
Linear Time Membership in a Class of Regular
Expressions with Interleaving and Counting

Giorgio Ghelli
Dipartimento di Informatica -

Università di Pisa
ghelli@di.unipi.it

Dario Colazzo
LRI - Université Paris Sud
dario.colazzo@lri.fr

Carlo Sartiani
Dipartimento di Informatica -

Università di Pisa
sartiani@di.unipi.it

ABSTRACT
The extension of Regular Expressions (REs) with an inter-
leaving (shuffle) operator has been proposed in many oc-
casions, since it would be crucial to deal with unordered
data. However, interleaving badly affects the complexity of
basic operations, and, expecially, makes membership NP-
hard [13], which is unacceptable for most uses of REs.

REs form the basis of most XML type languages, such
as DTDs and XML Schema types, and XDuce types [16,
11]. In this context, the interleaving operator would be a
natural addition to the language of REs, as witnessed by
the presence of limited forms of interleaving in XSD (the
all group), Relax-NG, and SGML, provided that the NP-
hardness of membership could be avoided.

We present here a restricted class of REs with interleaving
and counting which admits a linear membership algorithm,
and which is expressive enough to cover the vast majority
of real-world XML types.

We first present an algorithm for membership of a list of
words into a RE with interleaving and counting, based on the
translation of the RE into a set of constraints. We generalize
the approach in order to check membership of XML trees
into a class of EDTDs with interleaving and counting, which
models the crucial aspects of DTDs and XSD schemas.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous

General Terms
Theory

1. INTRODUCTION
Given a family L of extended, or restricted, regular ex-

pressions, membership for L is the problem of determining
whether a word w belongs to the language generated by an
expression e in L. The problem is polynomial (in |w|+ |e|)
when L is the set of standard regular expressions based on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

union, concatenation, and Kleene star, which we denote as
RE{+,·, ∗} [12], and is still polynomial when intersection
∩ is added to the operators. However, membership is NP-
complete for RE{+,·, ∗,&}, the set of REs extended with
an interleaving operator & (to be defined later) [13]. The
simpler combinations RE{·,&}, RE{+,&} and RE{∗,&}
are already NP-hard [13], showing that the NP-hardness of
membership with interleaving is quite robust.

We present here a restricted set of regular expressions with
interleaving which admits a linear-time membership algo-
rithm (using the RAM model to assess time complexity).
The set contains those regular expressions where no symbol
appears twice (called conflict-free or single-occurrence) and
where Kleene star is only applied to symbol disjunctions.
We generalize Kleene star to counting constraints such as
a [2..5] or a [1..∗]. We show how this approach can be gen-
eralized to check membership of XML trees into a class of
EDTDs with interleaving and counting, obtaining an algo-
rithm whose time complexity is linear in the product of the
input size with the maximal alternation depth of all the con-
tent models in the schema. In this context, the restriction
we are proposing is known to be met by the vast majority
of schemas that are produced in practice [10].

Our approach is based on the translation of each regular
expression into a set of constraints, as in [10]. We define
a linear-time translation algorithm, and we then define a
linear-time algorithm to check that a word satisfies the re-
sulting constraints. The algorithm is based on the implicit
representation of the constraints using a tree structure, and
on the parallel verification of all constraints, using a residu-
ation technique. The residuation technique transforms each
constraint into the constraint that has to be verified on the
rest of the word after a symbol has been read; this resid-
ual constraint is computed in constant time. The notion of
residuation is strongly reminiscent of the Brzozowski deriva-
tive of REs [7].

2. TYPE AND CONSTRAINT LANGUAGE

2.1 The Type Language
We follow the terminology of [10], and we use the term

type instead of regular expression. We consider the follow-
ing type language with counting, disjunction, concatenation,
and interleaving, for strings over a finite alphabet Σ; we use
ε for the empty word and for the expression whose language
is {ε}, while a [m..n], with a ∈ Σ, contains the words com-
posed by j repetitions of a, with m ≤ j ≤ n.

T ::= ε | a [m..n] | T + T | T · T | T&T

More precisely, we define N∗ = N ∪ {∗}, and extend the
standard order among naturals with n ≤ ∗ for each n ∈ N∗.
In every type expression a [m..n] we have that m ∈ (N \
{0}), n ∈ (N∗ \{0}), and n ≥ m. Specifically, a [0..n] is
not part of the language, but we use it to abbreviate (ε +
a [1..n]). The operator a [m..n] generalizes Kleene star, but
can only be applied to symbols. Unbounded repetition of a
disjunction of symbols, i.e. (a1 + . . .+an)∗, can be expressed
as ((a1 [0..∗])& . . .&(an [0..∗])).

String concatenation w1 · w2 and language concatenation
L1 · L2 are standard. The shuffle, or interleaving, operator
w1&w2 is also standard, as follows.

Definition 2.1 (v&w, L1&L2) The shuffle set of two words
v, w ∈ Σ∗, or two languages L1, L2 ⊆ Σ∗, is defined as fol-
lows; notice that each vi or wi may be the empty string ε.

v&w =def {v1 · w1 · . . .· vn · wn
| v1 · . . .· vn = v, w1 · . . .· wn = w,
vi ∈ Σ∗, wi ∈ Σ∗, n > 0 }

L1&L2 =def

⋃
w1∈L1, w2∈L2

w1&w2

Example 2.2 (ab)&(XY) contains the permutations of abXY
where a comes before b and X comes before Y :

(ab)&(XY) = {abXY, aXbY, aXY b,XabY,XaY b,XY ab}

Definition 2.3 (S(w), S(T),Atoms(T)) For any string w,
S(w) is the set of all symbols appearing in w. For any type
T , Atoms(T) is the set of all atoms a [m..n] appearing in T ,
and S(T) is the set of all symbols appearing in T .

Semantics of types is defined as follows.

JεK = {ε}
Ja [m..n]K = {w | S(w) = {a}, |w| ≥ m, |w| ≤ n}
JT1 + T2K = JT1K ∪ JT2K
JT1 · T2K = JT1K· JT2K
JT1&T2K = JT1K&JT2K

We will use � to range over · and & when we need to
specify common properties, such as: JT�εK = Jε�T K = JT K.

In this system, no type is empty. Some types contain
the empty string ε (are nullable), and are characterized as
follows.

Definition 2.4 (N(T)) N(T) is a predicate on types, de-
fined as follows:

N(ε) = true

N(a [m..n]) = false

N(T + T ′) = N(T) or N(T ′)

N(T � T ′) = N(T) and N(T ′)

Lemma 2.5 ε ∈ JT K iff N(T).

We can now define the notion of conflict-free types.

Definition 2.6 (Conflict-free types) A type T is conflict-
free if for each subexpression (U + V) or (U � V): S(U) ∩
S(V) = ∅.

Equivalently, a type T is conflict-free if, for any two dis-
tinct subterms a [m..n] and a′ [m′..n′] that occur in T , a is
different from a′.

Remark 2.7 The class of grammars we study is quite re-
strictive, because of the conflict-free limitation and of the
constraint on Kleene-star. However, similar, or stronger,
constraints, have been widely studied in the context of DTDs
and XSD schemas, and it has been discovered that the vast
majority of real-life expressions do respect them.

Conflict-free REs have been studied, for example, as “du-
plicate-free” DTDs in [17, 14], as “Single Occurrence REs”
(SOREs) in [5, 6], as “conflict-free DTDs” in [3, 2]. The
specific limitation that we impose on Kleene-star is reminis-
cent of Chain REs (CHAREs), as defined in [5], which are
slightly more restrictive. That paper states that “an exami-
nation of the 819 DTDs and XSDs gathered from the Cover
Pages (including many high-quality XML standards) as well
as from the web at large, reveals that more than 99% of the
REs occurring in practical schemas are CHAREs (and there-
fore also SOREs)”. Barbosa et al., on the basis of a corpus
of 26604 content models from xml.org, measure that 97,7%
are conflict-free, and 94% are conflict-free and simple, where
simple is a restriction much stronger than our Kleene-star
restriction [2]. Similar results about the prevalence of simple
content models had been reported in [8].

Hereafter, we will silently assume that every type is conflict-
free, although some of the properties we specify are valid for
any type.

We show now how the semantics of a type T can be ex-
pressed by a set of constraints. This alternative character-
ization of type semantics will then be used for membership
checking.

2.2 The Constraint Language
Constraints are expressed using the following logic, where

a, b ∈ Σ and A,B ⊆ Σ, m ∈ (N \{0}), n ∈ (N∗ \{0}), and
n ≥ m:

F ::= A+ | A+ Z⇒ B+ | a?[m..n] | upper(A)
| a ≺ b | F ∧ F ′ | true

Satisfaction of a constraint F by a word w, written w |= F ,
is defined as follows.

w |= A+ ⇔ (S(w) ∩A) 6= ∅, i.e. some a ∈ A
appears in w

w |= A+ Z⇒ B+ ⇔ w 6|= A+ or w |= B+

w |= a?[m..n] ⇔ if a appears in w, then it appears at
(n 6= ∗) least m times and at most n times

w |= a?[m..∗] ⇔ if a appears in w, then it appears at
least m times

w |= upper(A) ⇔ S(w) ⊆ A
w |= a ≺ b ⇔ there is no occurrence of a in w that

follows an occurrence of b in w

w |= F1 ∧ F2 ⇔ w |= F1 and w |= F2

w |= true ⇔ always

We use the following abbreviations:

A+ ⇔ B+ =def A+ Z⇒ B+ ∧B+ Z⇒ A+

a ≺� b =def (a ≺ b) ∧ (b ≺ a)

A ≺ B =def

∧
a∈A,b∈B

a ≺ b

A ≺� B =def

∧
a∈A,b∈B

a ≺� b

false =def ∅+

A− =def A+ Z⇒ ∅+

The next propositions specify that A ≺� B encodes mu-
tual exclusion between sets of symbols, and that A− denotes
the absence of any symbol in A.

Proposition 2.8 w |= a ≺� b ⇔ a and b are not both in
S(w).

Proposition 2.9 w |= A ≺� B ⇔ w 6|= A+ ∧B+

Proposition 2.10 w |= A− ⇔ w 6|= A+

2.3 Constraint Extraction
We can now define the extraction of constraints from types.

To each type T , we associate a formula S+(T) that tests
for the presence of one of its symbols; S+(T) is defined as
(S(T))+.

We can now endow a type T with five sets of constraints,
which hold for every word w ∈ JT K. We start with those
constraints whose definition is flat, since they only depend
on the leaves of the syntax tree of T :

• lower-bound : unless T is nullable (i.e., unless N(T)),
w must include one symbol of S(T);

• cardinality : if a symbol in S(T) appears in w, it must
appear with the right cardinality;

• upper-bound : no symbol out of S(T) may appear in w.

Definition 2.11 (Flat constraints)

Lower-bound:

SIf (T) =def

{
S+(T) if not N(T)

true if N(T)

Cardinality:
ZeroMinMax(T) =def

∧
a[m..n]∈Atoms(T) a?[m..n]

Upper-bound:
upperS(T) =def upper(S(T))

Flat constraints:
FC(T) =def SIf (T) ∧ ZeroMinMax(T)

∧ upperS(T)

We add now the nested constraints, whose definition de-
pends on the internal structure of T ; the quantification “for
any w ∈ JC[T ′]K” below means “for any w ∈ T where T
is any type with a subterm T ′”. All the nested constraints
depend on the fact that T is conflict-free.

• co-occurrence: for any w ∈ JC[T1 � T2]K, unless T2 is
nullable, if a symbol in S(T1) is in w, then a symbol in
S(T2) is in w as well; unless T1 is nullable, if a symbol
in S(T2) is in w, then a symbol in S(T1) is in w as well;

• order : for any w ∈ JC[T1 · T2]K, no symbol in S(T1)
may follow a symbol in S(T2);

• exclusion: for any w ∈ JC[T1 + T2]K, it is not possible
that w has a symbol in S(T1) and also a symbol in
S(T2).

In the formal definition below, If T2
(S+(T1) Z⇒ S+(T2))

denotes, by definition, true when N(T2), and (S(T1))+ Z⇒
(S(T2))+ otherwise. Observe that the exclusion constraints
are actually encoded as order constraints.

Definition 2.12 (Nested constraints)

Co-occurrence:
CC(T1 � T2) =def If T2

(S+(T1) Z⇒ S+(T2))
∧ If T1

(S+(T2) Z⇒ S+(T1))
CC(T) =def true otherwise

Order/exclusion:
OC(T1 + T2) =def S(T1) ≺� S(T2)
OC(T1 · T2) =def S(T1) ≺ S(T2)
OC(T) =def true otherwise

Nested constraints:
NC(T) =def

∧
Ti subterm of T (CC(Ti) ∧ OC(Ti))

As a consequence of the above definition, nested con-
straints have the following property.

Proposition 2.13 (NC(T))

NC(T1 + T2) = (S(T1) ≺� S(T2)) ∧NC(T1) ∧NC(T2)
NC(T1&T2) = If T2

(S+(T1) Z⇒ S+(T2))∧
∧If T1

(S+(T2) Z⇒ S+(T1))∧
NC(T1) ∧NC(T2)

NC(T1 · T2) = (S(T1) ≺ S(T2))
∧If T2

(S+(T1) Z⇒ S+(T2))∧
∧If T1

(S+(T2) Z⇒ S+(T1))∧
∧NC(T1) ∧NC(T2)

NC(ε) = NC(a [m..n]) = true

By definition, when either A or B is “∅”, both A ≺ B and
A ≺� B are true, hence the order constraint associated to
a node where one child has S(Ti) = ∅ is trivial; this typically
happens with a subterm T + ε. For an example of nested
constraint extraction, see the upper part of Figure 1.

The following theorem is proved in [10] and states that
constraints provide a sound and complete characterization
of type semantics.

Theorem 2.14 Given a conflict-free type T , it holds that:

w ∈ JT K ⇔ w |= FC(T) ∧NC(T)

This theorem allows us to reduce membership in T to the
verification of FC(T) ∧NC(T).

3. BASIC RESIDUATION ALGORITHM
We first present an algorithm to decide membership of a

word w in a type T in timeO(|w|∗depth(T)), where depth(T)
is defined as depth(ε) = depth(a [m..n]) = 1, depth(T1 �
T2) = 1 + max(depth(T1), depth(T2)), where � stands for
any binary operator. The algorithm verifies whether the
word satisfies all the constraints associated with T , through
a linear scan of w. The basic observation is that every sym-
bol a of w transforms each constraint F into a residual con-
straint F ′, to be satisfied by the subword w′ that follows the
symbol, according to Table 1. We write F

a→ F ′ to specify
that F is transformed into F ′ by a; in all the cases not cov-
ered by Table 1, we have that F

a→ F . We apply residuation
to the nested constraints only, since flat constraints can be

Co-occurrence
Condition a∈A a ∈ B a ∈ A a ∈ B a ∈ A
Constraint A+ Z⇒ B+ A+ Z⇒ B+ A+ ⇔ B+ A+ ⇔ B+ A+

Residual B+ true B+ A+ true

Order
Condition a ∈ A a ∈ B a ∈ A a ∈ B a ∈ A
Constraint A ≺ B A ≺ B A ≺� B A ≺� B A−

Residual A ≺ B A− B− A− false

Table 1: Computing the residual of a nested con-
straint

checked in linear time by just counting the occurrences of
each symbol in the word.

Residuation is extended from symbols to non-empty se-
quences of symbols in the obvious way:

F
a→ F ′ ⇒ F

a→+ F ′

w 6= ε : F
a→ F ′ ∧ F ′

w→+ F ′′ ⇒ F
aw→+ F ′′

When a word has been read up to the end, the residual
constraint is satisfied iff it is satisfied by ε, that is, if it
is different from A+ or false. This is formalized by the
relations F → εG and F

w→∗G, defined below, with G ∈
{true, false}.

A+ Z⇒ B+ →ε true A+ ⇔ B+ →ε true
A+ →ε false false →ε false
A ≺ B →ε true A ≺� B →ε true
A− →ε true true →ε true

F →εG ⇒ F
ε→∗G

F
w→+ F ′ ∧ F ′ →εG ⇒ F

w→∗G

The following lemma specifies that residuation corresponds
to the semantics of our constraints.

Lemma 3.1 (Residuation) w |= F iff F
w→∗ true.

Residuation gives us immediately a membership algorithm
of complexity O(|w| ∗ |NC(T)|): for each symbol a in w, and
for each constraint F in NC(T), we substitute F with the

residual F ′ such that F
a→ F ′. The word w is in T iff no

false or A+ is in the final set of constraints.
However, as discussed later, we can do much better than

O(|w| ∗ |NC(T)|). First of all, we do not build the con-
straints, but we keep them, and their residuals, implicit in a
tree-shaped data structure with size O(|T |). The structure
initially corresponds to the syntax tree of T , encoded as a
set of nodes and a Parent [] array, such that, for each node
n, Parent[n] is either null or a pair (np,direction); np is the
parent of n, while direction is left if n is the left child of np,
and is right if it is the right child (Figure 1).

The constraints, and their residuals, are encoded using
the following arrays, defined on the same nodes:

• CC[]: for each node n of T , such that A1 and A2

are, respectively, the symbols in the left and right de-
scendants of n, CC[n] is a symbol in the finite set
{⇔, Z⇒,⇐\, L+, R+, true} that specifies the status of
the associated co-occurrence constraint, as follows:

– ⇔: encodes A1
+ ⇔ A2

+;

– Z⇒: encodes A1
+ Z⇒ A2

+;

– ⇐ \: encodes A2
+ Z⇒ A1

+;

8a 9ε

5b 6c 7d4+

2& CC = a+ Z⇒ b+ 3+ OC = c ≺� d

1· CC = ab+⇔ cd+, OC = ab ≺ cd

Parent
1
2 1 left
3 1 right
4 2 left
5 2 right
6 3 left
7 3 right
8 4 left
9 4 right

CC OC
1 ⇔ ≺
2 Z⇒
3 ≺�
4
5
6
7
8
9

NodeOfSym
a 8
b 5
c 6
d 7

Nullable
false

Min Max
a 1 1
b 1 5
c 1 1
d 1 *

Figure 1: Syntax tree for T = ((a+ ε)&b [1..5])· (c+d+),
and the corresponding algorithmic representation;
the two nullable nodes have a double line in the pic-
ture

– L+: encodes the residual constraint A+
1 ;

– R+: encodes the residual constraint A+
2 ;

– true: encodes true.

• OC[]: for each node n, OC[n] specifies the status of
the associated order constraint, and may assume the
following values:

– ≺: encodes A1 ≺ A2;

– ≺�: encodes A1 ≺� A2;

– L−: encodes the residual constraint A1
−;

– R−: encodes the residual constraint A2
−;

– false: encodes the residual constraint false.

• NodeOfSymbol[]: NodeOfSymbol[a] is the only node
na associated with a type a [m..n], for some m and n,
and is null if no such node exists1;

• Min[]/Max[]: Min[a] and Max[a], when different from
null, encode a constraint a?[Min[a]..Max[a]].

• Nullable: Nullable is not an array, but is just a boolean
that is true iff T is nullable.

Table 2 reports the constraint symbols that are initially
associated with a node n that corresponds to a subterm T ′

of the input type. The co-occurrence constraint depends on
the nullability of T1 and T2.

After the constraint representation has been built, the al-
gorithm (Figure 3) reads each character a from the input
word w, scans the ancestors of a [m..n] in the constraint
tree, residuates all the constraints in this branch, and keeps
track of all the A+ constraints that are so generated. At the
end of w, it checks that all the A+ constraints have been fur-
ther residuated into true. It also verifies that each symbol
respects its cardinality constraints, using the Count [] array

1Recall that a symbol appears at most once in each conflict-
free type

T ′ N(T1) N(T2) CC[n] OC[n]

T1· T2 true true true ≺
T1· T2 true false Z⇒ ≺
T1· T2 false true ⇐\ ≺
T1· T2 false false ⇔ ≺
T1&T2 true true true true
T1&T2 true false Z⇒ true
T1&T2 false true ⇐\ true
T1&T2 false false ⇔ true
T1 + T2 S(T1) = ∅ ∨ S(T2) = ∅ true true
T1 + T2 S(T1) 6= ∅ ∧ S(T2) 6= ∅ true ≺�

Table 2: Initialization of constraint annotations.

8a 9ε

5b 6c 7d4+

2& CC=true 3+ OC=c−

1· CC=true, OC=ab−

Figure 2: The tree for T = ((a + ε)&b [1..5]) · (c + d+)
after word bbac has been read

to record the cardinalities, and the CardinalityOK function
to verify the constraints. This final check is clearly linear in
w.

Example 3.2 Consider the type T = ((a+ ε)&b [1..5])· (c+
d+), where we use a to abbreviate a [1..1] and a+ to abbre-
viate a [1..∗]. Its syntax tree is reported in Figure 1.

Assume we read a word bbac. When b is read, the value of
Count [b] is set to 1. The node 5 is retrieved from NodeOf-
Symbol [b], and its ancestors (2,right) and (1,left) are visited.
The constraint CC [2] is Z⇒, the direction of b is right, hence
the constraint becomes true. The constraint CC [1] is ⇔,
the direction is left, hence it becomes R+. Node 1 is also
pushed into ToCheck, since the algorithm must eventually
check that every R+ or L+ has been residuated to true.
Finally, OC [1] is not affected. When the next b is read,
Count [b] becomes 2 (we will ignore Count [] for the next let-
ters), and its ancestors are visited again, but this time none
of them is changed. When a is read, CC [2] is true, hence is
not affected, and CC [1] is R+, hence is not affected. When c
is read, its ancestors (3,left) and (1,right) are visited. OC [3]
becomes R− and OC [1] becomes L−, so that the tree is now
the one represented in figure 2.

The algorithm now verifies that Count [] respects the car-
dinality constraints and that every A+ node pushed into
ToCheck has been residuated to true; since both checks
succeed, it returns true. If the word had been bbacb . . . in-
stead, the algorithm would now find a b, visit nodes (2,right)
and (1,left), and, finding a L− in node 1, would return false
immediately.

The constraint tree can be built in time O(|T |). Moreover,
for every symbol a in w, we only search and update the
nodes which are ancestors of NodeOfSymbol [a], and any such
update has a constant cost, hence the resulting algorithm
runs in O(|T |+ |w| ∗ depth(T)).

Theorem 3.3 (complexity) Member(w,T) runs in time
O(|T |+ |w| ∗ depth(T)).

We can now prove that the algorithm is correct.

Member(w,T)
(Min[],Max[],NodeOfSymbol[],Parent[],CC[],OC[],

Nullable) := ReadType(T);
SetToZero(Count[]);
if (IsEmpty(w) and not Nullable) then return(false); fi;
for a in w
do if (NodeOfSymbol[a] is null) then return(false); fi;

Count[a] := Count[a]+1;
for (n,direction) in Ancestors(NodeOfSymbol[a])
do case (CC[n], direction)

when (Z⇒ or ⇔, left)
then CC[n] := R+; push(n,ToCheck);

when (⇐\ or ⇔, right)
then CC[n] := L+; push(n,ToCheck);

when (⇐\ or L+, left) or (Z⇒ or R+, right)
then CC[n] := True;

else ; esac;

case (OC[n], direction)
when (≺� or ≺, right)

then OC[n] := L−;
when (≺�, left)

then OC[n] := R−;
when (L−, left) or (R−, right)

then return(false);
else ; esac;

od;
od;
if (exists n in ToCheck with (CC[n] 6= True))

then return(false); fi;
if (not CardinalityOK(Count[],Min[],Max[]))

then return(false); fi;
return(true);

Ancestors(n)
if (Parent[n] is null) then return(emptylist);
else return(Parent[n] ++ Ancestors([Parent[n]])); fi;

Figure 3: The basic residuation algorithm.

Theorem 3.4 (soundness) Member(w,T) yields true iff
w∈JT K.

4. THE “ALMOST LINEAR” VERSION
The value of depth(T) can be quite large, in practice, for

example for types with many fields, such as T1· . . .·Tn, or for
types with many alternatives, such as T1 + . . .+ Tn; in this
last case, the type may be much larger than the word itself.
This problem can be easily solved by flattening the con-
straints generated by such types, as follows (SIf (T1, . . . , Tn)
stands for {S+(Ti) | not N(Ti)}; if SIf (T1, . . . , Tn) = ∅,
then CC(T1 � . . . � Tn) is just true). Informally, for each
product type T1 � . . . � Tn, if any symbol from any Ti ap-
pears in w, then every non-nullable Ti must contribute at
least a symbol to w; the other cases are simple.

CC(T1 � . . .� Tn) = (∪i∈1..nS(Ti))
+

Z⇒ SIf (T1, . . . , Tn)

OC(T1 · . . .· Tn) = S(T1) ≺ . . . ≺ S(Tn)

OC(T1 + . . .+ Tn) = ≺� (S(T1), . . . , S(Tn))

Formally, we consider the three n-ary operators above in
the syntax for types, and we generalize the syntax for con-
straints as specified below. The constraints A1

−, . . . , Ai
−

and A1 ≺ . . . ≺ Aj are just two special cases of the con-
straint A1

−, . . . , Ai
−, Ai+1 ≺ . . . ≺ Ai+j , when j = 0 or

i = 0 respectively; when both are zero, the constraint is writ-

ten “true”. As usual, false abbreviates (∅)+. The syntactic
forms below are defined under the condition that i ≥ 0,
j ≥ 0, and A0 ⊇ (A1 ∪ . . . ∪Ai+1).

F ::= A0
+ Z⇒ {A1

+, . . . , Ai+1
+}

| A1
+, . . . , Ai+1

+

| ≺� (A1, . . . , Ai+2)
| A1

−, . . . , Ai
−, Ai+1 ≺ . . . ≺ Ai+j

The semantics of these new constraints is fully defined by
Table 3 plus the final conditions A1

+, . . . , An
+ →ε false and

F →ε true otherwise.
We correspondingly refine the data structures of the resid-

uation algorithm, as follows. Co-occurrence constraints are
represented by an array CC [] of records with the following
fields: CC [n].kind∈ { Z⇒, A+, true}, CC[n].needed [], which
is an array of booleans, and CC[n].neededCount ∈N. Infor-
mally, if we have a type T1 � T2 � T3, where T1 is the only
nullable child, we have a constraint S+(T1 � T2 � T3) Z⇒
(S+(T2), S+(T3)), and we represent it through a record cc
with“cc.kind=(Z⇒)”, with cc.needed []= [false, true, true], spec-
ifying that S+(T1) is “not needed” (since T1 is nullable),
while S+(T2) and S+(T3) are“needed”; cc.neededCount would
contain 2.

The first time we meet any children i, we switch the kind
of cc from (Z⇒) to (A+), and we set cc.needed [i] to false. For
any other child i′ we meet, we will also set its cc.needed [i′]
value to false. Every time we switch a needed [] entry from
true to false, we also decrease the value of cc.neededCount,
so that any constraint of kind (A+) is satisfied when its
cc.neededCount is down to zero.

Order constraints are represented by an array OC [] of
records with fields kind∈{−≺,≺�, A−, true}, and allowed
∈ N. If we have a type T1 · . . . · Tm, the corresponding oc
record has oc.kind=(− ≺) and oc.allowed=1, which corre-
sponds to a constraint S(T1) ≺ . . . ≺ S(Tm). More gen-
erally, oc.kind=(− ≺) with oc.allowed=i, represents a con-
straint A1

−, . . . , Ai−1
−, Ai ≺ . . . ≺ Am, hence, when we

meet a symbol in S(Tj), if j < allowed we return false, and
otherwise we just update oc.allowed to j.

Finally, a type T1 + · · · + Tm is represented by oc with
oc.kind=(≺�), which is residuated into oc.kind=(A−) and
oc.allowed=i when a symbol in S(Ti) is met, and yields false
if, later on, a symbol in S(Ti′) is met with i′ 6= i.

To sum up, we represent these constraints, and their resid-
uals, through the following two arrays; we assume that n is
the node that corresponds to a type T whose children are
T1, . . . , Tm.

• CC[]: for each node n, CC[n] is a record with fields
kind, neededCount and needed [], whose meaning de-
pends on the value of CC [n].kind, as follows:

– Z⇒: CC [n] represents a constraint

(∪i∈1..nS(Ti))
+ Z⇒ {S(Tk(1))

+, . . . , S(Tk(j))
+}

where j is CC [n].neededCount, and where
{k(1), . . . , k(j)} enumerates the indexes i such that
CC [n].needed [i]=true.

– A+: CC [n] represents a constraint

S(Tk(1))
+, . . . , S(Tk(j))

+

where j is CC [n].neededCount, and where

5a 6b 7c 8d 9ε 10e 11f 12g

CC =
abc+ Z⇒ {a+, b+, c+}2& 3+

OC =
≺�(e, f, g)4+

CC = abcdefg+ Z⇒ {abc+, efg+},
OC = abc ≺ d ≺ efg1·

Parent (pos)
1
2 1 1
3 1 2
4 1 3
5 2 1

. . .

CC: kind, needed, nCount
1 Z⇒ [t, f, t] 2
2 Z⇒ [t, t, t] 3
3
4
5

. . .

OC: k., allowed
1 −≺ 1
2
3
4 ≺� -
5

. . .

Figure 4: Representation of T = (a&b&c)·(d∗)·(e+f+g)

{k(1), . . . , k(j)} enumerates the indexes i such that
CC [n].needed [i]=true.

• OC[]: for each node n with m children, CC[n] is a
record with two fields kind and allowed, whose meaning
depends on the kind field, as follows:

– −≺: this is a constraint

A1
−, . . . , Ai−1

−, Ai ≺ . . . ≺ Am
where Aj = S(Tj), and i =CC [n].allowed.

– ≺�: this is a constraint A1
−, . . . , Am

−, where
Aj = S(Tj);

– A−: this is a residual constraint

A1
−, . . . , Ai−1

−, Ai+1
−, . . . , Am

−

where Aj = S(Tj) and i =CC [n].allowed.

We present the modified parts of the algorithm in Figure 5.

Example 4.1 Consider the type T = (a&b&c) · (d∗) · (e +
f + g) (Figure 4), where we use a to abbreviate a [1..1] and
a∗ to abbreviate a [1..∗] + ε.

The record OC [3] is null since only one child has a non-
empty set of symbols. Assume we read a word bcadddgdga.
When b is read, nodes 2 and 1 are visited, and their corre-
sponding constraints are residuated to: CC [2]=(A+,[t, f, t],2),
CC [1]=(A+,[f, f, t],1), OC [1]=(−≺,1). The constraint OC [1]
is actually unaffected, because both allowed and the child
position pos are equal to 1. Both 2 and 1 are inserted
in ToCheck, since they have now an A+ kind. When c
is read, CC [2] becomes (A+,[t, f, f],1) and the constraints
in node 1 are unaffected. When a is read, CC [2] becomes
(true,[f, f, f],0), since its neededCount is 0. When d is read,
3 and 1 are visited; CC [1] is unaffected, since CC [1][2] is al-
ready false, while OC [1] becomes (−≺,2), which means that
symbols from the first subtree are now disallowed. The next
two d’s require two new visits to 3 and 1, which have no
effect. When g is read, OC [4] becomes (A−,3), CC [1] be-
comes (true, [f, f, f],0), and OC [1] becomes (− ≺,3). If
the word ended here, the algorithm would return true, since
both nodes in ToCheck have now kind true. But now a new
d is read, which would residuate OC [1] to false, hence the
algorithm stops with false.

This version of the algorithm is inO(|T |+|w|∗flatdepth(T)),
where flatdepth(T) is the depth of the type after all opera-
tors have been flattened. In practice, flatdepth(T) is almost

Condition Constraint Residual after a

a∈Ai ⊆ A A+ Z⇒ {A1
+, . . . , An+} A1

+, . . . , Ai−1
+, Ai+1

+, . . . , An+

a ∈ A A+ true

a ∈ Ai, n > 1 A1
+, . . . , An+ A1

+, . . . , Ai−1
+, Ai+1

+, . . . , An+

a∈Aj ≺� (A1, . . . , An) A1
−, . . . , Aj−1

−, Aj+1
−, . . . , An−

a∈Aj , j ≤ i A1
−, . . . , Ai

−, Ai+1 ≺ . . . ≺ An false

a∈Aj , j > i A1
−, . . . , Ai

−, Ai+1 ≺ . . . ≺ An A1
−, . . . , Aj−1

−, Aj ≺ . . . ≺ An

Table 3: Residuals of flattened constraints

invariably smaller than three (see [4]), hence this algorithm
is “almost linear”.

MemberFlat(w,T)
...;
fora in w
do ...;

for (n,pos) in Ancestors(NodeOfSymbol[a])
do case CC[n].kind

when (Z⇒) then CC[n].kind := A+;
push(n,ToCheck);
ResiduatePlus(CC[n],pos);

when (A+) then ResiduatePlus(CC[n],pos);
else ; esac;

case OC[n].kind
when (−≺) then if (OC[n].allowed <= pos)

then OC[n].allowed := pos;
else return(false);
fi;

when (≺�) then OC[n].kind := A−;
OC[n].allowed := pos;

when (A−) then if (OC[n].allowed 6= pos)
then return(false);
fi;

else ; esac;
od;

od;
if (exists n in ToCheck with (CC[n].kind 6= True))
then return(false); fi;
...;
return(true);

ResiduatePlus(ccn,childPos)
if (ccn.needed[childPos])
then ccn.needed[childPos] := false;

ccn.neededCount := ccn.neededCount-1;
if (ccn.neededCount =0) then ccn.kind := True fi;

fi

Figure 5: Checking with n-ary operators

Theorem 4.2 (soundness) MemberFlat(w,T) yields true
iff w∈JT K.

Theorem 4.3 (complexity) MemberFlat(w,T) runs in
time O(|T |+ |w| ∗ flatdepth(T)).

5. THE LINEAR ALGORITHM
We present here an orthogonal optimization, which makes

the algorithm truly linear.
The base algorithm visits all the ancestors of NodeOfSym-

bol [a] every time a is found in w, which is redundant. Con-
sider a node n such that A1 and A2 are, respectively, the
symbols in its left and right descendants. Whenever the
constraint of n has been residuated because a symbol of A1

has been met, there is almost no reason to visit n again
because of a symbol from A1 (and the same holds for A2).
There is only one exception: if the constraint is A1 ≺ A2,
then, even after a symbol of A1 has already been seen, a
symbol from A2 transforms the constraint into A1

−, and a
further symbol from A1 cannot be ignored, but will cause
the algorithm to yield “false”.

Formally, we have the following “A2-stability” property.
For any constraint F with shape A1

+ Z⇒ A2
+, A1

+ ⇔ A2
+,

A1 ≺� A2 or A1 ≺ A2, with A1 disjoint from A2, the fol-
lowing holds:

a ∈ A2 ∧ F
aw→+ F ′ ⇒ ∀a′ ∈ A2 F

′ a′
→ F ′

The same property holds for a ∈ A1 and a′ ∈ A1 for all the
constraints but A1 ≺ A2. Specifically, A1-stability is only
violated when a letter b ∈ A2 is in w, as follows:

a∈A1, b∈A2, a
′∈A1 : (A1 ≺ A2)

ab→+ (A1
−)

a′
→ false

The linear algorithm exploits this observation as follows:

1. whenever an upward pointer Parent [child], yielding
(parent,direction), is followed, the same pointer is set
to null, so that it will not be traversed again; however,
the node child is stored in Deleted [parent,direction];

2. to deal with the A1-A2-A1 case of the A1 ≺ A2 con-
straint, when a node parent marked with ≺ is reached
from its right subtree, we use Deleted [parent,left] to
recursively rebuild all the upward pointers in its left
subtree; this is the only case when upward pointers
are rebuilt.

Example 5.1 Consider the type T = ((a+ ε)&b [1..5])· (c+
d+) (Figures 1, 6, and 7), and assume we read a word bbac.
The first time we read b, when we visit the ancestor (2,right),
we assign Parent [5]=null and Deleted [2,right]=5, so that
now 5 has no parent, but the fact that the right child of
2 was 5 is recorded (the pointer from 5 to 2 is “reversed”).
When we then visit (1,left), we also assign Parent [2]=null
and Deleted [1,left]=2. The second time b is read, the parent
of 5 is found to be null, hence no action is taken, apart
from counting b. When a is read, its UnvisitedAncerstors
list only contains (2,left), since the parent of 2 has been
deleted. When node 2 is visited, we set Parent [4]=null and
Deleted [2,left]=4. The situation is depicted in Figure 6.

Now, the arrival of any letter l from {a, b} would only
increment Count [l], but no ancestor would be visited. When
c is read, both Parent [6] and Parent [3] are deleted, but,
since OC [1]=≺ and the direction is right, Reactivate(1,left)
is invoked, which restores all pointers that are reachable

8a 9ε

5b 6c 7d4+

2& CC=true 3+ OC=c ≺� d

1· CC=cd+, OC=ab ≺ cd

Figure 6: The tree for T = ((a + ε)&b [1..5]) · (c + d+)
after word bba has been read; the dotted lines are
those that are represented into the Deleted array.

from the left pointer of 1; the resulting tree is depicted in
Figure 7.

8a 9ε

5b 6c 7d4+

2& CC=true 3+ OC=c−

1· CC=true, OC=ab−

Figure 7: The tree for T = ((a + ε)&b [1..5]) · (c + d+)
after word bbac has been read

The algorithm would now terminate with success. If a
new a or b were read at this point, it would not be missed,
but would cause the algorithm to stop with false.

No upward pointer can be deleted and rebuilt twice. As-
sume that an edge e has been deleted and rebuilt; this only
happens if e is in the left subtree of a node n with constraint
A1 ≺ A2, and two symbols from A1 and A2 have been met,
and hence OC[n] is now L−. If the same e is deleted again,
then the algorithm will return false as soon as the n ances-
tor of e is reached. Hence, any edge is traversed at most
three times, to be deleted, rebuilt, and deleted for good.
Similarly, the linear algorithm visits any internal node of
the type at most three times, arriving twice from the left
subtree and once from the right subtree. Hence, the algo-
rithm has an O(|T |) set-up cost, an O(|w|) cost to access
NodeOfSymbol [a] for |w| times, and a total residuation cost
which is bound by O(|T |), which gives a total of O(|T |+|w|).

The initialization of the algorithm is identical to the non-
optimized version, apart from the construction of the empty
Deleted [] array. The body of the algorithm only changes
when pointers are cut, and in the management of the (≺,
right) case (Figure 8).

Theorem 5.2 (soundness) MemberLin(w,T) yields true
iff w∈JT K.

Theorem 5.3 (complexity) MemberLin(w,T) runs in
time O(|w|+ |T |).

This optimization can be easily combined with flattening,
obtaining a MemberFlatLin version, which would outper-
form MemberFlat in situations where we have long words
with repeated characters, and would outperform MemberLin
when types are “large”, especially if the set-up phase can be
shared by different runs of the algorithms, as discussed in
the next section.

MemberLin(w,T)
...;
for a in w
do ...;

for (nchild,(n,direction))
in UnvisitedAncestors(NodeOfSymbol[a])
do Parent[nchild]:=null;

Deleted[n,direction] := nchild;
case (CC[n], direction)
...;
else ; esac;
case (OC[n], direction)
when (≺�, right) then OC[n] := L−;
when (≺, right) then OC[n] := L−;

Reactivate(n,left);
when (≺�, left) then OC[n] := R−;
when (L−, left) or (R−, right)

then return(false);
else ; esac;

od;
od;
...;

Reactivate(parent,direction)
if (Deleted[parent,direction] is not null)
then child := Deleted[parent,direction];

Deleted[parent,direction] := null;
Parent[child] := (parent,direction);
Reactivate(child,left); Reactivate(child,right);

fi

UnvisitedAncestors(n)
if (Parent[n] is null) then return(emptylist);
else return((n,Parent[n])

++ UnvisitedAncestors([Parent[n]])); fi;

Figure 8: Version in O(|w|+ |T |)

6. MULTI-WORDS CHECKING
We now study the multi-words membership problem, i.e.,

the case where one type T is used to checkm words w1, . . . , wm.
The repeated application of MemberFlatLin gives us an up-
per bound of m∗(|T |+|w|), where |w| is the average length of
the words. This bound is not linear, in general, in the input
size |T |+ (m ∗ |w|). In the special case when |T | ≤ |w|, then
m ∗ (|T |+ |w|) is smaller than 2m ∗ |w|, hence the algorithm
is indeed linear. In the general case, where |T | may be much
bigger than |w|, we get a better result if we avoid re-building
the T structure from scratch after each word is checked. To
this aim, we build the Parent [], CC [], OC [], etc., structures
once, and we also build two copies CCSave[], OCSave[] of
CC [] and OC []. We then run a version MultiFlatLin of the
MemberFlatLin algorithm with an undo-enabling line

Updated[n,direction] := nchild;

added immediately after the line

Deleted[n,direction] := nchild;

After each word is checked, we apply the following code
to the root of the type, to restore Parent [], CC [], OC [],
Updated [], Deleted [], and Count [] to their original state; we
have first built a Symbol [] array that associates each a?[m..n]
node with its symbol a.

OC[root]:= OCSave[root]; CC[root]:= CCSave[root];
RestoreChild(root,left); RestoreChild(root,right);

where

RestoreChild(parent,direction)
if (Updated[parent,direction] is not null)
then child := Updated[parent,direction];

Updated[parent,direction] := null;
Deleted[parent,direction] := null;
Parent[child] := (parent,direction);
OC[child]:= OCSave[child];
CC[child]:= CCSave[child];
if (Symbol[child] is not null)
then Count[Symbol[child]]:=0;
else RestoreChild(child,left);

RestoreChild(child,right);
fi;

fi

This restoring phase does not visit the whole T but only
the modified part, hence is in O(min(|T |, |w|∗flatdepth(T))),
hence, after a set-up phase with cost O(|T |), the cost of
checking each word is in O(min(|w|+|T |, |w|∗flatdepth(T))).

In the “easy case”, when |T | is smaller than |w|, each word
is checked in O(|w|), including the O(|T |) time needed to set-
up and restore the T structure, which gives the same linear
complexity O(m ∗ |w|) as if T were rebuilt from scratch. In
the “hard case”, when |T | is not bound by |w|, we at least
know that this algorithms checks each word, and restores
the structures, in time O(|wi| ∗ flatdepth(T)), giving a total
complexity of O(|T |+m ∗ |w| ∗ flatdepth(T)). If we assume
a constant upper-bound k for flatdepth(T), the complexity
is in O(|T | + m ∗ |w| ∗ k), hence is still linear in the input
size. Without the “restoring” optimization, the total cost
would be O(m ∗ (|T |+ |w|)), which is much worse, since, in
practice, we cannot reasonably assume an upper bound on
either m or |T |.

7. MEMBERSHIP FOR XSD SCHEMAS
We are now ready to extend our techniques from words to

trees. For the purpose of this discussion, we focus on XML
trees where every node is an element node, hence on forests
generated by the following grammar: x ::= ε | 〈a〉x〈/a〉x.

Following a long tradition, (see [9], for example), we model
an XSD schema as an extended DTD, that is, as a quintu-
ple (Σ,∆, τ, µ, ρ), where Σ is a set of labels, ∆ is a set of
type-names, τ is a function mapping each type-name to a
content-model, which is a type expressed on the alphabet
∆, µ is a function from ∆ to Σ, and ρ ∈ ∆ is the root
type-name. Although µ is not injective in general, the El-
ement Declarations Consistent (EDC) constraint specifies
that µ must be injective when restricted to a specific con-
tent model (see [16]). As a consequence, it is possible to
check membership of an XML tree x into an XSD schema as
follows. Membership checking happens in the context of a
specific type-name β, which is initially the root type-name
of the schema, hence of a specific content-model T = τ(β).
To check whether 〈a1〉x1〈/a1〉 . . . 〈an〉xn〈/an〉 satisfies T , we
retrieve the content model Ti = τ(µ−1

β (ai)) of each subele-
ment, check that each xi matches Ti, and check that the
sequence w = µ−1

β (a1) . . . µ−1
β (an) matches T . Here, µ−1

β ()
is the inverse of µ restricted to the type-names appearing in
the content model of β; this inverse function is well-defined
thanks to the EDC constraint.

We assume here that each content model is expressed in
our type language and satisfies the conflict-freedom con-
straint. The cost of verifying whether x satisfies (τ, µ, ρ)

depends on the cost of checking whether a word belongs to
a content model τ(α), as follows. We assume that the XSD
schema contains |J | content models {τ(αj)}j∈J , each of size
|τ(αj)|, that x contains (immediately or recursively) |I| el-
ements {ei}i∈I , and that wi is the sequence of the labels
of the children of ei. We assume that MultiFlatLin is used
for word-membership. We have a set-up phase with cost
O(

∑
j∈J |τ(αj)|) = O(|τ |). We have a checking phase with

cost O(min(|τ(αi)| + |wi|, |wi| ∗ flatdepth(τ(αi)))) for each
wi ∈ Jτ(αi)K test.2 If the size of each wi dominates the size
of τ(αi), then the total cost is linear, by∑

i∈I min(|τ(αi)|+ |wi|, |wi| ∗ flatdepth(τ(αi)))

≤
∑
i∈I(|τ(αi)|+ |wi|)

≤ 2
∑
i∈I |wi| ≤ 2|x|

Here we exploit the optimization described in Section 5. Ob-
serve that it is not true, in general, that

∑
i∈I |τ(αi)| ≤ |τ |

since the set I enumerates the elements inside x, not the
components of τ .

This linear approximation does not hold when τ(αi) may
be bigger than wi, as happens in cases where complex con-
tent models are used to check documents where each element
has a small number of children. In this case, which is quite
common, we still have a quasi-linear complexity, by:∑

i∈I min(|τ(αi)|+ |wi|, |wi| ∗ flatdepth(τ(αi)))

≤
∑
i∈I(|wi| ∗ flatdepth(τ(αi)))

≤ (
∑
i∈I |wi|) ∗max(flatdepth(τ(αi)))

≤ |x| ∗max(flatdepth(τ(αi)))

This upper bound is linear if we assume a constant upper
bound k for flatdepth(τ(αi)). Here we exploit the combined
optimizations described in Section 4 and Section 6.

Since DTDs can be modeled as a special case of EDTDs,
this quasi-linearity result holds for DTDs as well.

8. EXPERIMENTAL EVALUATION
To validate the usefulness of our approach and its theo-

retical properties, we built a prototype implementation of
our linear algorithm (Xelf), and briefly analyzed its scala-
bility properties when used on XML trees. To better under-
stand the behaviour of our approach, we also compared our
implementation with a validating SAX parser and a non-
validating SAX parser.

We analyze the behaviour of Xelf on XML documents of
increasing size, so to expose its scalability properties.

8.1 Experimental Setup
Our algorithm has been implemented in Java 1.5 and all

experiments were performed on a 2.16 Ghz Intel Core 2 Duo
machine (1 GB main memory) running Mac OSX 10.5.2.
To avoid issues related to independent system activities, we
ran each experiments five times, discarded both the highest
(worst) and the lowest (best) processing times, and reported
the average processing time of the remaining runs.

We compared our algorithm with the standard SAX parsers
of Java 1.5 (based on Xerces [1]).

2Although XSD-checking uses top-down recursion, its to-
tal run-time can be still evaluated by just adding the time
needed to verify that the wi label sequence of each element,
at any depth level in the document, matches the element
content model

Figure 9: Scalability of Xelf.

We evaluated our system on a dataset containing 10 in-
stances of XMark [15], ranging from 110 MBs to 1.09 GBs.

8.2 Experiments
The experimental results we obtained are shown in Figure

9. First of all, these results show a linear behavior, hence
confirming our complexity analysis. Furthermore, as illus-
trated by the diagram, our approach is extremely scalable,
while the validating SAX parser was unable to complete
the validation process on documents of size larger than 680
MBytes, due to memory consumption; this suggests that our
algorithm has a limited memory footprint and that it can
be profitably used for online validation.

This suggestion has been confirmed by further experi-
ments, where we measured the memory used by our ap-
proach during the validation of our dataset: in these exper-
iments our algorithm used no more than 301 KBytes during
validation, even on very big documents.

We do not precisely know why the validating SAX parser
fails in validating large XMark documents: we believe that
the deep nesting of XMark documents may have caused the
problem, but we have no real evidences.

As we expected, our prototype implementation is slower
than the validating SAX parser; however, our implemen-
tation is just a proof-of-concept, while Xerces is a long-
standing and highly optimized parser.

9. CONCLUSIONS
Membership checking is NP-hard for REs with interleav-

ing. We have presented here a subclass of these REs which
admits a simple polynomial membership algorithm. The al-
gorithm is based on the transformation of the RE into a
set of constraints, and on the parallel incremental residua-
tion of these constraints. We have discussed the practical
relevance of this class of extended REs, and have presented
some optimizations that make our algorithm linear in the
size of |T | + |w|. Apart from the practical motivations, we
believe that it is important to understand how far the ex-
pressive power of REs can be extended with“hard”operators
such as interleaving and counting before making member-
ship NP-hard. Our algorithm is not linear when used to
check m words {wi}i∈1..m against one type T , since T ap-
pears once in the input, but it is visited m times by the

algorithm. We have presented an optimization that makes
the algorithm almost linear for repeated checking, that is,
makes it linear in |T | + (

∑
i∈1..m |wi|) ∗ flatdepth(T), and

flatdepth(T) is very small in practice. Repeated checking
is at the heart of XML membership checking with respect
to DTDs and XSD schemas, hence the same quasi-linear
complexity is preserved when we use our approach for XML
membership checking. Finally, we experimentally validated
the scalability properties of our approach.

10. REFERENCES
[1] http://xerces.apache.org/.

[2] D. Barbosa, G. Leighton, and A. Smith. Efficient
incremental validation of XML documents after
composite updates. In XSym, volume 4156 of LNCS,
pages 107–121. Springer, 2006.

[3] D. Barbosa, A. O. Mendelzon, L. Libkin, L. Mignet,
and M. Arenas. Efficient incremental validation of
XML documents. In ICDE, pages 671–682. IEEE
Computer Society, 2004.

[4] G. J. Bex, F. Neven, and J. V. den Bussche. DTDs
versus XML schema: A practical study. In WebDB,
pages 79–84, 2004.

[5] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls.
Inference of concise DTDs from XML data. In VLDB,
pages 115–126, 2006.

[6] G. J. Bex, F. Neven, and S. Vansummeren. Inferring
XML schema definitions from XML data. In VLDB,
pages 998–1009, 2007.

[7] J. Brzozowski. Derivates of regular expression. Journal
of the ACM, 11:481–494, 1964.

[8] B. Choi. What are real DTDs like? In WebDB, pages
43–48, 2002.

[9] W. Gelade, W. Martens, and F. Neven. Optimizing
schema languages for XML: Numerical constraints and
interleaving. In ICDT, 2007.

[10] G. Ghelli, D. Colazzo, and C. Sartiani. Efficient
inclusion for a class of XML types with interleaving
and counting. In DBPL, 2007.

[11] H. Hosoya and B. C. Pierce. XDuce: A statically
typed XML processing language. ACM Transactions
on Internet Technology, 3(2):117–148, May 2003.

[12] J.E. Hopcroft and J.D. Ullman. Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[13] A. J. Mayer and L. J. Stockmeyer. Word problems —
this time with interleaving. Inf. Comput.,
115(2):293–311, 1994.

[14] M. Montazerian, P. T. Wood, and S. R. Mousavi.
XPath query satisfiability is in PTIME for real-world
DTDs. In XSym, volume 4704 of LNCS, pages 17–30.
Springer, 2007.

[15] A. Schmidt, F. Waas, M. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Technical report, Centrum voor
Wiskunde en Informatica, April 2001.

[16] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema Part 1: Structures
Second Edition. Technical report, World Wide Web
Consortium, Oct 2004. W3C Recommendation.

[17] P. T. Wood. Containment for xpath fragments under
DTD constraints. In ICDT, pages 300–314, 2003.

