′′′ ⇒
DV(T ′′) ∩Def(Left(Π′′)) = ∅, FV(T ′′) ⊆ Def(Left(Π′′))

DV(U ′′) ∩Def(Right(Π′′)) = ∅, FV(U ′′) ⊆ Def(Right(Π′′))

Proof. By induction on the derivation length and by applying Lemma 4.8 and
Corollary 4.9.2

Lemma 4.12 Let Π′ B` T ′≤U ′ ∈ Start-Jalg|∞. If Γ = Left(Π′) and T = T ′

(or Γ = Right(Π′) and T = U ′), then the pre-judgements Γ B` T Type and
Γ B` Env are provable by the backward application of the good formation rules
if they enjoy the following properties:

WF1: DV(T ) ∩Def(Γ) = ∅, FV(T ) ⊆Def(Γ);

WF2: ∀ U ∈ TypesIn(Γ)

Γ = Γ
′
, Xα =U, Γ

′′ ⇒



Xα 6∈ Def(Γ
′
)

U = µXα.A → B or U = µXα.∀tα≤A.B or

or U = >α

DV(U) ∩Def(Γ
′
) = ∅

FV(U) ⊆ Def(Γ
′
)

Γ = Γ
′
, uα≤U, Γ

′′ ⇒


uα 6∈ (Def(Γ

′
) ∪Def(Γ

′′
))

DV(U) ∩Def(Γ
′
) = ∅

FV(U) ⊆ Def(Γ
′
)

Γ = Γ
′
, U, Γ

′′ ⇒ DV(U) ∩Def(Γ
′
) = ∅, FV(U) ⊆ Def(Γ

′
)

Proof. We first observe that backward application of good formation rules
always terminates, and preserves properties WF1 and WF2.

Then, we observe that if WF1 and WF2 hold for a good formation pre-
judgement, then rules (Γ BoundForm), (T-Var Form), (Γ EqForm) and (R-
VarForm) are always applicable. This proves the claim, since these rules are
the only ones that can fail. 2

It is not difficult to prove that the two corollaries 4.10 and 4.11, derived
from 4.8, imply properties WF1 and WF2 for each Start-Jalg|∞ judgement. In
other words, backward application of <alg|∞ rules preserves good formation.
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Hence, in the premises of rules (Id≤), (>≤), (LEnd≤) and (REnd≤) good
formation judgements are superfluous and thus can be eliminated.

Notation 4.13 Hereafter, Π `` T ≤ U and Π ``−NWF T ≤ U will respec-
tively indicate the fact that the pre-judgement Π B` T ≤ U is proved by <alg|∞

rules by considering and by not considering good formation checking.

Property 4.14 For each Π B` T ≤ U ∈ Start-Jalg|∞:

Π `` T, U Type ⇒ (Π `` T ≤ U ⇔ Π ``−NWF T ≤ U)

For this reason, hereafter we will ignore good formation rules when we analyze
judgements belonging to Start-Jalg|∞.

4.4.3 Non necessity of renaming

In this section we give an important property of our system, the ‘non necessity’
of renaming in both <∞ and <alg-2 systems. Some of the properties we prove
in this section will be needed to prove the correctness and transitivity of <alg-2

system.

Lemma 4.15 (Similarity of bounds) For each () B` T ≤ U ∈ Start-J,
Π′ B` T ′ ≤ U ′ and Π′′ B` T ′′ ≤ U ′′ such that

() B` T ≤ U �alg|∞ Π′ B` T ′ ≤ U ′ and

() B` T ≤ U �alg|∞ Π′′ B` T ′′ ≤ U ′′

we have:

Xα′ =V ′ ∈ Left(Π′) and Xα′′ =V ′′ ∈ Left(Π′′) ⇒ V ′ ' V ′′

and

tα′≤V ′ ∈ Left(Π′) and tα′′≤V ′′ ∈ Left(Π′′) ⇒ V ′ ' V ′′

and the same holds when Left is substituted by Right.

Proof. By induction on the derivation length and by applying Lemma 4.6 and
the uniqueness of variable faces in T and U .2

The following lemma is not immediate, but is crucial in order to prove both
the non necessity of labels (Corollary 4.17) and the correctness theorem.

Lemma 4.16 For each Π′ B` T ′ ≤ U ′ ∈ Start-Jalg|∞, if χ ∈ FV(T ′) and
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Γ′ = Left(Π′) (χ∈ FV(U ′) and Γ′ = Right(Π′)), then:

1. Γ′ = Γ1, Xα =(µXα.∀χ≤A′.A), χ≤A′, Γ2 or

Γ′ = Γ1, χ=A, Γ2

2. TypesIn(Γ2) ∪ {T ′} ⊆' SE(A) (TypesIn(Γ2) ∪ {U ′} ⊆' SE(A))

Proof. We consider only the case χ∈ FV(T ′) and Γ′ = Left(Π′), the second
one has the same proof. Both points 1 and 2 follow by induction on the number
of the reduction steps needed to obtain Π′ B` T ′ ≤ U ′, and by cases on the
last applied rule. Point 1 does not pose any particular problem, so we omit
the proof. We prove point 2 by considering only the most interesting cases,
i.e. cases (VarTrans≤) and (LUnf≤).

• Case (VarTrans≤). We have to prove that if the lemma holds for Π′ B`

tα|β ≤ U ′ and for each Π′′ B` T ′′ ≤ U ′′ such that

() B` T ≤ U �alg|∞ Π′′ B` T ′′ ≤ U ′′ �alg|∞ Π′ B` tα|β ≤ U ′,

then it also holds for Π′ B` T ′ ≤ U ′, where tα ≤ T ′ ∈Left(Π′). For this
purpose we observe the following facts.
By the induction hypothesis, we have

Left(Π′) = Γ′ = (Γ1, Xα =(µXα.∀tα≤T ′.A), tα ≤ T ′, Γ2) (a1)

TypesIn(Γ2) ∪ {tα} ⊆' SE(A). (a2)

By the induction hypothesis, the lemma holds for the pre-judgement

Π1 B` (µXα.∀tα≤T ′.A) ≤ (µX ′
α′ .∀t′α′≤T

′
.T

′′
)

that inserts tα and Xα (the recursion variable that is defined together with
tα) in Γ′. This means that Π1 is the part of Π′ corresponding to Γ1 (Γ1 =
Left(Π1)) and that, by induction, for each χ′∈ FV(µXα.∀tα≤T ′.A):

Γ1 = Γ1.1, Yβ =(µYβ.∀χ′≤B′.B), χ′≤B′, Γ1.2 or

Γ1 = Γ1.1, χ′=B, Γ1.2

TypesIn(Γ1.2) ∪ {µXα.∀tα≤T ′.A} ⊆' SE(B). (b)

Moreover: (FV(T ′)− {Xα}) ⊆ FV(µXα.∀tα≤T ′.A) (c)
At this stage of the proof we have the following possible decompositions
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for Γ′ = Left(Π′):

Γ′ = Γ1.1, Yβ =(µYβ.∀χ′≤B′.B), χ′≤B′,

Γ1.2, Xα =(µXα.∀tα≤T ′.A), tα≤T ′, Γ2 or

Γ′ = Γ1.1, χ′=B, Γ1.2, Xα =(µXα.∀tα≤T ′.A), tα≤T ′, Γ2

Now, let χ ∈FV(T ′). If χ 6= Xα then by (c) we have χ ∈FV(µXα.∀tα≤T ′.A)
and we can consider the two possible decompositions of Γ1 given above where
χ = χ′. Hence, for both decompositions, we have to prove

TypesIn(Γ1.2, Xα =(µXα.∀tα≤T ′.A), tα≤T ′, Γ2) ∪ {T ′} ⊆' SE(B)

To this end we first observe that

TypesIn(Γ1.2, Xα =(µXα.∀tα≤T ′.A), tα≤T ′, Γ2) =

TypesIn(Γ1.2, Xα =(µXα.∀tα≤T ′.A), tα≤T ′) ∪ TypesIn(Γ2)

Then we observe that from (b) and T ′∈ SE(µXα.∀tα≤T ′.A) we have

TypesIn(Γ1.2, Xα =(µXα.∀tα≤T ′.A), tα≤T ′) ∪ {T ′} ⊆' SE(B)

while TypesIn(Γ2) ⊆' SE(B) follows by

TypesIn(Γ2) ⊆' SE(A) by (a2)

SE(A) ⊆' SE(µXα.∀tα≤T ′.A) by def.

SE(µXα.∀tα≤T ′.A) ⊆' SE(B) by (b)

If χ = Xα, since we can have only one definition of Xα in Γ′ (Corollary 4.9),
we have the following decomposition for Γ′:

Γ′ = Γ1, Xα =(µXα.∀tα≤T ′.A), tα≤T ′, Γ2

In this case the thesis to prove is

TypesIn( tα≤T ′, Γ2) ∪ {T ′} ⊆' SE(µXα.∀tα≤T ′.A)

which directly follows by the induction hypothesis (a2) and by observing
that T ′ ∈ SE(µXα.∀tα≤T ′.A).

• Case (LUnf≤). The proof is similar to the previous case. We have to prove
that if the lemma holds for Π′ B` Xα|β ≤ U ′ and for each Π′′ B` T ′′ ≤ U ′′

such that

() B` T ≤ U �alg|∞ Π′′ B` T ′′ ≤ U ′′ �alg|∞ Π′ B` Xα|β ≤ U ′
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then it also holds for Π′, Xα|β ≤ U ′ B` T ′ ≤ U ′ where T ′ = A ↑ β and
Xα =A ∈ Left(Π′). By Lemma 4.11 is A = µXα.A′ → A′′ or A = µXα.∀tα≤
A′.A′′. Suppose we are in the first case (for the second one the proof is the
same). We observe that, by the induction hypothesis, we have

Left(Π′) = Γ′ = (Γ1, Xα =A, Γ2)

TypesIn(Γ2) ∪ {Xα|β} ⊆' SE(A) (a)

By the induction hypothesis, we also have that the lemma holds for the
pre-judgement

Π1 B` A ≤ µX ′
α′ .T . → T

that inserts Xα in Γ′ (recall that A = µXα.A′ → A′′). As in the previous
case, this means that Γ1 = Left(Π1) and that for each χ′ ∈ FV(A):

Γ1 = Γ1.1, Yβ =(µYβ.∀χ′≤B′.B), χ′≤B′, Γ1.2 or

Γ1 = Γ1.1, χ′=B, Γ1.2

TypesIn(Γ1.2) ∪ {A} ⊆' SE(B). (b)

Moreover,

FV(A) = FV(T ′) (c)

T ′ ' A. (d)

Now we have to prove that the lemma holds for Π′, Xα|β ≤U ′ B` T ′ ≤ U ′.
Let χ ∈ FV(T ′). By (c) we have χ ∈ FV(A) and, as in the previous case,
we can consider the two possible decompositions of Γ1 given above where
χ = χ′. Hence, for both decompositions, we have to prove

TypesIn(Γ1.2, Xα =A, Γ2, Xα|β) ∪ {T ′} ⊆' SE(B)

By (b) and (d) we already have

TypesIn(Γ1.2, Xα =A) ∪ {T ′} ⊆' SE(B)

and in particular

A ∈' SE(B)

which implies SE(A) ⊆' SE(B) (e).
Hence, to conclude the proof, it remains to prove that

TypesIn(Γ2, Xα|β) ⊆' SE(B)
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This directly follows by (a) and (e).2

By using Lemma 4.16, we prove below that for each pre-judgement Π′ B` T ′ ≤
U ′ in Start-Jalg|∞, and for any χ free in the compared types, no other variable
with the same face (even if with a different label) is defined after the definition
of χ in the bi-environment. This property implies that labels can be ignored
during subtype checking, since the correct definition of a defined variable can
be identified simply by looking for the most recent one with the same face.

This is, in practice, an extremely useful result. During subtype checking, re-
naming is needed, in principle, to avoid variable capture. In a typical imple-
mentation, when a type is renamed, memory has to be allocated to store the
newly created type . From the experience gained in the study and realiza-
tion of languages such as Galileo [ACO85] and Fibonacci [AGO95] we learned
that memory allocation has to be reduced as far as possible to improve the
efficiency of type checking. So, avoiding renaming is already an effective way
to improve the efficiency of our algorithm. Moreover, as already stated, if
variables are never renamed, then type similarity can be checked by pointer
equality, hence we have an efficient way of establishing when the same pair of
types is compared twice during subtyping checking; as we have seen, this is
the crucial operation to optimize when recursive types are compared.

Corollary 4.17 (Irrelevance of labels) For each () B` T ≤ U ∈ Start-J
and Π′ B` T ′ ≤ U ′ such that

() B` T ≤ U �alg|∞ Π′ B` T ′ ≤ U ′,

if χ ∈ FV(T ′) and Γ = Left(Π′) ( if χ ∈ FV(U ′) and Γ = Right(Π′)) then:

1. Γ = Γ′, Xα =(µXα.∀χ≤A.A′), χ≤A, Γ′′ or Γ = Γ′, χ=A, Γ′′

2. χ 6∈' Def(Γ′′)

Proof. Both points 1 and 2 follow by induction on the number of the reduction
steps needed to obtain Π′ B` T ′ ≤ U ′, and by cases on the last applied rule.
Point 1 does not pose any particular problem, so we omit the proof. To prove
(2), we first observe that

sν ∈ Def(Γ′′) ⇒ Γ′′ = Γ1, (Zν =µZν .∀sν≤B.B′), sν≤B, Γ2

Yν ∈ Def(Γ′′) ⇒ Γ′′ = Γ1, Yν =B, Γ2

Now, assume, towards a contradiction, that χ ∈' Def(Γ′′) and χ = sβ. In this
case we have

Γ = Γ′, Xα =µXα.∀sβ≤A.A′, sβ≤A, Γ′′
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and

Γ′′ = Γ1, (Zν =µZν .∀sν≤B.B′), sν≤B, Γ2

By Lemma 4.16 we have

µZν .∀sν≤B.B′ ∈' SE(A′)

Now, by Lemma 4.6 we have

µXα.∀sβ≤A.A′ ∈' SE(T )

µZν .∀sν≤B.B′ ∈' SE(T )

or

µXα.∀sβ≤A.A′ ∈' SE(U)

µZν .∀sν≤B.B′ ∈' SE(U)

Suppose we are in the first case (the second case is similar). In this case it
must be Z = X, because otherwise the type T ∈LR-Types would have two
different variables with the same face s, and this contradicts the uniqueness
of face variables for LR-Types. Since Z = X , by Lemma 4.15 (similarity of
bounds) we have

µZν .∀sν≤B.B′ ' µXα.∀sβ≤A.A′.

Hence µZν .∀sν≤B.B′ 6∈' SE(A′), which contradicts Lemma 4.16.
The case χ = Kβ is similar.2

According to Corollary 4.17, the (unique) definition in Left(Π′) of each χ ∈
FV(T ′), can be found by visiting Left(Π′) from right to left and by stopping
when a χ′ s.t. χ ' χ′ is found. The same holds for U ′ with respect to Right(Π′).
Hence, as stated in Theorem 4.18, by ignoring labels, we can correctly find
the definition of free variables in the types compared.

Theorem 4.18 The label-based algorithm is equivalent to a label-free one,
defined as follows

• consider each <alg-2 rule without labels;
• specify in rule (Id≤) that Π = Π′, (t, u)≤ ( , ), Π′′ for some Π′′ such that,

for any v, (t, v) 6∈ Def(Π′′) and (v, u) 6∈ Def(Π′′).

Proof. By Corollary 4.17.2

A similar decomposition of Π may also be added to the premises of the
(VarTrans≤) and unfolding rules, but this is not necessary since, by uniqueness
of faces, if both Xα =T and Xβ =T ′ are in Π, then T ' T ′.
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However, hereafter we still consider rules <alg-2 and <∞ according to their
original formulation. This will make our soundness proof easier.

5 Soundness and Completeness

To prove the correctness and completeness of our algorithm we refer to the
reduction trees generated by the backward application of either <alg-2 or <∞
rules in verifying judgements in Start-Jalg-2 |∞. Therefore, in the first part of
this section we give some definitions about such reduction trees. In Section
5.2 we give the correctness and completeness proof.

5.1 Reduction Trees

Informally, the reduction tree of a pre-judgement Π B` T ≤ U ∈ Start-J∞ is
the tree such that: a) its root is labeled with Π B` T ≤ U and b) if Π B` T ≤ U
is reduced to n pre-judgements Πi B` Ti ≤ Ui by the backward application of
an <∞ rule, then the children of the root are the reduction trees of the pre-
judgements Πi B` Ti ≤ Ui. Hereafter RT ∞(Π, T, U) will denote the (possibly
infinite) reduction tree of Π B` T ≤ U . Each node of a tree RT ∞(Π, T, U) will
contain a label ranging over the values success and failure, which respectively
indicates that the pre-judgement in the node matches a rule conclusion and
that it does not match any rule conclusion.

Definition 5.1 We denote by RT |n(Π, T, U) the reduction tree obtained by
considering at most n consecutive <∞ reduction steps starting from Π B` T ≤
U . Formally, for n = 0:

RT |0(Π, T, U) =


(ΠB`T ≤ U, success) if the pre-judgement matches

the conclusion of a <∞ rule;

(ΠB`T ≤ U, failure) otherwise.

For n > 0, if Π B` T ≤ U is reduced to k pre-judgements Πi B` Ti ≤ Ui by
the backward application of an <∞ rule, then:

RT |n(Π, T, U) = (ΠB`T ≤ U, success)

↙ . . . ↘

RT |n−1(Π1, T1, U1) RT |n−1(Πk, Tk, Uk)

otherwise RT |n(Π, T, U) = RT |n−1(Π, T, U).
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Hereafter, for the sake of simplicity, we often ignore the position label β in
tα|β and >β occurrences.

Definition 5.2 For each Π B` T ≤ U ∈ Start-J∞ we define RT∞(Π, T, U) as
the (possibly infinite) ordered tree that satisfies the following conditions:

• (→≤) : T = µXα.T ′ → T ′′, U = µYν .U
′ → U ′′,

Π′ = Π, (Xα =µXα.T ′ → T ′′, Yν =µYν .U
′ → U ′′)

⇒ RT ∞(Π, T, U) = (Π B` µXα.T ′ → T ′′ ≤ µYν .U
′ → U ′′, success)

↙ ↘

RT ∞(Swap(Π′), U ′, T ′) RT ∞(Π′, T ′′, U ′′)

• (VarTrans≤) : for all Xθ|δ. (U 6= Xθ|δ) U 6= uν|−, U 6= >−,

Π = Π′, (tα, uν)≤(T ′, U ′), Π′′

⇒ RT ∞(Π, T, U) = (ΠB`tα ≤ U, success)

↓

RT ∞(Π, T ′, U)

• (∀≤) : T = µXα.∀tα≤T ′.T ′′, U = µYν .∀uν≤U ′.U ′′,

Π′ = Π, (Xα =µXα.∀tα≤T ′.T ′′, Yν =µYν .∀uν≤U ′.U ′′),

Π′′ = Π′, (tα, uν) ≤ (T ′, U ′)

⇒ RT ∞(Π, T, U) =

(ΠB`µXα.∀tα≤T ′.T ′′ ≤ µYν .∀uν≤U ′.U ′′, success)

↙ ↓ ↘

RT ∞(Π′, T ′, U ′) RT ∞(Swap(Π′), U ′, T ′) RT ∞(Π′′, T ′′, U ′′)

• (LUnf ≤) : T = Xα|β, Xα =T ′ ∈ Left(Π)

⇒ RT ∞(Π, T, U) = (ΠB`Xα|β ≤ U, success)

↓
RT ∞((Π, Xα|β ≤ U), T ′ ↑ β, U)

50



• (RUnf ≤) : U = Yν|η, for all Xθ|δ. (T 6= Xθ|δ), Yν =U ′ ∈ Right(Π)

⇒ RT ∞(Π, T, U) = (ΠB`T ≤ Yν|η, success)

↓
RT ∞((Π, T ≤ Yν|η), T, U ′ ↑ η)

• (Id≤) : T = tα, U = uν ,

Π = Π, (tα, uν) ≤ (T ′, U ′), Π′′

⇒ RT ∞(Π, T, U) = (ΠB`tα ≤ uν , success)

• (>≤) : U = >

⇒ RT ∞(Π, T, U) = (ΠB`T ≤ >, success)

• Failure: When none of the previous cases is satisfied, then

RT ∞(Π, T, U) = (ΠB`T ≤ U, fail)

Remark 5.3 For a formal definition of the tree RT ∞(Π, T, U) we should first
define the space RTfin of all possible finite trees whose nodes are labeled with
pairs formed by a Start-J∞ pre-judgement and a success/failure mark. This
set is a metric space with respect to the usual metric on trees [AN80]. Hence,
we can define the complete metric space RT∞ obtained by the completion of
RTfin. By definition, in this metric space, every Cauchy sequence has a limit.
Hence, RT ∞(Π, T, U) can be defined as the limit

RT ∞(Π, T, U) = lim
n→∞

RT |n(Π, T, U)

The existence of this limit is guaranteed by the fact that {RT |n(Π, T, U)}n∈N
is a Cauchy sequence.

Note that, thanks to good formation invariance (Lemma 4.11), we do not need
to consider subtrees generated by good formation checking. Also observe that,
by construction, paths inRT ∞(Π, T, U) are in one-to-one correspondence with
reduction chains, starting from ΠB`T ≤ U , produced by �∞.

In the same way, we now define the finite reduction trees generated by the
backward application of <alg-2 rules.

Definition 5.4 For each Π B` T ≤ U ∈ Start-Jalg|∞ we define the reduction
tree RT (Π, T, U) as the ordered tree satisfying the following conditions (the
definition differs from 5.2 only for cases concerning applications of unfolding
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or ending rules; we thus report these cases only):

• (LEnd≤) : T = Xα|β, Xα|β ≤ U ∈'2 Π

⇒ RT (Π, T, U) = (ΠB`Xα|β ≤ U, success)

• (REnd≤) : as above.

• (LUnf 2
≤) : T = Xα|β , Xα|β ≤ U 6∈'2 Π

⇒ RT (Π, T, U) = (ΠB`Xα|β ≤ U, success)

↓
RT ((Π, Xα|β ≤ U), T ′ ↑ β, U)

where Xα =T ′ ∈Left(Π).

• (RUnf 2
≤) : as above.

Observe that, thanks to termination of <alg-2 rules, RT (Π, T, U) is always
finite.

Since reduction trees are ordered trees where each node may have at most
three children, we will represent paths on reduction trees by sequences on
{0, 1, 2}∗, indicated by lowercase letters (a, b, c . . .).

Definition 5.5 Hereafter, if a reduction treeRT (Π, T, U) (orRT ∞(Π, T, U))
has a node that corresponds to the path a, we indicate this fact with

RT (Π, T, U)(a) ↓

(resp. RT ∞(Π, T, U)(a) ↓), and RT (Π, T, U)(a) (resp. RT ∞(Π, T, U)(a)) will
denote the node that corresponds to the path a. Otherwise, we use the nota-
tion RT (Π, T, U)(a) ↑ (resp. RT ∞(Π, T, U)(a) ↑) to indicate that no node
corresponds to the path a.

To simplify the notation, hereafter in reduction trees we will abbreviate the
success and failure label using their initials.

5.2 Soundness and Completeness

We prove soundness by showing that, if RT ((), T, U) is a successful tree (all
nodes are labeled as successful), then it can be transformed into the successful
tree RT ∞((), T, U) by the iterated expansion of the tree RT ((), T, U), by
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eliminating all the applications of the ( End ≤) rules. Essentially, the idea is
that if RT ((), T, U) has a leaf of shape

RT ((), T, U)(a) = (Π B` Xα|β ≤ U ′, s)

or

RT ((), T, U)(a) = (Π B` T ′ ≤ Yν|η, s)

(such leaves will be called end-nodes) then, by considering for example the first
case, we can extend RT ((), T, U) thus obtaining a tree RT 1((), T, U) that is
equal to RT ((), T, U) after the leaf has been substituted with the whole finite
tree

(Π B` Xα|β ≤ U ′, s)

↓

RT ((Π, Xα|β ≤ U ′), T ′, U ′)

where T ′ = T ↑ β and Xα = T ∈Left(Π). In the same way we can obtain a
tree RT 2((), T, U) from RT 1((), T, U) and, more generally, we can define a
sequence

{RT n((), T, U)}n∈N

where each treeRT n((), T, U) is obtained by expandingRT n−1((), T, U) in the
way just shown. To guarantee that this sequence converges to RT ∞((), T, U),
in each expansion step an end-node with a minimum path is considered. In
the following definition we fix how this end-node, which will be called the
expansion node, is chosen.

Definition 5.6 For each () B` T ≤ U ∈ Start-J we define the sequence

{RT n((), T, U)}n∈N

by induction on n:
When n = 0 we consider

RT 0((), T, U) = RT ((), T, U)

When n > 0 we distinguish the following three possible cases:
1) (Left end-node) There is a path a ∈ {0, 1, 2}∗ s.t. the node

RT n−1((), T, U)(a) = (Π B` Xα|β ≤ U ′, s)

is a leaf ofRT n−1((), T, U) and, for each a′ ∈ {0, 1, 2}∗ s.t.RT n−1((), T, U)(a′)
is an end-node, then |a| ≤ |a′|. In this case we define RT n((), T, U) as the tree
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obtained by replacing the leaf RT n−1((), T, U)(a) with the whole tree:

(Π B` Xα|β ≤ U ′, s)

↓

RT ((Π, Xα|β ≤ U ′), T ′, U ′)

where

T ′ = T ↑ β and Xα =T ∈ Left(Π).

2) (Right end-node) There is an end-node RT n−1((), T, U)(a) with a minimal
length path a and with shape

(Π B` T ′ ≤ Yν|η, s).

In this case we define RT n((), T, U) as in the previous case, i.e. by replacing
RT n−1((), T, U)(a) with the tree

(Π B` T ′ ≤ Yν|η, s)

↓

RT ((Π, T ′ ≤ Yν|η), T ′, U ′)

where

U ′ = U ↑ η and Yν =U ∈ Right(Π)

3)When RT n−1((), T, U) has no end-node, we consider:

RT n((), T, U) = RT n−1((), T, U)

We assume that case 1 has priority over case 2. Moreover, we assume that
when RT n−1((), T, U) has more than one leaf that satisfies case 1, the leftmost
leaf is considered; the same applies when case 2 is considered.

According to this definition, for each ()B` T ≤ U ∈Start-J we have defined a
sequence

{RT n((), T, U)}n∈N

The sequence {RT n((), T, U)}n∈N is clearly a Cauchy sequence in the complete
metric space RT∞, hence it has a limit. Moreover, the way we choose the
expansion node ensures that the limit is RT ∞((), T, U):

Property 5.7 For each () B` T ≤ U ∈ Start-J,

lim
n→∞

RT n((), T, U) = RT ∞((), T, U)
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Proof. Any end-node in aRT n((), T, U) is expanded away before step kn+1+1,
where k is the number of expansion nodes of RT 0((), T, U).2

Lemma 5.8 For each () B` T ≤ U ∈ Start-J, RT ∞((), T, U) is successful if
and only if each RT n((), T, U) is successful.

Proof. Observe that each failure in the limit RT ∞((), T, U) is a failure in some
RT n((), T, U) and vice versa, and apply Lemma 5.7.2

In the next part we will need the following definition and lemmas.

Definition 5.9 We say that the tree RT n((), T, U) is expandable if it has
at least one end-node. In this case, according to the previous definition, the
node that is expanded to transform RT n((), T, U) into RT n+1((), T, U), will
be called the expansion node.

Lemma 5.10 (Forward node equality) For each () B` T ≤ U ∈ Start-J,
k, i ∈ N and a ∈ {0, 1, 2}∗:

RT k((), T, U)(a) ↓ ⇒ RT k((), T, U)(a) = RT k+i((), T, U)(a)

Proof. By induction on i.2

Lemma 5.11 (Backward node equality) If () B` T ≤ U ∈ Start-J, and
the tree RT k((), T, U) is expandable by the expansion node RT k((), T, U)(a),
then for each i ≥ 0 and a′ s.t.

RT k+i((), T, U)(a′) ↓

|a′| ≤ |a|

we have

RT k((), T, U)(a′) ↓

RT k((), T, U)(a′) = RT k+i((), T, U)(a′)

Proof. By induction on i and by minimality of a.2

Lemma 5.8 implies that soundness and completeness can be established by
proving that, for each () B` T ≤ U ∈ Start-J, RT ((), T, U) is a successful tree
if and only if eachRT n((), T, U) is successful (i.e.RT ∞((), T, U) is successful).
While the if implication is trivially true since

RT ((), T, U) =def RT 0((), T, U),

we will prove the only if direction by induction on n, i.e. by proving that if
RT n((), T, U) is a successful tree then so is RT n+1((), T, U).
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We know that RT n+1((), T, U) differs from RT n((), T, U) only with respect to
a subtree that is rooted at the expansion node of the latter. We will see that
the key of the problem of showing that this subtree is successful, is to prove
that each new node Π B` tν ≤ uη created in the subtree (two type variables are
compared) is the root of a successful tree. To this end we will prove that similar

successful subtrees rooted at the nodes Π B` tτ ≤ uυ exist in RT n((), T, U)
and that this implies that the new subtree rooted at Π B` tν ≤ uη is successful
as well. Observe that this is not true if we consider <alg-1 instead of <alg-2 rules.
Indeed, in the counterexample of Section 4.2, although the node Π B` tτ ≤ uυ

is a successful leaf, we have a new node Π B` tν ≤ uη which is reduced, by
rule (VarTrans≤), into a failure node.

Below, we outline properties for this kind of (Π, tα, uβ)-rooted subtrees of a
successful tree. These properties will be used to prove the soundness of the
subtyping algorithm defined by <alg-2 rules.

Lemma 5.12 If () B` T ≤ U ∈ Start-J, RT n((), T, U) is a successful tree,
and

RT n((), T, U)(a) = (Π B` µXα.∀tα≤ t′α′ .T
′ ≤ µYβ.∀uβ≤u′β′ .U

′, s)

then (t′α′ , u
′
β′) ∈ Def(Π).

Proof. By hypothesis we have:

RT n((), T, U)(a.0) =

(Π, (Xα =µXα.∀tα≤ t′α′ .T
′, Yβ =µYβ.∀uβ≤u′β′ .U

′) B` t′α′ ≤ u′β′ , s)

RT n((), T, U)(a.1) =

(Swap(Π, (Xα =µXα.∀tα≤ t′α′ .T
′, Yβ =µYβ.∀uβ≤u′β′ .U

′)) B` u′β′ ≤ t′α′ , s)

If we suppose that one of these two nodes is not a leaf, then it is easy to prove
that the other one is a failure node. So, both nodes are leaves of the reduction
tree, hence (t′α′ , u

′
β′) ∈Def(Π).2

Corollary 5.13 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful
tree such that

RT n((), T, U)(a) = (Π B` T ≤ U, s),

where Π = (Π1, (tα, uβ) ≤ (t′α′ , u
′
β′), Π2), then we have

Π1 = Π
′
1, (t′α′ , u

′
β′)≤(A, B), Π

′′
1

Proof. By induction on the length of Π2 and by the previous lemma.2
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Lemma 5.14 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful tree
such that

RT n((), T, U)(a) = (Π B` tα ≤ uβ, s)

then either (tα, uβ) ∈Def(Π) and RT n((), T, U)(a) is a leaf proved by (Id≤),
or (tα, uβ) 6∈Def(Π) and:

• 1. the subtree rooted at RT n((), T, U)(a) is generated by k ≥ 1 applications
of (VarTrans≤) and has the following shape:

(Π B` tα ≤ uβ, s)

↓

(Π B` t1α1 ≤ uβ, s)

↓
...

(Π B` tk−1
αk−1 ≤ uβ, s)

↓

(Π B` tkαk ≤ uβ, s)

• 2. Π has the following structure:

Π = Πk+1, (tkαk , uβ)≤(T ′, U ′),

Πk, (tk−1
αk−1 , u

k−1
βk−1)≤(tkαk , uβ),

Π2, (t1α1 , u1
β1)≤(t2α2 , u2

β2),

Π1, (tα, u0
β0)≤(t1α1 , u1

β1), Π0

where ui 6= u for i = 0 . . . k − 1.

Proof. Since RT n((), T, U) is successful, Π B` tα ≤ uβ is provable. If it
is proved by (Id≤) then (tα, uβ) ∈Def(Π); otherwise (tα, uβ) 6∈Def(Π). In
this case we proceed by induction on k, the depth of the tree rooted at
RT n((), T, U)(a), and prove 1 and 2 together.

We first note that since (tα, uβ) 6∈Def(Π) then :

Π = Π
′
, (tα, u0

β0)≤(T , U), Π0 ∧ uβ 6= u0
β0

and the pre-judgement Π B` tα ≤ uβ is reduced to Π B` T ≤ uβ by
(VarTrans≤). Since Π B` T ≤ uβ is provable, T must be a type variable
t1α1 , that is T = t1α1 (in the other case this pre-judgement would correspond
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to a failure node in the reduction tree RT n((), T, U)). Moreover, by the (∀≤)

rule, which has inserted (tα, u0
β0)≤(T , U) in Π by requiring Π

′ `` T = U with

T = t1α1 , also U must be a type variable u1
β1 . Hence we actually have

Π = Π
′
, (tα, u0

β0)≤(t1α1 , u1
β1), Π0

and, by Corollary 5.13, we have

Π
′
= Π

′′
, (t1α1 , u1

β1)≤(T , U), Π
1

These properties imply that Π B` tα ≤ uβ is reduced to Π B` t1α1 ≤ uβ by
(VarTrans≤) and that u1

β1 = uβ in the case that (Id≤) application is possible

for Π B` t1α1 ≤ uβ (case k = 1). Otherwise (case k ≥ 2), we have u1
β1 6= uβ and,

since uβ ∈Def(Right(Π
′′
)), by 4.17 we also have u1 6= u. Then it is sufficient

to apply induction to

RT n((), T, U)(a.0) = (Π B` t1α1 ≤ uβ, s)

so as to obtain the indicated shape of the sub-tree RT n((), T, U)(a) given in
1, and the structure of Π together with inequalities ui 6= u given in 2.2

The following lemma is needed to justify Definition 5.16.

Lemma 5.15 For each () B` T ≤ U ∈ Start-J and Π �` T ′ ≤ U ′ such that

RT n((), T, U)(a) = (Π �` T ′ ≤ U ′, )

if Γ = Left(Π) and Γ = Γ′, tα≤ sβ|η, Γ′′, then sβ ∈ Def(Γ′) and sβ 6∈ Def(Γ′′).
The same holds for Γ = Right(Π).

Proof. We prove the case Γ = Left(Π), the other one is the same. Assumptions
Γ = Left(Π) and Γ = Γ′, tα≤sβ|η, Γ′′ mean that

Π = Π′, (tα, uδ) ≤ (sβ|η, A), Π′′

Γ′ = Left(Π′)

Γ′′ = Left(Π′′)

By Corollary 4.11, we have

FV(sβ|η) = {sβ} ⊆ Def(Left(Π′)) = Def(Γ′)

which entails sβ ∈ Def(Γ′). Therefore, if we assume sβ ∈ Def(Γ′′), Lemma 4.9
would be contradicted, since we would have sβ defined twice in Γ = Left(Π) =
(Γ′, tα≤ sβ|η, Γ′′) and the label β occurring twice in the sequence of labels of
type variables defined in Left(Π) . 2
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Definition 5.16 For each () B` T ≤ U ∈ Start-J and Π �` T ′ ≤ U ′ such that

RT n((), T, U)(a) = (Π �` T ′ ≤ U ′, )

if Γ = Left(Π) (or Γ = Right(Π)) and tα ∈Def(Γ), we define Bounds(tα, Γ),
the set of direct and indirect type-variable bounds of tα in Γ, as follows

Bounds(tα, Γ) =


{tα} ∪ Bounds(sβ, Γ′) if Γ = Γ′, tα≤sβ|η, Γ′′ for

some type variable sβ

{tα} otherwise

In the following we denote with #Bounds(tα, Γ) the number |Bounds(tα, Γ)|.

Lemma 5.17 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful tree
such that

RT n((), T, U)(a) = (Π′ �` T ′ ≤ U ′, s)

and (tα, uβ) ∈ Def(Π′), then

#Bounds(tα, Left(Π′)) = #Bounds(uβ, Right(Π′))

moreover

∀ t′α′ ∈ Bounds(tα, Left(Π′)). ∃ u′β′ ∈ Bounds(uβ, Right(Π′)) s.t.

(t′α′ , u
′
β′) ∈ Def(Π′)

and vice versa.

Proof. Easy induction on #Bounds(tα, Left(Π′)) (use Lemma 5.14).2

Lemma 5.18 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful tree
such that

RT n((), T, U)(a) = (Π �` tα ≤ uβ, s)

and u′β′ is the variable unified in Π with tα, i.e. (tα, u′β′) ∈Def(Π), then
uβ ∈Bounds(u′β′ , Right(Π)). Moreover, if uβ 6= u′β′, then

#Bounds(uβ, Right(Π)) < #Bounds(u′β′ , Right(Π))

Proof. Easy induction on the depth of the subtree rooted at RT n((), T, U)(a)
— remember that this subtree has the shape illustrated in Lemma 5.14.2

Lemma 5.19 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful tree
with two nodes

RT n((), T, U)(a) = (Π′ �` T ′ ≤ U ′, s)
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and

RT n((), T, U)(b) = (Π′′ �` T ′′ ≤ U ′′, s)

such that tα ∈Def(Γ′), with Γ′ = Left(Π′) or Γ′ = Right(Π′), and tα′ ∈Def(Γ′′),
with Γ′′ = Left(Π′′) or Γ′′ = Right(Π′′), then

#Bounds(tα, Γ′) = #Bounds(tα′ , Γ′′)

Proof. By induction on #Bounds(tα, Γ′), uniqueness of face variables in () B`

T ≤ U and similarity of bounds (Lemma 4.15).2

Lemma 5.20 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful tree
such that

RT n((), T, U)(a) = (Π �` tα ≤ uβ, s)

and

RT n((), T, U)(b) = (Π �` tτ ≤ uη, s)

then

(Π B` tα ≤ uβ, s)

↓

(Π B` t1α1 ≤ uβ, s)

if and only if

(Π B` tν ≤ uη, s)

↓

(Π B` t1ν1 ≤ uη, s)

Proof. It is enough to prove that (tα, uβ) 6∈Def(Π) iff (tν , uη) 6∈Def(Π). Then
the claim easily follows by uniqueness of the bound of type variables and by
the assumption stating that RT n((), T, U) is successful.

Suppose that (tα, uβ) 6∈Def(Π), then by assumptions and by Lemma 5.14 we
have that

Π = Π1, (tα, u0
β0)≤(t1α1 , u1

β1), Π0

and uβ 6= u0
β0 . Hence, by Lemma 5.18 and by Lemma 5.17, we have

#Bounds(uβ, Right(Π)) < #Bounds(u0
β0 , Right(Π))
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and #Bounds(u0
β0 , Right(Π)) = #Bounds(tα, Left(Π)).

By this and by Lemma 5.19, we have that

#Bounds(uη, Right(Π)) < #Bounds(tν , Left(Π))

So, it cannot be (tν , uη) ∈Def(Π), because in this case by Lemma 5.17 we
would have

#Bounds(uη, Right(Π)) = #Bounds(tν , Left(Π))

which contradicts the previous inequality.2

Lemma 5.21 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful tree
such that

RT n((), T, U)(a) = (Π, Π′ �` tα ≤ uβ, s)

RT n((), T, U)(b) = (Π, Π′′ �` tτ ≤ uη, s)

and

tα, tτ ∈ Def(Left(Π))

uβ, uη ∈ Def(Right(Π))

then tα = tτ and uβ = uη.

Proof. We only prove that tα = tτ , the proof of the second equality is analo-
gous.
Given Γ = Left(Π), by hypothesis we have

Γ = Γ′, tα ≤ T ′, Γ′′

hence by Corollary 4.17

@ρ s.t. tρ ∈ Def(Γ′′) (1)

Now, towards a contradiction, suppose that tα 6= tτ , then it must be either
tτ ∈Def(Γ′) or tτ ∈Def(Γ′′). The second case contradicts (1). So it may only
be tτ ∈Def(Γ′), that is

Γ = Γ′1, tτ ≤T ′′, Γ′2, tα≤T ′, Γ′′

but, by Corollary 4.17, we have

@ρ s.t. tρ ∈ Def(Γ′2, tα≤T ′, Γ′′)
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which is absurd.2

Notation 5.22 Hereafter, Swap(Π) will be abbreviated to Π−1.

Definition 5.23 We extend the relation ', which is defined over LR-Types,
to environments Γ and bi-environments Π as follows:
environments Γ :

() ' ()

Γ, tα≤T ' Γ, tα′≤T ⇔ Γ ' Γ, T ' T

Γ, Xα =T ' Γ, Xα′ =T ⇔ Γ ' Γ, T ' T

Γ, T ' Γ, T ⇔ Γ ' Γ, T ' T

bi-environments Π :

Π ' Π ⇔ Left(Π) ' Left(Π), Right(Π) ' Right(Π)

The next two lemmas highlight interesting properties of a generic successful
and expandable reduction tree RT n((), T, U) where () B` T ≤ U ∈Start-J.

Lemma 5.24 If () �` T ≤ U ∈ Start-J and RT n((), T, U) is a successful and
expandable tree whose expansion node is

RT n((), T, U)(a) = (Π B` Xα|β ≤ U ′, s),

then ∃ a1, a2, a3 such that the following properties hold:

(1) a = a1.a2.a3 and

RT n((), T, U)(a1) = (Π1
B` Xα1|β1 ≤ U1, s)

RT n((), T, U)(a1.a2) = (Π1
, Xα1|β1 ≤ U1,Π2

B` Xα2|β2 ≤ U2, s)

RT n((), T, U)(a1.a2.a3) = (Π1
, Xα1|β1 ≤ U1,Π2

, Xα2|β2 ≤ U2,

Π3
B` Xα|β ≤ U ′, s)

= (Π B` Xα|β ≤ U ′, s)

where

U1 ' U2 ' U ′

Xα|β ≤ U ′ 6∈'1 Π
1

Xα|β ≤ U ′ 6∈'1 Π
3
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(2) ∀b ∈ {0, 1, 2}∗ such that RT n((), T, U)(a1.a2.b) ↓ we have that
(a) either

RT n((), T, U)(a1.a2.b) =

(Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2, Π

∗
B` A ≤ B, s)

and

RT n((), T, U)(a1.b) = (Π
1
, Xα1|β1 ≤ U1, Π

∗∗
B` A ≤ B, s)

or

RT n((), T, U)(a1.a2.b) =

((Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2)−1, Π

∗
B` A ≤ B, s)

and

RT n((), T, U)(a1.b) = ((Π
1
, Xα1|β1 ≤ U1)−1, Π

∗∗
B` A ≤ B, s),

where Π
∗ ' Π

∗∗
, A ' A, B ' B.

(b) in particular:

RT n((), T, U)(a1.a3) = (Π
1
, Xα1|β1 ≤ U1, Π

3
B` Xα4|β4 ≤ U4, s)

where Π
3
' Π

3
, U4 ' U ′. Moreover, by the minimality of a and by

a2 6= nil, RT n((), T, U)(a1.a3) is not a leaf.

Proof.

(1) By hypothesis we have

RT n((), T, U)(a) = (Π B` Xα|β ≤ U ′, s)

and

Xα|β ≤ U ′ ∈'2 Π

Therefore in Π we have at least two occurrences of pairs X−|− ≤ U where
U ′ ' U . Now, if we consider

Xα1|β1 ≤ U1

Xα2|β2 ≤ U2

as the first and the last of such a pairs, then

Π = Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2, Π

3
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and

U1 ' U2 ' U ′

Xα|β ≤ U ′ 6∈'1 Π
1

Xα|β ≤ U ′ 6∈'1 Π
3

Moreover, due to the stop condition that <alg-2 adopts, and since:

(Π
1

B` Xα1|β1 ≤ U1) �alg|∞ (Π
1
, Xα1|β1 ≤ U1, Π

2
B` Xα2|β2 ≤ U2)

�alg|∞ (Π B` Xα|β ≤ U ′)

then ∃ a1, a2, a3 s.t. a = a1.a2.a3 and

RT n((), T, U)(a1) = (Π
1

B` Xα1|β1 ≤ U1, s)

RT n((), T, U)(a1.a2) = (Π
1
, Xα1|β1 ≤ U1, Π

2
B` Xα2|β2 ≤ U2, s)

RT n((), T, U)(a1.a2.a3) = (Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2,

Π
3

B` Xα|β ≤ U ′, s)

= (Π B` Xα|β ≤ U ′, s).

(2) By induction on |b|. If |b| = 0 then b = nil and the conclusion follows
by (1). If |b| = n > 0 then b = b′.b where b ∈ {0, 1, 2} . By b′ ≺p b
and RT n((), T, U)(a1.a2.b) ↓ we have that RT n((), T, U)(a1.a2.b

′) ↓, so
by induction we have:

RT n((), T, U)(a1.a2.b
′) =

(Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2, Π

∗
B` A ≤ B, s) (a1)

or

RT n((), T, U)(a1.a2.b
′) =

((Π
1
, Xα1|β1 ≤ U1Π

2
, Xα2|β2 ≤ U2, )−1, Π

∗
B` A ≤ B, s) (a2).

We consider here the first case, the second case is similar.
By induction hypothesis we have

RT n((), T, U)(a1.b
′) = (Π

1
, Xα1|β1 ≤ U1, Π

∗∗
B` A ≤ B, s)

where

Π
∗ ' Π

∗∗

A ' A

B ' B.
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The proof continues by cases on the shape of A and B, and then by cases
on the rule applied to expand the node RT n((), T, U)(a1.a2.b

′). The most
interesting cases are (LUnf2≤), (→≤) and (VarTrans≤).
In the first one, we have that either this node has been an expansion
node for RT k((), T, U) with k < n (case i) or that for this node the stop
condition of the subtyping algorithm is not satisfied (case ii). In case (i),
by minimality of |a1.a2.b

′| in RT k((), T, U) and by |a1.b
′| < |a1.a2.b

′|
we have that RT k((), T, U)(a1.b

′) is not a leaf, and by Lemma 5.10
RT n((), T, U)(a1.b

′) is not a leaf either. In case (ii), by Π
∗ ' Π

∗∗
in

the induction hypothesis, we also have that for RT n((), T, U)(a1.b
′) the

stop condition is not satisfied, hence it cannot be a leaf. Now, the thesis
follows by applying Lemma 4.15 (similarity of bounds).
To prove case (→≤) it is sufficient to consider the bi-environment swap-
ping and the similarity between A and A and between B and B.
Finally, if we are in the (VarTrans≤) case (this means that A and A
are similar type variables), we further distinguish these two sub cases:
(i) both B and B are not type variables, (ii) both B and B are similar
type variables. In case (i) the thesis follows by Lemma 4.15 (similarity of
bounds). For case (ii) it is sufficient to apply Lemma 5.20.2

The next lemma is just the same as the previous one, where the left and right
hand sides are swapped.

Lemma 5.25 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful and
expandable tree whose expansion node is

RT n((), T, U)(a) = (Π B` T ′ ≤ Yα|β, s)

then ∃ a1, a2, a3 such that the following three properties hold:

(1) a = a1.a2.a3 where

RT n((), T, U)(a1) = (Π
1

B` T 1 ≤ Yα1|β1 , s)

RT n((), T, U)(a1.a2) = (Π
1
, T 1 ≤ Yα1|β1 , Π

2
B` T 2 ≤ Yα2|β2 , s)

RT n((), T, U)(a1.a2.a3) = (Π
1
, T 1 ≤ Yα1|β1 , Π

2
, T 2 ≤ Yα2|β2 ,

Π
3

B` T ′ ≤ Yα|β, s)

= (Π B` T ′ ≤ Yα|β, s)

and

T 1 ' T 2 ' T ′

T ′ ≤ Yα|β 6∈'1 Π
1

T ′ ≤ Yα|β 6∈'1 Π
3
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(2) ∀b ∈ {0, 1, 2}∗ such that RT n((), T, U)(a1.a2.b) ↓ then:
(a) either

RT n((), T, U)(a1.a2.b) =

(Π
1
, T 1 ≤ Yα1|β1 , Π

2
, T 2 ≤ Yα2|β2 , Π

∗
B` A ≤ B, s)

and RT n((), T, U)(a1.b) = (Π
1
, T 1 ≤ Yα1|β1 , Π

∗∗
B` A ≤ B, s)

or

RT n((), T, U)(a1.a2.b) =

((Π
1
, T 1 ≤ Yα1|β1 , Π

2
, T 2 ≤ Yα2|β2)−1, Π

∗
B` A ≤ B, s)

and

RT n((), T, U)(a1.b) = ((Π
1
, T 1 ≤ Yα1|β1)−1, Π

∗∗
B` A ≤ B, s)

where Π
∗ ' Π

∗∗
, A ' A, B ' B.

(b) in particular:

RT n((), T, U)(a1.a3) = (Π
1
, T 1 ≤ Yα1|β1 , Π

3
B` T 4 ≤ Yα4|β4 , s)

where Π
3
' Π

3
, T 4 ' T ′. Moreover, by the minimality of a and by

a2 6= nil, RT n((), T, U)(a1.a3) is not a leaf.

Proof. As in the previous lemma.2

The next lemma is the first one regarding reduction trees that are not neces-
sarily successful. It states that when two nodes of a generic tree RT n((), T, U)
compare two similar pairs, then the first one is successful if and only if the
second one is successful too.

Lemma 5.26 For each () B` T ≤ U ∈ Start-J and paths a and b such that

RT n((), T, U)(a) = Π′ B` T ′ ≤ U ′

RT n((), T, U)(b) = Π′′ B` T ′′ ≤ U ′′

where

T ′ ' T ′′ and U ′ ' U ′′

then RT n((), T, U)(a) is successful (is labeled as success) if and only if the
node RT n((), T, U)(b) is successful too.

Proof. We only prove that if the node RT n((), T, U)(a) is successful then
RT n((), T, U)(b) is too; the other direction is identical.
Suppose, towards a contradiction, that RT n((), T, U)(a) is successful and that
RT n((), T, U)(b) is not. This means that the second node cannot be proved
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by any of the <alg-2 rules. Hence the pair of types T ′′ and U ′′ are of the form
given in the following table:

T ′′ U ′′

Top type type variable

Top type µ-∀ type

Top type µ- → type

µ-∀ type µ- → type

µ- → type µ-∀ type

In fact when two type variables are compared in a node of a reduction tree,
then either the rule (VarTrans≤) or (Id≤) is applicable to reduce the pre-
judgement of the node, hence this is always a successful node. A similar sit-
uation holds when one of the two compared types is a recursion variable; in
this case either the expansion or the end rules are applicable.

Now, since the shape of a type is preserved by '-similarity, we have that if
for T ′′ and U ′′ one of the cases of the table above holds, then this also holds
for T ′ and U ′, and this means that RT n((), T, U)(a) is a failure node, which
is absurd.2

Observe that Lemma 5.26 does not exclude the case

RT n((), T, U)(a) = Π′ B` tα ≤ uβ

RT n((), T, U)(b) = Π′′ B` tν ≤ uγ

where the first node is successful by (Id≤) and the second by (VarTrans≤), or
conversely (actually, we will see that this never happens for successful reduc-
tion trees). Remember that, for a node, being successful is not the same as
being provable: successful means that the node is not a failure node itself (a
rule is applicable), while provable means that all the nodes contained in the
subtree rooted at that node are successful.

Many of the properties previously stated will be used to prove the following
lemma. It states that a successful and expandable tree RT n((), T, U) always
expands to a successful tree RT n+1((), T, U). In particular, Corollary 4.17
(used to prove non necessity of renaming) will play a crucial role.

The proof of this lemma is long, but, once it is completed, we have finished
our work. Observe that this is the only place where we really exploit the
fact that we wait until the third time we meet a pair before stopping, hence
this is the lemma that tells us something about the difference between our
correct algorithm and the non correct one presented in Section 4.2. The key
question we have to address here is: is it possible that two variables t, u are
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reduced by the (Id≤) rule the first time they are met, but, after the expansion
of a recursion variable, a similar pair is generated that is reduced by the
(VarTrans≤) rule? This is the problem that may arise when the <alg-1 rules
are used, and we are going to prove that this never happens in a tree generated
by the expansion of a successful <alg-2 tree.

Lemma 5.27 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful and
expandable tree whose expansion node is

RT n((), T, U)(a) = (Π B` Xα|β ≤ U ′, s)

then RT ((Π, Xα|β ≤ U ′), T ′, U ′), where T ′ = T ↑ β and Xα =T ∈Left(Π), is
a successful tree. Hence the tree RT n+1((), T, U) is successful too.

Proof. We have to prove that

RT ((Π, Xα|β ≤ U ′), T ′, U ′)

contains only successful nodes.

From Lemma 5.24, we know that a = a1.a2.a3 such that:

RT n((), T, U)(a1) = (Π
1

B` Xα1|β1 ≤ U1, s)

RT n((), T, U)(a1.a2) = (Π
1
, Xα1|β1 ≤ U1, Π

2
B` Xα2|β2 ≤ U2, s)

RT n((), T, U)(a1.a2.a3) = (Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2,

Π
3

B` Xα|β ≤ U ′, s)

RT n((), T, U)(a1.a3) = (Π
1
, Xα1|β1 ≤ U1, Π

3
B` Xα3|β3 ≤ U3, s)

where:

U1 ' U2 ' U3 ' U ′

Π
3
' Π

3

Π = Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2, Π

3

In particular, by Lemma 5.24(2), we know that RT n((), T, U)(a1.a3) is not a
leaf.

Figure 2 illustrates this situation. In the figure, Υa1.a3 and Υa1.a2 denote
the subtrees of RT n((), T, U) rooted at the nodes RT n((), T, U)(a1.a3) and
RT n((), T, U)(a1.a2) respectively. Υa1.a2.a3 denotes the tree RT ((Π, Xα|β ≤
U ′), T ′, U ′) that extends RT n((), T, U) to RT n+1((), T, U).

Now, as in Lemma 5.24, we will prove that the tree RT ((Π, Xα|β ≤ U ′), T ′, U ′)
(i.e., Υa1.a2.a3) is ‘similar’ to the subtrees Υa1.a3 and Υa1.a2 . Since both Υa1.a3
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Fig. 2. The subtrees Υa1.a3 , Υa1.a2 , Υa1.a2.a3

and Υa1.a2 are successful, by Lemma 5.26, we have that the treeRT ((Π, Xα|β ≤
U ′), T ′, U ′) is successful as well.

Formally, we prove that: ∀b ∈ {0, 1, 2}∗ s.t. RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b) ↓,
we have either (1):

RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b) = (Π, Xα|β ≤ U ′, Π
4

B` A ≤ B, )

∧ RT n((), T, U)(a1.a2.0.b) =

(Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2, Π

4
B` A ≤ B, s)

∧ RT n((), T, U)(a1.a3.0.b) =

(Π
1
, Xα1|β1 ≤ U1, Π

3
, Xα3|β3 ≤ U3, Π

4

B` A ≤ B, s)
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or (2):

RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b) = ((Π, Xα|β ≤ U ′)−1, Π
4

B` A ≤ B, )

∧ RT n((), T, U)(a1.a2.0.b) =

((Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2)−1, Π

4
B` A ≤ B, s)

∧ RT n((), T, U)(a1.a3.0.b) =

((Π
1
, Xα1|β1 ≤ U1, Π

3
, Xα3|β3 ≤ U3)−1, Π

4

B` A ≤ B, s)

where A ' A ' A, B ' B ' B, Π
3 ' Π

3
, Π

4 ' Π
4
' Π

4

We prove case (1), by induction on |b| (case (2) is similar).

The case |b| = 0 is trivial. If |b| > 0 then b = b′.b where b ∈ {0, 1, 2} .
By the induction hypothesis we have that the similarity relation holds with
respect to the path b′. The proof of the induction step is by cases on the shape
of the types compared in RT n((), T, U)(a1.a2.0.b′), RT n((), T, U)(a1.a3.0.b′)
and RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b′). The only interesting case is when two
type variables are compared; in the other cases the similarity is proved as in
Lemma 5.24. Hence we assume that:

RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b′) = (Π, Xα|β ≤ U ′, Π
4

B` tν ≤ uη, s)

RT n((), T, U)(a1.a2.0.b′) = (Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2, Π

4

B` tγ ≤ uδ, s)

RT n((), T, U)(a1.a3.0.b′) = (Π
1
, Xα1|β1 ≤ U1, Π

3
, Xα3|β3 ≤ U3, Π

4

B` tτ ≤ uυ, s)

where

Π = Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2, Π

3

Π
3 ' Π

3

Π
4 ' Π

4
' Π

4

This situation is illustrated by Figure 3.

By hypothesis we have that RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b′.b) ↓ and this means
that the pre-judgement in b′ is reduced to the pre-judgement in b′.b by rule
(VarTrans≤). Now the proof continues by distinguishing the following two
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Fig. 3. Type variables comparison.

possible cases:

(i) tν ∈ Def(Left(Π
3
, Xα|β ≤ U ′, Π

4
))

(ii) tν 6∈ Def(Left(Π
3
, Xα|β ≤ U ′, Π

4
))

(that is tν ∈ Def(Left(Π
1
, Xα1|β1 ≤ U1, Π

2
)))

In a nutshell, in case (i) we will show that tτ ≤ uυ is also reduced by
(VarTrans≤), and tγ ≤ uδ will follow by Lemma 5.20, and, similarly, in case
(ii) we will show that tγ ≤ uδ is also reduced by (VarTrans≤), and tτ ≤ uυ

will follow by Lemma 5.20.

Suppose we are in case (i). To simplify the notation we let

Π
3.4

= Π
3
, Xα|β ≤ U ′, Π

4

Π
3.4

= Π
3
, Xα3|β3 ≤ U3, Π

4

which implies Π
3.4 ' Π

3.4
(recall that tν is defined in Π

3.4
, hence tτ is defined

in Π
3.4

).
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If we suppose, towards a contradiction, that RT n((), T, U)(a1.a3.0.b′) is a leaf
proved by (Id≤), we have

Π
3.4

= Π
3.4

1 , (tτ , uυ) ≤ (A, B), Π
3.4

2

where, by Corollary 4.17,

@ρ s.t. tρ ∈ Def(Left(Π
3.4

2 ))

@ρ s.t. uρ ∈ Def(Right(Π
3.4

2 ))

Since Π
3.4 ' Π

3.4
, in this case we have

Π
3.4

= Π
3.4
2 , (tν , uη)≤(A′, B′), Π

3.4
2

@ρ s.t. tρ ∈ Def(Left(Π
3.4

2 ))

@ρ s.t. uρ ∈ Def(Right(Π
3.4

2 ))

and this implies that ν = ν and η = η, therefore the pre-judgement in
RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b′) could be proved by (Id≤), but this contradicts
the hypothesis stating that

RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b′.b) ↓

Hence it must be that the node RT n((), T, U)(a1.a3.0.b′) is not a leaf and it
is reduced to RT n((), T, U)(a1.a3.0.b′.b) by (VarTrans≤). So we have

Π
3.4

= Π
3.4

1 , (tτ , u
1
υ1)≤(t2τ2 , u2

υ2), Π
3.4

2

and

RT n((), T, U)(a1.a3.0.b′.b) = (Π
1
, Xα1|β1 ≤ U1, Π

3.4
B` t2τ2 ≤ uυ, s)

which, by Lemma 5.20, implies that

RT n((), T, U)(a1.a2.0.b′.b) =

(Π
1
, Xα1|β1 ≤ U1, Π

2
, Xα2|β2 ≤ U2, Π

4
B` t2γ2 ≤ uδ, s)

Now, by Π
3.4 ' Π

3.4
and by what was stated before, we have that

Π
3.4

= Π
3.4
1 , (tν , u

1
η1)≤(t2ν2 , u2

η2), Π
3.4
2

which completes the proof of case (i) because this means that

RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b′.b) = (Π, Xα|β ≤ U ′, Π
4

B` t2ν2 ≤ uη, s)
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The remaining case to be considered is (ii):

(ii) tν ∈ Def(Left(Π
1
, Xα1|β1 ≤ U1, Π

2
))

We are going to prove that, in this case, tγ, tν , uδ, uη, are all defined in

Π
1.2

=def Π
1
, Xα1|β1 ≤ U1, Π

2
.

Property (ii), by Corollary 4.17, implies that

@ρ s.t. tρ ∈ Def(Left(Π
3
, Xα|β ≤ U ′, Π

4
))

and, by Π
3 ' Π

3
and Π

4 ' Π
4
' Π

4

, that

@ρ s.t. tρ ∈ Def(Left(Π
4
))

@ρ s.t. tρ ∈ Def(Left(Π
3
, Xα3|β3 ≤ U3, Π

4

))

This implies that we have

tτ ∈ Def(Left(Π
1
))

tγ ∈ Def(Left(Π
1
, Xα1|β1 ≤ U1, Π

2
))

hence, by Lemma 5.14, we also have

uυ ∈ Def(Right(Π
1
))

uδ ∈ Def(Right(Π
1
, Xα1|β1 ≤ U1, Π

2
))

In particular, by Corollary 4.17, uυ ∈Def(Right(Π
1
)) implies that

@ρ s.t. uρ ∈ Def(Right(Π
3
, Xα3|β3 ≤ U3, Π

4

))

and, by Π
3 ' Π

3
and Π

4 ' Π
4

, that:

@ρ s.t. uρ ∈ Def(Right(Π
3
, Xα|β ≤ U ′, Π

4
))

hence we have

uη ∈ Def(Right(Π
1
, Xα1|β1 ≤ U1, Π

2
))

So, if we consider Π
1.2

= Π
1
, Xα1|β1 ≤ U1, Π

2
, we have that

tγ, tν ∈ Def(Left(Π
1.2

))

uδ, uη ∈ Def(Right(Π
1.2

))

73



and thus, by Lemma 5.21, tγ = tν and uδ = uη.

Moreover, by hypothesis, we have that RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b′) is not a
leaf and that it is reduced to

RT ((Π, Xα|β ≤ U ′), T ′, U ′)(b′.b) = (Π, Xα|β ≤ U ′, Π
4

B` t2ν2 ≤ uη, s)

by (VarTrans≤). Since tγ = tν and uδ = uη, RT n((), T, U)(a1.a2.0.b′) is re-
duced to

RT n((), T, U)(a1.a2.0.b′.b) = (Π
1.2

, Xα2|β2 ≤ U2, Π
4

B` t2ν2 ≤ uη, s) (∗)

by (VarTrans≤). Now, we can apply Lemma 5.20 to the induction hypothesis
on

RT n((), T, U)(a1.a2.0.b′)

and RT n((), T, U)(a1.a3.0.b′) and to (*), so to obtain:

RT n((), T, U)(a1.a3.0.b′.b) =

(Π
1
, Xα1|β1 ≤ U1, Π

3
, Xα3|β3 ≤ U3, Π

4

B` t2τ2 ≤ uυ, s).

This concludes the proof of the last case (ii), hence we have proved the simi-
larity of the subtree Υa1.a2.a3 with respect to the subtrees Υa1.a3 and Υa1.a2 .2

Let us say that two comparisons are “corresponding” if they are generated by
the same sequence of rule applications, starting with two similar comparisons
X ≤ T , in the same proof tree. By Lemma 5.26, if a subtree rooted in X ≤ T
succeeds (up to the next instance of a similar pair) and another subtree, rooted
in a similar pair, fails, then a variable-variable pair must be reduced by (Id≤)
in the first subtree, and the corresponding pair in the second subtree must be
reduced by (Trans≤). For example, in the judgement of Section 4.2, the var-var
pair tα ≤ uη s reduced by (Id≤) at step (6), and the corresponding var-var
pair tυ ≤ uη is reduced by (Trans≤) at step (13), and then fails. Intuitively,
tυ ≤ uη behaves differently from tα ≤ uη because, in the transition from one
comparison to the other, the t variable changed from tα to tυ, while u is uη in
both comparisons. In both tα ≤ uη and tυ ≤ uη comparisons, the t variable
has been defined three steps before, hence it is a different variable, but with
the same De Bruijn index, while u is the same variable, but with a different
De Bruijn index. Let us say that, with respect to these pair of comparisons, t
is “De Bruijn fixed” while u is “fixed”. Our proof shows, essentially, that if we
find two successive corresponding var-var comparisons that are both solved by
(Id≤), this is enough to conclude that the compared variables are both “De
Bruijn-fixed”, or are both “fixed”, and that they will be so with respect to all
other corresponding pairs, and hence their comparison will always by solved
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by (Id≤). Hence, when we have completely explored two successive similar
subtrees, we can safely stop. The end of the second exploration is marked by
the third appearance (modulo similarity) of the same compared pair. This
explains the magic three.

Lemma 5.28 If () B` T ≤ U ∈ Start-J and RT n((), T, U) is a successful and
expandable tree whose expansion node is

RT n((), T, U)(a) = (Π B` T ′ ≤ Yα|β,s)

then the tree RT ((Π, T ′ ≤ Yα|β), T ′, U ′), where U ′ = U ↑ β and Yα = U ∈
Right(Π), is a successful tree. Hence the tree RT n+1((), T, U) is successful
too.

Proof. As in the previous lemma.2

Now we can prove soundness.

Theorem 5.29 (Soundness) For each () B` T ≤ U ∈ Start-J:

() `alg-2
` T ≤ U ⇒ () `∞` T ≤ U

Proof. We have to prove that if RT ((), T, U) is a successful tree then so is
RT ∞((), T, U). By Lemma 5.8 this amounts to showing that each tree of the
sequence (see Definition 5.6)

{RT n(Π, T, U)}n∈N

is successful, and this follows by induction on n, by observing that

RT 0(Π, T, U) = RT ((), T, U)

and by applying Lemmas 5.27 and 5.28 to prove that, for each n, if the tree
RT n(Π, T, U) is successful then RT n+1(Π, T, U) is successful too.2

In the following theorem we prove completeness; unlike soundness, the proof
does not present any particular problems.

Theorem 5.30 (Completeness) For each () B` T ≤ U ∈ Start-J:

() `∞` T ≤ U ⇒ () `alg-2
` T ≤ U

Proof. We have to prove that if RT ∞((), T, U) is a successful tree then so
is RT ((), T, U). This fact follows by Lemma 5.8 and by observing that
RT ((), T, U) = RT 0(Π, T, U).2
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6 Transitivity

In this section we prove that the subtype relation we defined on recursive
kernel Fun is transitive. We decided not to deal here with the terms of the
language kernel Fun and with their reduction relation, since the standard
proof of their basic property (subject reduction) works for recursive kernel
Fun as well, provided that transitivity holds. Hence, in this section we provide
the basic lemma needed to prove that, for recursive kernel Fun, well-typed
programs do not go wrong.

We first prove the transitivity of the labeled version of the system, namely that
for each T, U, V ∈LR-Types such that the three pre-judgements () �` T ≤ U ,
() �` U ≤ V , () �` T ≤ V are in Start-J:

() `∞` T ≤ U and () `∞` U ≤ V ⇒ () `∞` T ≤ V

Then, transitivity of recursive kernel Fun will follow from the equivalence of
the two systems (Theorem 3.27).

To simplify the notation, in this section we will omit the success and fail-
ure labels in the nodes of reduction trees. We start with a couple of lemmas
regarding type variables.

Lemma 6.1 For each () B` T ≤ U ∈ Start-J, for any a such that

RT ∞((), T, U)(a) = (Π �` tα ≤ uβ)

the subtree rooted at RT ∞((), T, U)(a) is successful ⇔

∃ t′η ∈ Bounds(tα, Left(Π)) s.t. (t′η, uβ) ∈ Def(Π)

Proof.
(⇒) By induction on the depth of the subtree rooted at RT ∞((), T, U)(a).
(⇐) By induction on #Bounds(tα, Left(Π)).2

Definition 6.2 For each () �` T ≤ U in Start-J, a path a such that

RT ∞((), T, U)(a) ↓

is called var-var-free if

@ a′ ≺p a such that RT ∞((), T, U)(a′) = (Π �` tα ≤ uβ)

Note that RT ∞((), T, U)(a) = (Π�` tα ≤ uβ) is not excluded by the definition.
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Lemma 6.3 For each () �` T ≤ U , () �` U ≤ V , () �` T ≤ V in Start-J such
that () `∞` T ≤ U and () `∞` U ≤ V , and for each var-var-free path a such
that

RT ∞((), T, V )(a) = (Π′ �` T ′ ≤ V ′)

there exist two paths a1 and a2 and a type U ′ such that

RT ∞((), T, U)(a1) = (Π′′ �` T ′ ≤ U ′)

RT ∞((), U, V )(a2) = (Π′′′ �` U ′ ≤ V ′)

Moreover the three bi-environments Π′, Π′′, Π′′′ satisfy the following properties

1. ∀ (tα, uβ) ∈Def(Π′′).∀ (uβ, vδ) ∈ Def(Π′′′).

(tα, vδ) ∈ Def(Π′)

Bounds(tα, Left(Π′′)) = Bounds(tα, Left(Π′))

Bounds(uβ, Right(Π′′)) = Bounds(uβ, Left(Π′′′))

Bounds(vδ, Right(Π′′′)) = Bounds(vδ, Right(Π′))

2. Xα =A ∈ Right(Π′′) ⇔Xα =A ∈ Left(Π′′′)

3. Xα =A ∈ Left(Π′) ⇔Xα =A ∈ Left(Π′′)

4. Xα =A ∈ Right(Π′) ⇔Xα =A ∈ Right(Π′′′)

Proof. By induction on |a|. The case a = nil is trivial. Suppose that a = a′.a,
with a ∈ {0, 1, 2}, and assume that the lemma holds for the path a′. The
most difficult case is a = 2, the other ones are similar or even simpler. When
a = 2 the node RT ∞((), T, V )(a) has been reduced from RT ∞((), T, V )(a′)
by (∀≤) (see Definition 5.2). Formally:

RT ∞((), T, V )(a′) = (Π
′
�` (µXα.∀tα≤A.T ′) ≤ (µYβ.∀vβ≤B.V ′))

RT ∞((), T, V )(a′.a) = (Π′ �` T ′ ≤ V ′)

where

Π′ = Π
′
, (Xα =µXα.∀tα≤A.T ′, Yβ =µYβ.∀vβ≤B.V ′), (tα, vβ)≤ (A,B)

By the induction hypothesis we have that there exist two paths a′1 and a′2 and
a type U ′′ such that

RT ∞((), T, U)(a′1) = (Π
′′
�` (µXα.∀tα≤A.T ′) ≤ U ′′)

RT ∞((), U, V )(a′2) = (Π
′′′

�` U ′′ ≤ (µYβ.∀vβ≤B.V ′))
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and that the three bi-environments Π
′
, Π

′′
, Π

′′′
satisfy properties 1, 2, 3, 4.

Since RT ∞((), T, U) and RT ∞((), U, V ) are successful, the type U ′′ is either a
µ-∀ type or a recursion variable that unfolds to a µ-∀ type. We consider only
the second case because it is slightly more difficult than the first one.
Hence, suppose that U ′′ = Kτ |θ. We have that

RT ∞((), T, U)(a′1.0) =

(Π
′′
, (µXα.∀tα≤A.T ′ ≤ Kτ |θ) �` µXα.∀tα≤A.T ′ ≤ µKθ.∀sθ ≤ C.D)

RT ∞((), U, V )(a′2.0) =

(Π
′′′
, (Kτ |θ ≤ µYβ.∀vβ≤B.V ′) �` µKθ.∀sθ≤C.D ≤ µYβ.∀vβ≤B.V ′)

where µKθ.∀sθ≤C.D = (µKτ .∀sτ ≤C ′.D′) ↑ θ with

(Kτ =µKτ .∀sτ ≤C ′.D′) ∈ Right(Π
′′
).

Moreover, we have that

RT ∞((), T, U)(a′1.0.2) = (Π
′′
�` T ′ ≤ D)

RT ∞((), U, V )(a′2.0.2) = (Π
′′′

�` D ≤ V ′)

with

Π′′ = Π
′′
, (µXα.∀tα≤A.T ′ ≤ Kτ |θ),

(Xα =µXα.∀tα≤A.T ′, Kθ =µKθ.∀sθ≤C.D), (tα, sθ)≤(A, C)

Π′′′ = Π
′′′
, (Kτ |θ ≤ µYβ.∀vβ≤B.V ′),

(Kθ =µKθ.∀sθ≤C.D, Yβ =µYβ.∀vβ≤B.V ′), (sθ, vβ)≤(C, B)

Now, by the induction hypothesis and by the definition of Π′, Π′′ and Π′′, it
is easy to prove that these bi-environments satisfy properties 1, 2, 3, 4.2

Theorem 6.4 For each ()�`T ≤ U , ()�`U ≤ V , ()�`T ≤ V pre-judgements
in Start-J,

() `∞` T ≤ U and () `∞` U ≤ V ⇒ () `∞` T ≤ V

Proof. We split the proof into two parts. In the first one we prove that all the
nodes in RT ∞((), T, V ) that correspond to a var-var-free path a are success-
ful nodes of RT ∞((), T, V ). Then, in the second part, we prove that all the
subtrees of a reduction tree

RT ∞((), T, V )(a) = (Π′ �` tα ≤ vβ)
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are successful.

(1) Suppose, towards a contradiction, that for a var-var-free path a we have
a failure node (which is actually a leaf) of RT ∞((), T, V ). Formally we
have that

RT ∞((), T, V )(a) = (Π′ �` T ′ ≤ V ′)

where the shape of T ′ and V ′ corresponds to one of the cases of the
following table

T ′ V ′

Top type type variable

Top type µ-∀ type

Top type µ- → type

µ-∀ type µ- → type

µ- → type µ-∀ type

The first three cases can be synthesized in

T ′ = > and V ′ 6= >

In this case, by Lemma 6.3, we have that

RT ∞((), T, U)(a1) = (Π′′ �` > ≤ U ′)

RT ∞((), U, V )(a2) = (Π′′′ �` U ′ ≤ V ′)

SinceRT ∞((), T, U) is successful, it must be that U ′ = >, but this implies
thatRT ∞((), U, V )(a2) is a failure node because of V ′ 6= > and this would
contradict the fact that RT ∞((), U, V ) is successful.
Now suppose that

T ′ = µXα.∀tα≤T ′′.T ′′′ and V ′ = µYβ.V ′′ → V ′′′

By Lemma 6.3 we have that

RT ∞((), T, U)(a1) = (Π′′ �` µXα.∀tα≤T ′′.T ′′′ ≤ U ′)

RT ∞((), U, V )(a2) = (Π′′′ �` U ′ ≤ µYβ.V ′′ → V ′′′)

and, since RT ∞((), T, U)(a1) is successful, it must be that

(1) U ′ = µZη.∀sη≤U ′′.U ′′′ or (2) U ′ = > or (3) U ′ = Zν|η

and Zν|η expands to a type µZη.∀sη≤U ′′.U ′′′ after an application of the
(RUnf≤) rule.
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In the first two cases we immediately have that RT ∞((), U, V )(a2) is a
failure node, while in the third case we have that RT ∞((), U, V )(a2) is
reduced to a failure node after an application of the (LUnf≤) rule, since,
by Lemma 6.3(2), for this node too the variable Zν|η expands to a type
µZη.∀sη≤U ′′.U ′′′ ; hence in both cases we reach a contradiction.
The case

T ′ = µYα.T ′′ → T ′′′ and V ′ = µXβ.∀tβ≤V ′′.V ′′′

is analogous to the one just proved.
(2) Now we prove that all the subtrees of a node

RT ∞((), T, V )(a) = (Π′ �` tα ≤ vβ)

where a is a var-var-free path, are successful.
Suppose that for a var-var-free path a we have that

RT ∞((), T, V )(a) = (Π′ �` tα ≤ vβ)

By Lemma 6.3 we have that

RT ∞((), T, U)(a1) = (Π′′ �` tα ≤ uη)

RT ∞((), U, V )(a2) = (Π′′′ �` uη ≤ vβ)

and by assumption and Lemma 6.1:

∃ t′δ. t′δ ∈ Bounds(tα, Left(Π′′)) (a′)

and (t′δ, uη) ∈ Def(Π′′) (a′′)

∃ u′λ. u′λ ∈ Bounds(uη, Left(Π′′′)) (b′)

and (u′λ, vβ) ∈Def(Π′′′) (b′′)
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Now we observe the following facts

(c) Bounds(u′λ, Left(Π′′′)) ⊆ Bounds(uη, Left(Π′′′))

by (b′)

(d) Bounds(uη, Left(Π′′′)) = Bounds(uη, Right(Π′′))

by Lemma 6.3

(f) u′λ ∈ Bounds(uη, Right(Π′′))

by (b′) and (d)

(g) ∃ t′′θ ∈ Bounds(t′δ, Left(Π′′)) (g1) s.t.

(t′′θ , u
′
λ) ∈Def(Π′′) (g2)

by (a′′), (f) and Lemma 5.17

(h) t′′θ ∈ Bounds(tα, Left(Π′′))

by (g1) and (a′)

(i) Bounds(tα, Left(Π′′)) = Bounds(tα, Left(Π′))

by Lemma 6.3(1)

(l) t′′θ ∈ Bounds(tα, Left(Π′))

by (h) and (i)

(m) (t′′θ , vβ) ∈Def(Π′)

by (g2), (b′′) and Lemma 6.3(1)

By (l), (m) and Lemma 6.1 we can conclude that the subtree rooted at
RT ∞((), T, V )(a) is successful.2

Theorem 6.5 (Transitivity) For each closed pre-judgements () � T ≤ U ,
() � U ≤ V and () � T ≤ V in recursive kernel Fun,

() ` T ≤ U ∧ () ` U ≤ V ⇒ () ` T ≤ V

81



Proof.

By hypothesis: () ` T ≤ U ∧ () ` U ≤ V

By Corollary 3.29,

for any α: () `∞` [{}, α] (T ) ≤ [{}, α] (U) ∧

() `∞` [{}, α] (U) ≤ [{}, α] (V )

By transitivity: () `∞` [{}, α] (T ) ≤ [{}, α] (V )

By Corollary 3.28: () ` Erase([{}, α] (T )) ≤ Erase([{}, α] (V ))

i.e. () ` T ≤ V

2

7 Conclusions

We have studied the subtype relation for recursive types in kernel Fun. This
problem is important because the combination of subtyping, parametric poly-
morphism, and recursion is essential in the context of strongly typed object-
oriented languages.

The main result of this work has been the definition of a subtyping algorithm
for strongly recursive kernel Fun, which was the only one known for this class
of languages (building on a preliminary version of this paper [CG99], Jeffrey
defined in [Jef01] a new algorithm with quite different features).

We have proved our algorithm to be sound and complete and the proof is
technically challenging. We have also been able to prove, by showing non trivial
counterexamples, that the most natural algorithm to attack the problem is
not complete, and that a natural obvious relaxation is not correct. These two
examples explain why we needed to look for a more complex approach. We
consider these counterexamples to be important contributions of this work.

We have proved that our algorithm can be defined without variable renaming.
This makes the algorithm very efficient in practice since, if variable renaming
can be avoided, memory allocation is greatly reduced during the execution
of the subtyping algorithm, and the key step of similarity checking can be
reduced to pointer equality checking. Moreover, this property may allow the
efficient first-order subtype checking algorithm presented in ([KPS93]) to be
imported in this context. That algorithm is based on reusing, in a branch of
a proof, a comparison T ≤ U that has been proved in a different branch. This
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technique seems to be very hard to adopt if variables can be renamed. Simi-
larly, [Ghe96] describes a technique that transforms the standard exponential
subtype checking algorithm for kernel Fun into a PTime algorithm, crucially
exploiting the memorization of already proved judgements. This technique
only works in the absence of renaming.

Finally, we have proved that the subtype relation defined by our algorithm is
transitive. This is the core of the proof of the subject reduction property for
the underlying term language, although, due to lack of space, this problem is
not discussed in this paper.

As a consequence of this work, we now feel the need to study the more general
field of “regular” trees with variables, i.e. those trees that abstractly describe
the terms of a language that combines a µ-like operator with variable binders.
Both our counterexamples involve infinite trees-with-variables that can be
finitely described but that are not regular in the usual sense of the word. The
study of relations coinductively defined on such trees constitutes a generaliza-
tion of this work which would probably shed light on some of the ‘surprising’
results we have described here.
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Appendix A: Recursive Kernel Fun

Syntax

Types T, U ::= > | t | X | µX.∀t≤T.U | µX.T → U

Pre-Judgements P ::= Γ B Env | Γ B T Type | Π B T ≤ U

Judgements J ::= Γ ` Env | Γ ` T Type | Π ` T ≤ U

Bi-Environments Π ::= () | Π, (t, u)≤(T, U) | Π, (X =T, Y =U)

Environments Γ ::= () | Γ, t≤T | Γ, X =T

Good formation rules

() ` Env
(Γ EmptyForm)

t 6∈ Def(Γ) Γ ` T Type

Γ, t≤T ` Env
(Γ BoundForm)

X 6∈ Def(Γ) Γ ` T Type

Γ, X =T ` Env
(Γ EqForm)

t ≤ T ∈ Γ Γ ` T Type

Γ ` t Type
(T-VarForm)

Γ ` Env

Γ ` > Type
(> Form)

X ∈ Def(Γ) Γ ` Env

Γ ` X Type
(R-VarForm)

Γ, X => ` T Type Γ, X => ` U Type

Γ ` µX.T → U Type
(→ Form)

Γ, X =>, t≤T ` U Type

Γ ` µX.∀t≤T.U Type
(∀ Form)

Subtyping rules

Π ` T,> Type

Π ` T ≤ >
(>≤)

(t, u) ∈ Def(Π) Π ` t, u Type

Π ` t ≤ u
(Id≤)

(t, u)≤(T ′, U ′) ∈ Π

for all X. (U 6= X) U 6= > U 6= u Π ` T ′ ≤ U

Π ` t ≤ U
(VarTrans≤)
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Π′ = (Π, (X=µX.T → U, Y =µY.T ′ → U ′))

Swap(Π′) ` T ′ ≤ T Π′ ` U ≤ U ′

Π ` µX.T → U ≤ µY.T ′ → U ′ (→≤)

Π′ = (Π, (X=µX.∀t≤T.U, Y =µY.∀t′≤T ′.U ′))

Π′ ` T $ T ′ Π′, (t, t′)≤(T, T ′) ` U ≤ U ′

Π ` µX.∀t≤T.U ≤ µY.∀t′≤T ′.U ′ (∀≤)

X =T ∈ Left(Π) Π ` T ↑≤ U

Π ` X ≤ U
(LUnf≤)

for all X. (T 6= X) Y =U ∈ Right(Π) Π ` T ≤ U ↑
Π ` T ≤ Y

(RUnf≤)

The symbol ↑ T in ( Unf≤) rules denotes a renaming of both type and recursive
defined variables in T .
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Appendix B: Labeled Recursive Kernel Fun

Syntax

Types T, U ::= >β | tα|β | Xα|β | µXα.∀tα≤T.U

| µXα.T → U

Pre-Judgements P ::= Γ B` Env | Γ B` T Type | Π B` T ≤ U

Judgements J ::= Γ `` Env | Γ `` T Type | Π `` T ≤ U

Bi-Environments Π ::= () | Π, (tα, uβ)≤(T, U)

| Π, (Xα =TX,α, Yδ =UY,δ)

| Π, Xα|β � T | Π, T �Xα|β

Environments Γ ::= () | Γ, tα≤T | Γ, Xα =TX,α | Γ, T

Good formation rules

() `` Env
(Γ EmptyForm)

tα 6∈ Def(Γ) Γ `` T Type

Γ, tα≤T `` Env
(Γ BoundForm)

Γ `` T Type

Γ, T `` Env
(Γ TypeForm)

Xα 6∈ Def(Γ) Γ `` T Type

Γ, Xα =T `` Env
(Γ EqForm)

tα≤T ∈ Γ Γ `` T Type

Γ `` tα|β Type
(T-VarForm)

Γ `` Env

Γ `` >β Type
(> Form)

Xα ∈ Def(Γ) Γ `` Env

Γ `` Xα|β Type
(R-VarForm)

Γ, Xα =>α `` T Type Γ, Xα =>α `` U Type

Γ `` µXα.T → U Type
(→ Form)

Γ, Xα =>α, tα≤T `` U Type

Γ `` µXα.∀tα≤T.U Type
(∀ Form)

Subtyping rules

Π `` T,> Type

Π `` T ≤ >β

(>≤)
(tα, uν) ∈ Def(Π) Π `` tα|β, uν|η Type

Π `` tα|β ≤ uν|η
(Id≤)
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(tα, uν)≤(T ′, U ′) ∈ Π

for all Xθ|δ. (U 6= Xθ|δ) U 6= uν|− U 6= >− Π `` T ′ ≤ U

Π `` tα|β ≤ U
(VarTrans≤)

Π′ = Π, (Xα=µXα.T → U, Yν=µYν .T
′ → U ′)

Swap(Π′) `` T ′ ≤ T Π′ `` U ≤ U ′

Π `` µXα.T → U ≤ µYν .T ′ → U ′ (→≤)

Π′ = Π, (Xα=µXα.∀tα≤T.U, Yν=µYν .∀uν≤T ′.U ′)

Π′ `` T $ T ′ Π′, (tα, uν)≤(T, T ′) `` U ≤ U ′

Π `` µXα.∀tα≤T.U ≤ µYν .∀uν≤T ′.U ′ (∀≤)

Xα =T ∈ Left(Π)

Π, Xα|β ≤ U `` T ↑ β ≤ U

Π `` Xα|β ≤ U
(LUnf≤)

for all Xθ|δ. (T 6= Xθ|δ) Yν =U ∈ Right(Π)

Π, T ≤ Yν|η `` T ≤ U ↑ η

Π `` T ≤ Yν|η
(RUnf≤)

The rules of our sound and complete algorithm are obtained by adding two
new termination rules to the <∞ system and by modifying the unfolding rules
as follows.

Xα|β ≤ U ∈'2 Π Π `` Xα|β, U Type

Π `` Xα|β ≤ U
(LEnd≤)

T ≤ Yν|η ∈'2 Π Π `` T, Yν|η Type

Π `` T ≤ Yν|η
(REnd≤)

Xα|β ≤ U 6∈'2 Π

Xα =T ∈ Left(Π) Π, Xα|β ≤ U `` T ↑ β ≤ U

Π `` Xα|β ≤ U
(LUnf2≤)

T ≤ Yν|η 6∈'2 Π for all Xθ|δ. (T 6= Xθ|δ)

Yν =U ∈ Right(Π) Π, T ≤ Yν|η `` T ≤ U ↑ η

Π `` T ≤ Yν|η
(RUnf2≤)
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Appendix C: Encoding Pair and Bottom Types in Recursive Kernel
Fun

In this appendix we show how to encode pair and bottom types in recursive
Kernel Fun. For our aims, we do not need here to define types whose terms
behave as pairs, or types with no terms; we only need types which reflect pair
and bottom type subtyping behaviour.

Our encoding of pair types is very similar to that proposed by Cardelli et al. in
[CMMS94], where pair types are encoded in terms of unbounded quantification
and arrow types, in an extension of system F with subtyping. In that paper,
if we assume A and B not containing pair types, pairs are encoded as follows:

A×B , ∀t.(A → B → t) → t

with t not free in A and B.

In [CMMS94], the encoding of bottom type is not considered. Here we propose
an encoding that works for both pairs and bottom. More formally, we provide
an encoding from types

A, B ::= ⊥ | > | t | X | µX.∀t≤A.B | µX.A → B | µX.A×B

to types

T, U ::= > | t | X | µX.∀t≤T.U | µX.T → U

Hereafter, we use letters A, B to denote types with bottom and pairs.

We impose that the bound B in µX.∀t≤B.A must not be ⊥; this limitation
preserves the antireflexivity of the system, and does not limit its expressive
power, since a type µX.∀t≤⊥.A just introduces a variable t that is equivalent
to ⊥.

Subtyping among these types is defined by rules <∞ together with the follow-
ing two rules.

Π ` ⊥, A Type

Π ` ⊥ ≤ A
(⊥≤)

Π′ = (Π, (X=µX.A×B, Y =µY.A′ ×B′))

Π′ ` A ≤ A′ Π′ ` B ≤ B′

Π ` µX.A×B ≤ µY.A′ ×B′ (×≤)
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To define the encoding, we first define type negation ¬T as follows:

¬T , µ.(T → >)

where µ.U stands for a type µY.U where Y does not occur free in U .

It is easy to prove that:

() ` ¬T ≤ ¬U ⇔ () ` U ≤ T

and therefore () ` ¬¬T ≤ ¬¬U ⇔ () ` T ≤ U.

The encoding is defined by a pair of functions, external double negation [| |]
and internal double negation (| |). Informally, [|A|] doubly negates A and all
its subterms, while (|A|) only double-negates the subterms. The encoding is
based on the fact that, since > ≥ ¬T for any T , then ¬> ≤ ¬¬T for any T ,
hence ¬> is the bottom type in a set where any other type is doubly negated.
However, the bound of a bounded type variable cannot be doubly negated at
the outermost level.

Consider a comparison ∀t≤A.t ≤ ∀t≤A.A. It gets translated as ∀t≤(|A|).¬¬t ≤
∀t≤(|A|).[|A|]. The rule ∀ reduces this into t≤(|A|) ` ¬¬t ≤ [|A|] which is then
reduced to t≤(|A|) ` t ≤ (|A|), and finally to t≤(|A|) ` (|A|) ≤ (|A|), as desired.
Here, it is crucial that the substitution of t with its bound does not add a new
pair of negations around (|A|). This is even clearer if we consider a situation
like v≤w, u≤v, t≤u ` [|t|] ≤ [|w|]. It is essential that t is substituted by u and
u by w with no double negation added in the process. For this reason, we use
internal double negation for variable bounds. Internal double negation is well
defined since such bounds are never equal to ⊥. The bound regains the needed
external double negation, in a sense, when it is substituted to a variable type
t in the comparison, since t was doubly negated to begin with.

Formally, [| |] and (| |) are defined by mutual recursion as follows. [|A|] is to-
tal, while (|A|) is undefined on ⊥. Internal double negation is defined on bi-
environments as well.

[|⊥|] , ¬>

[|A|] , ¬¬(|A|) if A 6= ⊥

(|⊥|) undefined
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(|>|) , >

(|t|) , t

(|X|) , X

(|µX.A → B|) , µX.[|A|] → [|B|]

(|µX.A×B|) , µX.∀s ≤ [|>|].µ.(µ.[|A|] → µ.([|B|] → s)) → s

where s is a fresh variable

(|µX.∀t ≤ A.B|) , µX.(∀t ≤ (|A|).[|B|])

(|Π, (t, u)≤(A, B)|) , (|Π|), (t, u)≤((|A|), (|B|))

(|Π, (X =A, Y =B)|) , (|Π|), (X =(|A|), Y = (|B|))

This encoding enjoys the following property, where `⊥,× is the subtype relation
of the system extended with ⊥ and ×.

Π `⊥,× A ≤ B ⇔ (|Π|) ` (|A|) ≤ (|B|)

Π `⊥,× A ≤ B ⇔ (|Π|) ` [|A|] ≤ [|B|]

We have first to prove the following inversion lemma.

Lemma 7.1 (|Π|) ` (|A1|) ≤ (|B1|) implies that one of the following conditions
holds.

A1 = A, B1 = >, Π ` (|A|) Type

A1 = t, B1 = u, (t, u)≤((|A′|), (|B′|)) ∈ (|Π|)

A1 = t, (t, u′)≤((|A′|), (|B′|)) ∈ (|Π|),

for all X. ((|B1|) 6= X), (|B1|) 6= >, (|B1|) 6= u, (|Π|) ` (|A′|) ≤ (|B1|)

A1 = µX.A → B, B1 = µY.A′ → B′,

Π′ = (|Π, (X=µX.A → B, Y =µY.A′ → B′)|),

Swap(Π′) ` (|A′|) ≤ (|A|), Π′ ` (|B|) ≤ (|B′|)
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A1 = µX.A×B, B1 = µY.A′ ×B′,

Π′ = (|Π, (X=µX.A×B, Y =µY.A′ ×B′)|),

Π′ ` (|A|) ≤ (|A′|), Π′ ` (|B|) ≤ (|B′|)

A1 = µX.∀t≤A.B, B1 = µY.∀t′≤A′.B′,

Π′ = (|Π, (X=µX.∀t≤A.B, Y =µY.∀t′≤A′.B′)|),

Π′ ` (|A|) $ (|A′|), Π′, (t, t′)≤((|A|), (|A′|)) ` (|B|) $ (|B′|)

A1 = X, B1 = B, X =(|A′|) ∈ Left(Π), (|Π|) ` (|A′|)↑≤ (|B|)

A1 = A, B1 = Y, ∀X. A1 6= X, Y =(|B′|) ∈ Right(Π),

(|Π|) ` (|A|) ≤ (|B′|)↑

Proof. For any A, if its outer constructor is different from ×, the outer con-
structor of (|A|) is the same as that of A, hence (|A|) ≤ (|B|) can only be proved
by using the rules that correspond to their outer constructor. If one among
A and B is a product, then it is mapped to a µ-∀ type, which may be com-
pared, in principle, to the image of a µ-∀ type. However, µX.A×B types are
mapped into µ-∀ types where the upper bound for the variable is [|>|], that
is ¬¬>. Types µX.∀t ≤ A.B, instead, are mapped into µ-∀ types where the
corresponding bound is (|A|), which is always different from [|>|]. This ensures
that it is impossible to prove that [|µX.∀t ≤ A.B|] ≤ (|µY.A′ × B′|), and vice
versa. The rest of the proof is trivial. 2

Lemma 7.2 (|Π|) ` [|A|] ≤ [|B|] ⇔ ((|Π|) ` (|A|) ≤ (|B|) ∨ A = ⊥)

We can now prove the basic theorems.

Theorem 7.3 (|Π|) ` [|A|] ≤ [|B|] ⇒ Π `⊥,× A ≤ B

Proof. We give a coinductive (aka lazy) proof of the existence of a function T
that transforms any proof, finite or infinite, of (|Π|) ` [|A|] ≤ [|B|] into a proof
of Π `⊥,× A ≤ B. If A = ⊥ the thesis is immediate. Otherwise, by Lemma 7.2,
we have that (|Π|) ` (|A|) ≤ (|B|), hence we only have to examine the cases
of Lemma 7.1, and each case allows us to build a piece of the desired proof.
Assume, for example, that we are in case X ≤ B. Lemma 7.1 guarantees the
existence of a proof of (|Π|) ` (|A′|) ↑≤ (|B|). Hence, Lemma 7.2 guarantees
the existence of a proof of (|Π|) ` [|A′|]↑≤ [|B|], hence of (|Π|) ` [|A′ ↑|] ≤ [|B|].
Hence, T can return a proof for Π `⊥,× X ≤ B that is formed by an instance
of the µ rule applied to the result of applying T to a proof of (|Π|) ` [|A′ ↑
|] ≤ [|B|]. 2

Theorem 7.4 Π `⊥,× A ≤ B ⇒ (|Π|) ` [|A|] ≤ [|B|]
Proof. We give a coinductive definition of a function that transforms any proof
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of Π `⊥,× A ≤ B into a proof of (|Π|) ` [|A|] ≤ [|B|]. 2
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