
Linear Time Membership for a Class of XML Types with
Interleaving and Counting

Giorgio Ghelli
Dipartimento di Informatica - Università

di Pisa
ghelli@di.unipi.it

Dario Colazzo
LRI - Université Paris Sud

dario.colazzo@lri.fr

Carlo Sartiani
Dipartimento di Informatica - Università

di Pisa
sartiani@di.unipi.it

Abstract
Regular Expressions (REs) form the basis of most XML type lan-
guages, such as DTDs, XML Schema types, and XDuce types (Thomp-
son et al. 2004; Hosoya and Pierce 2003). In this context, the in-
terleaving operator would be a natural addition to the language of
REs, as witnessed by the presence of limited forms of interleav-
ing in XSD (the all group), Relax-NG, and SGML. Unfortunately,
membership checking for REs with interleaving is NP-hard in gen-
eral. We present here a restricted class of REs with interleaving
and counting which admits a linear membership algorithm. This
restricted class is known to be expressive enough for the vast ma-
jority of the content models used in real-world DTDs and XSD
schemas; moreover, we have proved in (Ghelli et al. 2007) that the
same class admits a polynomial algorithm for subtyping and type-
equivalence, problems which are EXPSPACE-complete for the full
language of REs with interleaving.

We first present an algorithm for membership of a list of words
into a RE with interleaving and counting, based on the translation
of the RE into a set of constraints. We generalize the approach in
order to check membership of XML trees into a class of EDTDs
with interleaving and counting, which models the crucial aspects
of DTDs and XSD schemas. Finally, we extend the approach to
REs with intersection.

1. Introduction
Given a family L of extended, or restricted, regular expressions,
membership for L is the problem of determining whether a word
w belongs to the language generated by an expression e in L.
The problem is polynomial (in |w| + |e|) when L is the set of
standard regular expressions based on union, concatenation, and
Kleene star, which we denote as RE{+,·, ∗} (J.E. Hopcroft and
J.D. Ullman 1979), and is still polynomial when intersection ∩
is added to the operators. However, membership is NP-complete
for RE{+,·, ∗,&}, the set of REs extended with an interleaving
operator & (to be defined later) (Mayer and Stockmeyer 1994).
The simpler combinations RE{·,&}, RE{+,&} and RE{∗,&}
are already NP-hard (Mayer and Stockmeyer 1994), showing that
the NP-hardness of membership with interleaving is quite robust.

[Copyright notice will appear here once ’preprint’ option is removed.]

We present here a restricted set of regular expressions with in-
terleaving which admits a linear-time membership algorithm (using
the RAM model to assess time complexity). The set contains those
regular expressions where no symbol appears twice (called conflict-
free or single-occurrence) and where Kleene star is only applied
to symbol disjunctions. We generalize Kleene star to counting con-
straints such as a [2..5] or a [1..∗], and we also include intersection.
We show how this approach can be generalized to check member-
ship of XML trees into a class of EDTDs with interleaving and
counting, obtaining an algorithm whose time complexity is linear
in the product of the input size with the maximal alternation depth
of all the content models in the schema. In this context, the restric-
tion we are proposing is known to be met by the vast majority of
schemas that are produced in practice (Ghelli et al. 2007).

Our approach is based on the translation of each regular expres-
sion into a set of constraints, as in (Ghelli et al. 2007). We define a
linear-time translation algorithm, and we then define a linear-time
algorithm to check that a word satisfies the resulting constraints.
The algorithm is based on the implicit representation of the con-
straints using a tree structure, and on the parallel verification of
all constraints, using a residuation technique. The residuation tech-
nique transforms each constraint into the constraint that has to be
verified on the rest of the word after a symbol has been read; this
residual constraint is computed in constant time. The notion of
residuation is strongly reminiscent of the Brzozowski derivative of
REs (Brzozowski 1964).

2. Type Language and Constraint Language
2.1 The Type Language
We follow the terminology of (Ghelli et al. 2007), and we use the
term type instead of regular expression. We consider the following
type language with counting, disjunction, concatenation, and inter-
leaving, for strings over a finite alphabet Σ; we use ε for the empty
word and for the expression whose language is {ε}, while a [m..n],
with a ∈ Σ, contains the words composed by j repetitions of a,
with m ≤ j ≤ n.

T ::= ε | a [m..n] | T + T | T · T | T&T

More precisely, we define N∗ = N ∪ {∗}, and extend the stan-
dard order among naturals with n ≤ ∗ for each n ∈ N∗. In every
type expression a [m..n] we have that m ∈ (N \{0}), n ∈ (N∗ \
{0}), and n ≥ m. Specifically, a [0..n] is not part of the language,
but we use it to abbreviate (ε + a [1..n]). The operator a [m..n]
generalizes Kleene star, but can only be applied to symbols. Un-
bounded repetition of a disjunction of symbols, i.e. (a1+. . .+an)∗,
can be expressed as ((a1 [0..∗])& . . .&(an [0..∗])).

1 2008/1/4

To formally define the semantics of these types, we adopt the
usual definitions for string concatenation w1 · w2, and for the con-
catenation of two languages L1 · L2. The shuffle, or interleaving,
operator w1&w2 is also standard, and is defined as follows.

Definition 2.1 (v&w, L1&L2) The shuffle set of two words v, w ∈
Σ∗, or two languages L1, L2 ⊆ Σ∗, is defined as follows; notice
that each vi or wi may be the empty string ε.

v&w =def {v1 · w1 · . . .· vn · wn
| v1 · . . .· vn = v, w1 · . . .· wn = w,

vi ∈ Σ∗, wi ∈ Σ∗, n > 0 }
L1&L2 =def

⋃
w1∈L1, w2∈L2

w1&w2

Example 2.2 (ab)&(XY) contains the permutations of abXY
where a comes before b and X comes before Y :

(ab)&(XY) = {abXY, aXbY, aXY b,XabY,XaY b,XY ab}

Definition 2.3 (S(w), S(T),Atoms(T)) For any string w, S(w)
is the set of all symbols appearing inw. For any type T , Atoms(T)
is the set of all atoms a [m..n] appearing in T , and S(T) is the set
of all symbols appearing in T .

Semantics of types is defined as follows.

JεK = {ε}
Ja [m..n]K = {w | S(w) = {a}, |w| ≥ m, |w| ≤ n}
JT1 + T2K = JT1K ∪ JT2K
JT1 · T2K = JT1K· JT2K
JT1&T2K = JT1K&JT2K

We will use � to range over · and & when we need to specify
common properties, such as: JT � εK = Jε� T K = JT K.

In this system, no type is empty. Some types contain the empty
string ε (are nullable), and are characterized as follows.

Definition 2.4 (N(T)) N(T) is a predicate on types, defined as
follows:

N(ε) = true
N(a [m..n]) = false
N(T + T ′) = N(T) or N(T ′)

N(T � T ′) = N(T) and N(T ′)

Lemma 2.5 ε ∈ JT K iff N(T).

We can now define the notion of conflict-free types.

Definition 2.6 (Conflict-free types) A type T is conflict-free if for
each subexpression (U + V) or (U � V): S(U) ∩ S(V) = ∅.

Equivalently, a type T is conflict-free if, for any two distinct
subterms a [m..n] and a′ [m′..n′] that occur in T , a is different
from a′.

Remark 2.7 The class of grammars we study is quite restrictive,
because of the conflict-free limitation and of the constraint on
Kleene-star. However, similar, or stronger, constraints, have been
widely studied in the context of DTDs and XSD schemas, and it
has been discovered that the vast majority of real-life expressions
do respect them.

Conflict-free REs have been studied, for example, as “duplicate-
free” DTDs in (Wood 2003; Montazerian et al. 2007), as “Single
Occurrence REs” (SOREs) in (Bex et al. 2006, 2007), as “conflict-
free DTDs” in (Barbosa et al. 2004, 2006). The specific limita-
tion that we impose on Kleene-star is reminiscent of Chain REs

(CHAREs), as defined in (Bex et al. 2006), which are slightly more
restrictive. That paper states that “an examination of the 819 DTDs
and XSDs gathered from the Cover Pages (including many high-
quality XML standards) as well as from the web at large, reveals
that more than 99% of the REs occurring in practical schemas are
CHAREs (and therefore also SOREs)”. Barbosa et al., on the ba-
sis of a corpus of 26604 content models from xml.org, measure
that 97,7% are conflict-free, and 94% are conflict-free and simple,
where simple is a restriction much stronger than our Kleene-star re-
striction (Barbosa et al. 2006). Similar results about the prevalence
of simple content models had been reported in (Choi 2002).

Hereafter, we will silently assume that every type is conflict-
free, although some of the properties we specify are valid for any
type.

We show now how the semantics of a type T can be expressed
by a set of constraints. This alternative characterization of type
semantics will then be used for membership checking.

2.2 The Constraint Language
Constraints are expressed using the following logic, where a, b ∈ Σ
and A,B ⊆ Σ, m ∈ (N \{0}), n ∈ (N∗ \{0}), and n ≥ m:

F ::= A+ | A+ Z⇒ B+ | a?[m..n] | upper(A)
| a ≺ b | F ∧ F ′ | true

Satisfaction of a constraint F by a word w, written w |= F , is
defined as follows.

w |= A+ ⇔ (S(w) ∩A) 6= ∅, i.e. some a ∈ A
appears in w

w |= A+ Z⇒ B+ ⇔ w 6|= A+ or w |= B+

w |= a?[m..n] ⇔ if a appears in w, then it appears at
(n 6= ∗) least m times and at most n times

w |= a?[m..∗] ⇔ if a appears in w, then it appears at
least m times

w |= upper(A) ⇔ S(w) ⊆ A
w |= a ≺ b ⇔ there is no occurrence of a in w that

follows an occurrence of b in w
w |= F1 ∧ F2 ⇔ w |= F1 and w |= F2

w |= true ⇔ always

We use the following abbreviations:

A+ ⇔ B+ =def A+ Z⇒ B+ ∧B+ Z⇒ A+

a ≺� b =def (a ≺ b) ∧ (b ≺ a)

A ≺ B =def

∧
a∈A,b∈B

a ≺ b

A ≺� B =def

∧
a∈A,b∈B

a ≺� b

false =def ∅+

A− =def A+ Z⇒ ∅+

The next propositions specify thatA ≺� B encodes mutual ex-
clusion between sets of symbols, and that A− denotes the absence
of any symbol in A.

Proposition 2.8 w |= a ≺� b ⇔ a and b are not both in S(w).

Proposition 2.9 w |= A ≺� B ⇔ w 6|= A+ ∧B+

Proposition 2.10 w |= A− ⇔ w 6|= A+

2 2008/1/4

2.3 Constraint Extraction
We can now define the extraction of constraints from types.

To each type T , we associate a formula S+(T) that tests for the
presence of one of its symbols; S+(T) is defined as (S(T))+.

We can now endow a type T with five sets of constraints on
every word w ∈ JT K. We start with those constraints whose
definition is flat, since they only depend on the leaves of the syntax
tree of T :

• lower-bound: unless T is nullable (i.e., unless N(T)), w must
include one symbol of S(T);

• cardinality: if a symbol in S(T) appears in w, it must appear
with the right cardinality;

• upper-bound: no symbol out of S(T) may appear in w.

Definition 2.11 (Flat constraints)
Lower-bound:

SIf (T) =def

{
S+(T) if not N(T)

true if N(T)

Cardinality:
ZeroMinMax(T) =def

∧
a[m..n]∈Atoms(T) a?[m..n]

Upper-bound:
upperS(T) =def upper(S(T))

Flat constraints:
FC(T) =def SIf (T) ∧ ZeroMinMax(T)

∧ upperS(T)

We add now the nested constraints, whose definition depends
on the internal structure of T ; the quantification “for any w ∈
JC[T ′]K” below means “for any w ∈ T where T is any type with a
subterm T ′”. All the nested constraints depend on the fact that T is
conflict-free.

• co-occurrence: for any w ∈ JC[T1 � T2]K, unless T2 is nul-
lable, if a symbol in S(T1) is in w, then a symbol in S(T2) is
in w as well; unless T1 is nullable, if a symbol in S(T2) is in
w, then a symbol in S(T1) is in w as well;

• order: for anyw ∈ JC[T1·T2]K, no symbol in S(T1) may follow
a symbol in S(T2);

• exclusion: for any w ∈ JC[T1 + T2]K, it is not possible that w
has a symbol in S(T1) and also a symbol in S(T2).

In the formal definition below, If T2
(S+(T1) Z⇒ S+(T2))

denotes, by definition, true when N(T2), and (S(T1))+ Z⇒
(S(T2))+ otherwise. Observe that the exclusion constraints are
actually encoded as order constraints.

Definition 2.12 (Nested constraints)
Co-occurrence:
CC(T1 � T2) =def If T2

(S+(T1) Z⇒ S+(T2))
∧ If T1

(S+(T2) Z⇒ S+(T1))
CC(T) =def true otherwise

Order/exclusion:
OC(T1 + T2) =def S(T1) ≺� S(T2)
OC(T1 · T2) =def S(T1) ≺ S(T2)
OC(T) =def true otherwise

Nested constraints:
NC(T) =def

∧
Ti subterm of T (CC(Ti) ∧ OC(Ti))

By definition, when either A or B is “∅”, both A ≺ B and
A ≺� B are true, hence the order constraint associated to a

node where one child has S(Ti) = ∅ is trivial; this typically
happens with a subterm T + ε. For an example of nested constraint
extraction, see the upper part of Figure 1.

The following theorem is proved in (Ghelli et al. 2007) and
states that constraints provide a sound and complete characteriza-
tion of type semantics.

Theorem 2.13 Given a conflict-free type T , it holds that:

w ∈ JT K ⇔ w |= FC(T) ∧NC(T)

This theorem allows us to reduce membership in T to the veri-
fication of FC(T) ∧NC(T).

3. Basic Residuation Algorithm
We first present an algorithm to decide membership of a word
w in a type T in time O(|w| ∗ depth(T)), where depth(T) is
defined as depth(ε) = depth(a [m..n]) = 1, depth(T1 � T2) =
1 + max(depth(T1), depth(T2)), where � stands for any binary
operator. The algorithm verifies whether the word satisfies all the
constraints associated with T , through a linear scan ofw. The basic
observation is that every symbol a of w transforms each constraint
F into a residual constraint F ′, to be satisfied by the subword w′

that follows the symbol, according to Table 1. We write F a→ F ′

to specify that F is transformed into F ′ by a; in all the cases not
covered by Table 1, we have that F a→ F . We apply residuation to
the nested constraints only, since flat constraints can be checked in
linear time by just counting the occurrences of each symbol in the
word.

Residuation is extended from symbols to non-empty sequences
of symbols in the obvious way:

F
a→ F ′ ⇒ F

a→+ F ′

w 6= ε : F
a→ F ′ ∧ F ′

w→+ F ′′ ⇒ F
aw→+ F ′′

When a word has been read up to the end, the residual constraint is
satisfied iff it is satisfied by ε, that is, if it is different from A+ or
false. This is formalized by the relations F →εG and F w→∗G,
defined below, with G ∈ {true, false}.
A+ Z⇒ B+ →ε true A+ ⇔ B+ →ε true
A+ →ε false false →ε false
A ≺ B →ε true A ≺� B →ε true
A− →ε true true →ε true

F →εG ⇒ F
ε→∗G

F
w→+ F ′ ∧ F ′ →εG ⇒ F

w→∗G
The following lemma specifies that residuation corresponds to

the semantics of our constraints.

Lemma 3.1 (Residuation) w |= F iff F w→∗ true.

Residuation gives us immediately a membership algorithm of
complexity O(|w| ∗ |NC(T)|): for each symbol a in w, and for
each constraint F in NC(T), we substitute F with the residual F ′

such that F a→ F ′. The word w is in T iff no false or A+ is in the
final set of constraints.

However, as it will be discussed later, we can do much better
thanO(|w|∗|NC(T)|). First of all, we do not build the constraints,
but we keep them, and their residuals, implicit in a tree-shaped
data structure with size O(|T |). The structure initially corresponds
to the syntax tree of T , encoded as a set of nodes and a Parent[]
array, such that, for each node n, Parent[n] is either null or a pair
(np,direction); np is the parent of n, while direction is left if n is
the left child of np, and is right if it is the right child (Figure 1).

The constraints, and their residuals, are encoded using the fol-
lowing arrays, defined on the same nodes:

3 2008/1/4

Co-occurrence
Condition a∈A a ∈ B a ∈ A a ∈ B a ∈ A
Constraint A+ Z⇒ B+ A+ Z⇒ B+ A+ ⇔ B+ A+ ⇔ B+ A+

Residual B+ true B+ A+ true

Order
Condition a ∈ A a ∈ B a ∈ A a ∈ B a ∈ A
Constraint A ≺ B A ≺ B A ≺� B A ≺� B A−

Residual A ≺ B A− B− A− false

Table 1. Computing the residual of a nested constraint

8a 9ε

5b 6c 7d4+

2& CC = a+ Z⇒ b+ 3+ OC = c ≺� d

1· CC = ab+⇔ cd+, OC = ab ≺ cd

Parent
1
2 1 left
3 1 right
4 2 left
5 2 right
6 3 left
7 3 right
8 4 left
9 4 right

CC OC
1 ⇔ ≺
2 Z⇒
3 ≺�
4
5
6
7
8
9

NodeOfSym
a 8
b 5
c 6
d 7

Nullable
false

Min Max
a 1 1
b 1 5
c 1 1
d 1 *

Figure 1. Syntax tree for T = ((a+ε)&b [1..5])·(c+d+), and the
corresponding algorithmic representation; the two nullable nodes
have a double line in the picture

• CC[]: for each node n of T , such that A1 and A2 are, respec-
tively, the symbols in the left and right descendants of n, CC[n]
is a symbol in the finite set {⇔, Z⇒,⇐ \, L+, R+, true} that
specifies the status of the associated co-occurrence constraint,
as follows:

⇔: encodes A1
+ ⇔ A2

+;

Z⇒: encodes A1
+ Z⇒ A2

+;

⇐\: encodes A2
+ Z⇒ A1

+;

L+: encodes the residual constraint A+
1 ;

R+: encodes the residual constraint A+
2 ;

true: encodes true.
• OC[]: for each node n, OC[n] specifies the status of the associ-

ated order constraint, and may assume the following values:

≺: encodes A1 ≺ A2;

≺�: encodes A1 ≺� A2;

L−: encodes the residual constraint A1
−;

R−: encodes the residual constraint A2
−;

false: encodes the residual constraint false.
• NodeOfSymbol[]: NodeOfSymbol[a] is the only node nd asso-

ciated with a type a [m..n], for some m and n, and is null if no
such node exists1;

1 Recall that a symbol appears at most once in each conflict-free type

T ′ N(T1) N(T2) CC[n] OC[n]

T1· T2 true true true ≺
T1· T2 true false Z⇒ ≺
T1· T2 false true ⇐\ ≺
T1· T2 false false ⇔ ≺
T1&T2 true true true true
T1&T2 true false Z⇒ true
T1&T2 false true ⇐\ true
T1&T2 false false ⇔ true
T1 + T2 S(T1) = ∅ ∨ S(T2) = ∅ true true
T1 + T2 S(T1) 6= ∅ ∧ S(T2) 6= ∅ true ≺�

Table 2. Initialization of constraint annotations.

• Min[]/Max[]: Min[a] and Max[a], when different from null,
encode a constraint a?[Min[a]..Max[a]].

• Nullable: Nullable is not an array, but is just a boolean that is
true iff T is nullable.

Table 2 reports the constraint symbols that are initially associ-
ated with a node n that corresponds to a subterm T ′ of the input
type. The co-occurrence constraint depends on the nullability of T1

and T2.

After the constraint representation has been built, the algorithm
(Figure 3) reads each character a from the input word w, scans
the ancestors of a [m..n] in the constraint tree, residuates all the
constraints in this branch, and keeps track of all the A+ constraints
that are so generated. At the end ofw, it checks that all theA+ con-
straints have been further residuated into true. It also verifies that
each symbol respects its cardinality constraints, using the Count[]
array to record the cardinalities, and the CardinalityOK function to
verify the constraints. This final check is clearly linear in w.

Example 3.2 Consider the type T = ((a+ ε)&b [1..5])· (c+ d+),
where we use a to abbreviate a [1..1] and a+ to abbreviate a [1..∗].
Its syntax tree is reported in Figure 1.

Assume we read a word bbac. When b is read, the value of
Count[b] is set to 1. The node 5 is retrieved from NodeOfSymbol[b],
and its ancestors (2,right) and (1,left) are visited. The constraint
CC[2] is Z⇒, the direction of b is right, hence the constraint be-
comes true. The constraint CC[1] is⇔, the direction is left, hence
it becomesR+. Node 1 is also pushed into ToCheck, since the algo-
rithm must eventually check that every R+ or L+ has been resid-
uated to true. Finally, OC[1] is not affected. When the next b is
read, Count[b] becomes 2 (we will ignore Count[] for the next let-
ters), and its ancestors are visited again, but this time none of them
is changed. When a is read, CC[2] is true, hence is not affected,
and CC[1] is R+, hence is not affected. When c is read, its ances-
tors (3,left) and (1,right) are visited. OC[3] becomesR− and OC[1]
becomes L−, so that the tree is now the one represented in figure 2.

The algorithm now verifies that Count[] respects the cardinality
constraints and that every A+ node pushed into ToCheck has been

4 2008/1/4

8a 9ε

5b 6c 7d4+

2& CC=true 3+ OC=c−

1· CC=true, OC=ab−

Figure 2. The tree for T = ((a+ε)&b [1..5])· (c+d+) after word
bbac has been read

residuated to true; since both checks succeed, it returns true. If
the word had been bbacb . . . instead, the algorithm would now find
a b, visit nodes (2,right) and (1,left), and, finding a L− in node 1,
would return false immediately.

The constraint tree can be built in time O(|T |). Moreover, for
every symbol a in w, we only search and update the nodes which
are ancestors of NodeOfSymbol[a], and any such update has a
constant cost, hence the resulting algorithm runs in O(|T | + |w| ∗
depth(T)).

Member(w,T)
(Min[],Max[],NodeOfSymbol[],Parent[],CC[],OC[],

Nullable) := ReadType(T);
SetToZero(Count[]);
if (IsEmpty(w) and not Nullable) then return(false); fi;
for a in w
do if (NodeOfSymbol[a] is null) then return(false); fi;

Count[a] := Count[a]+1;
for (n,direction) in Ancestors(NodeOfSymbol[a])
do case (CC[n], direction)

when (Z⇒ or⇔, left)
then CC[n] := R+; push(n,ToCheck);

when (⇐\ or⇔, right)
then CC[n] := L+; push(n,ToCheck);

when (⇐\ or L+, left) or (Z⇒ or R+, right)
then CC[n] := True;

else ; esac;
case (OC[n], direction)
when (≺� or ≺, right)

then OC[n] := L−;
when (≺�, left)

then OC[n] := R−;
when (L−, left) or (R−, right)

then return(false);
else ; esac;

od;
od;
if (exists n in ToCheck with (CC[n] 6= True))

then return(false); fi;
if (not CardinalityOK(Count[],Min[],Max[]))

then return(false); fi;
return(true);

Ancestors(n)
if (Parent[n] is null) then return(emptylist);
else return(Parent[n] ++ Ancestors([Parent[n]])); fi;

Figure 3. The basic residuation algorithm.

Theorem 3.3 (complexity) Member(w,T) runs in time O(|T | +
|w| ∗ depth(T)).

We can now prove that the algorithm is correct.

Theorem 3.4 (soundness) Member(w,T) yields true iff w∈JT K.

Proof. A constraint F is affected by a symbol a only if a appears
in F , hence, only if the node of T that corresponds to F has an
a [m..n] descendant. Hence, our algorithm residuates all the nested
constraints that are affected by every symbol of w. The final test
exists n in ToCheck with (CC[n] 6= True) verifies whether any A+

constraint remains at the end, while every false residual causes
the algorithm to immediately return false. For the flat constraints,
the test in line 7 (if NodeOfSymbol[a] is null) excludes that w 6|=
upperS(T). When w |= upperS(T), we have that w 6|= SIf (T)
iff w is empty and N(w) is false; this is checked in line 5 (if
IsEmpty(w) and not Nullable). We exclude w 6|= ZeroMinMax(T)
in line 30 — if not CardinalityOK(Count[],Min[],Max[]).

4. The “Almost Linear” Version
The value of depth(T) can be quite large, in practice, for example
for types with many fields, such as T1 · . . . · Tn, or for types with
many alternatives, such as T1 + . . . + Tn; in this last case, the
type may be much larger than the word itself. This problem can be
easily solved by flattening the constraints generated by such types,
as follows (SIf (T1, . . . , Tn) stands for {S+(Ti) | not N(Ti)}; if
SIf (T1, . . . , Tn) = ∅, then CC(T1 � . . .� Tn) is just true).

CC(T1 � . . .� Tn) = (∪i∈1..nS(Ti))
+

Z⇒ SIf (T1, . . . , Tn)

OC(T1 · . . .· Tn) = S(T1) ≺ . . . ≺ S(Tn)

OC(T1 + . . .+ Tn) = ≺� (S(T1), . . . , S(Tn))

Formally, we consider the three n-ary operators above in the syntax
for types, and we generalize the syntax for constraints as specified
below. The constraints A1

−, . . . , Ai
− and A1 ≺ . . . ≺ Aj are just

two special cases of the constraint A1
−, . . . , Ai

−, Ai+1 ≺ . . . ≺
Ai+j , when j = 0 or i = 0 respectively; when both are zero, the
constraint is written “true”. As usual, false abbreviates (∅)+. The
syntactic forms below are defined under the condition that i ≥ 0,
j ≥ 0, and A0 ⊇ (A1 ∪ . . . ∪Ai+1).

F ::= A0
+ Z⇒ {A1

+, . . . , Ai+1
+}

| A1
+, . . . , Ai+1

+

| ≺� (A1, . . . , Ai+2)
| A1

−, . . . , Ai
−, Ai+1 ≺ . . . ≺ Ai+j

The semantics of these new constraints is fully defined by Ta-
ble 3, plus the final conditions A1

+, . . . , An
+ → ε false and

F →ε true otherwise.
We correspondingly refine the data structures of the residu-

ation algorithm, as follows. Co-occurrence constraints are rep-
resented by an array CC[] of records with the following fields:
CC[n].kind∈ { Z⇒, A+, true}, CC[n].needed[], which is an ar-
ray of booleans, and CC[n].neededCount∈ N. Informally, if we
have a type T1 � T2 � T3, where T1 is the only nullable child,
we have a constraint S+(T1 � T2 � T3) Z⇒ (S+(T2), S+(T3)),
and we represent it through a record cc with “cc.kind=(Z⇒)”, with
cc.neededCount=2, and with a field cc.needed[]= [false, true, true],
specifying that S+(T1) is “not needed” (since T1 is nullable), while
S+(T2) and S+(T3) are “needed”.

The first time we meet any children i, we switch the kind of cc
from (Z⇒) to (A+), and we set cc.needed[i] to false. For any other
child i′ we meet, we will also set its cc.needed[i′] value to false.
Every time we switch a needed[] entry from true to false, we also
decrease the value of cc.neededCount, so that any constraint of kind
(A+) is satisfied when its cc.neededCount is down to zero.

5 2008/1/4

Condition Constraint Residual after a
a∈Ai ⊆ A A+ Z⇒ {A1

+, . . . , An
+} A1

+, . . . , Ai−1
+, Ai+1

+, . . . , An
+

a ∈ A A+ true
a ∈ Ai, n > 1 A1

+, . . . , An
+ A1

+, . . . , Ai−1
+, Ai+1

+, . . . , An
+

a∈Aj ≺� (A1, . . . , An) A1
−, . . . , Aj−1

−, Aj+1
−, . . . , An

−

a∈Aj , j ≤ i A1
−, . . . , Ai

−, Ai+1 ≺ . . . ≺ An false
a∈Aj , j > i A1

−, . . . , Ai
−, Ai+1 ≺ . . . ≺ An A1

−, . . . , Aj−1
−, Aj ≺ . . . ≺ An

Table 3. Residuals of flattened constraints

Order constraints are represented by an array OC[] of records
with fields kind∈ {− ≺,≺�, A−, true}, and allowed ∈ N. If
we have a type T1 · . . . · Tm, the corresponding oc record has
oc.kind=(− ≺) and oc.allowed=1, which corresponds to a con-
straint S(T1) ≺ . . . ≺ S(Tm). More generally, oc.kind=(− ≺)
with oc.allowed=i, represents a constraintA1

−, . . . , Ai−1
−, Ai ≺

. . . ≺ Am, hence, when we meet a symbol in S(Tj), if j <
allowed we return false, and otherwise we just update oc.allowed
to j.

Finally, a type T1 + · · · + Tm is represented by oc with
oc.kind=(≺�), which is residuated into oc.kind=(A−) and oc.allowed=i
when a symbol in S(Ti) is met, and yields false if, later on, a sym-
bol in S(Ti′) is met with i′ 6= i.

To sum up, we represent these constraints, and their residuals,
through the following two arrays; we assume that n is the node that
corresponds to a type T whose children are T1, . . . , Tm.

• CC[]: for each node n, CC[n] is a record with fields kind,
neededCount and needed[], whose meaning depends on the
value of CC[n].kind, as follows:

Z⇒: CC[n] represents a constraint

(∪i∈1..nS(Ti))
+ Z⇒ {S(Tk(1))

+, . . . , S(Tk(j))
+}

where j is CC[n].neededCount, and where
{k(1), . . . , k(j)} enumerates the indexes i such that
CC[n].needed[i]=true.

A+: CC[n] represents a constraint

S(Tk(1))
+, . . . , S(Tk(j))

+

where j is CC[n].neededCount, and where
{k(1), . . . , k(j)} enumerates the indexes i such that
CC[n].needed[i]=true.

• OC[]: for each node n with m children, CC[n] is a record with
two fields kind and allowed, whose meaning depends on the
kind field, as follows:
−≺: this is a constraint

A1
−, . . . , Ai−1

−, Ai ≺ . . . ≺ Am
where Aj = S(Tj), and i =CC[n].allowed.

≺�: this is a constraint A1
−, . . . , Am

−, where Aj =
S(Tj);

A−: this is a residual constraint

A1
−, . . . , Ai−1

−, Ai+1
−, . . . , Am

−

where Aj = S(Tj) and i =CC[n].allowed.

We present the modified parts of the algorithm in Figure 5; a
complete version, which includes all the optimizations that we are
going to present, can be found in Appendix ??.

5a 6b 7c 8d 9ε 10e 11f 12g

CC =
abc+ Z⇒ {a+, b+, c+}2& 3+

OC =
≺�(e, f, g)4+

CC = abcdefg+ Z⇒ {abc+, efg+},
OC = abc ≺ d ≺ efg1·

Parent (pos)
1
2 1 1
3 1 2
4 1 3
5 2 1

. . .

CC: kind, needed, nCount
1 Z⇒ [t, f, t] 2
2 Z⇒ [t, t, t] 3
3
4
5

. . .

OC: k., allowed
1 −≺ 1
2
3
4 ≺� -
5

. . .

Figure 4. Representation of T = (a&b&c)· (d∗)· (e+ f + g)

Example 4.1 Consider the type T = (a&b&c) · (d∗) · (e + f +
g) (Figure 4), where we use a to abbreviate a [1..1] and a∗ to
abbreviate a [1..∗] + ε .

The record OC[3] is null since only one child has a non-empty
set of symbols. Assume we read a word bcadddgdga. When b is
read, nodes 2 and 1 are visited, and their constraints are residuated
to: CC[2]=(A+,[t, f, t],2), CC[1]=(A+,[f, f, t],1), OC[1]=(−≺,1).
The constraint OC[1] is actually unaffected, because both allowed
and the child position pos are equal to 1. Both 2 and 1 are inserted in
ToCheck, since they have now an A+ kind. When c is read, CC[2]
becomes (A+,[t, f, f],1) and the constraints in node 1 are unaf-
fected. When a is read, CC[2] becomes (true,[f, f, f],0), since its
neededCount is 0. When d is read, 3 and 1 are visited; CC[1] is
unaffected, since CC[1][2] is already false, while OC[1] becomes
(− ≺,2), which means that symbols from the first subtree are now
disallowed. The next two d’s require two new visits to 3 and 1,
which have no effect. When g is read, OC[4] becomes (A−,3),
CC[1] becomes (true, [f, f, f],0), and OC[1] becomes (− ≺,3).
If the word ended here, the algorithm would return true, since both
nodes in ToCheck have now kind true. But now a new d is read,
which would residuate OC[1] to false, hence the algorithm stops
with false.

This version of the algorithm is inO(|T |+ |w|∗flatdepth(T)),
where flatdepth(T) is the depth of the type after all operators
have been flattened. In practice, flatdepth(T) is almost invariably
smaller than three (see (Bex et al. 2004)), hence this algorithm is
“almost linear”.

Theorem 4.2 (soundness) MemberFlat(w,T) yields true iff w ∈
JT K.

Theorem 4.3 (complexity) MemberFlat(w,T) runs in timeO(|T |+
|w| ∗ flatdepth(T)).

6 2008/1/4

MemberFlat(w,T)
...;
fora in w
do ...;

for (n,pos) in Ancestors(NodeOfSymbol[a])
do case CC[n].kind

when (Z⇒) then CC[n].kind := A+;
push(n,ToCheck);
ResiduatePlus(CC[n],pos);

when (A+) then ResiduatePlus(CC[n],pos);
else ; esac;

case OC[n].kind
when (−≺) then if (OC[n].allowed <= pos)

then OC[n].allowed := pos;
else return(false);
fi;

when (≺�) then OC[n].kind := A−;
OC[n].allowed := pos;

when (A−) then if (OC[n].allowed 6= pos)
then return(false);
fi;

else ; esac;
od;

od;
if (exists n in ToCheck with (CC[n].kind 6= True))
then return(false); fi;
...;
return(true);

ResiduatePlus(ccn,childPos)
if (ccn.needed[childPos])
then ccn.needed[childPos] := false;

ccn.neededCount := ccn.neededCount-1;
if (ccn.neededCount =0) then ccn.kind := True fi;

fi

Figure 5. Checking with n-ary operators

5. The Linear Algorithm
We present here an orthogonal optimization, which makes the al-
gorithm truly linear.

The base algorithm visits all the ancestors of NodeOfSymbol[a]
every time a is found in w, which is redundant. Consider a node
n such that A1 and A2 are, respectively, the symbols in its left
and right descendants. Whenever the constraint of n has been
residuated because a symbol of A1 has been met, there is almost
no reason to visit n again because of a symbol from A1 (and the
same holds forA2). There is only one exception: if the constraint is
A1 ≺ A2, then, even after a symbol of A1 has already been seen, a
symbol from A2 transforms the constraint into A1

−, and a further
symbol from A1 cannot be ignored, but will cause the algorithm to
yield “false”.

Formally, we have the following “A2-stability” property. For
any constraint F with shape A1

+ Z⇒ A2
+, A1

+ ⇔ A2
+, A1 ≺�

A2 or A1 ≺ A2, with A1 disjoint from A2, the following holds:

a ∈ A2 ∧ F
aw→+ F ′ ⇒ ∀a′ ∈ A2 F

′ a′
→ F ′

The same property holds for a ∈ A1 and a′ ∈ A1 for all the
constraints but A1 ≺ A2. Specifically, A1-stability is only violated
when a letter b ∈ A2 is in w, as follows:

a∈A1, b∈A2, a
′∈A1 : (A1 ≺ A2)

ab→+ (A1
−)

a′
→ false

8a 9ε

5b 6c 7d4+

2& CC=true 3+ OC=c ≺� d

1· CC=cd+, OC=ab ≺ cd

Figure 6. The tree for T = ((a+ε)&b [1..5])· (c+d+) after word
bba has been read; the dotted lines are those that are represented
into the Deleted array.

The linear algorithm exploits this observation as follows:

1. whenever an upward pointer Parent[child], yielding (parent,direction),
is followed, the same pointer is set to null, so that it will
not be traversed again; however, the node child is stored in
Deleted[parent,direction];

2. to deal with the A1-A2-A1 case of the A1 ≺ A2 constraint,
when a node parent marked with ≺ is reached from its right
subtree, we use Deleted[parent,left] to recursively rebuild all
the upward pointers in its left subtree; this is the only case when
upward pointers are rebuilt.

Example 5.1 Consider the type T = ((a+ ε)&b [1..5])· (c+ d+)
(Figures 1, 6, and 7), and assume we read a word bbac. The first
time we read b, when we visit the ancestor (2,right), we assign
Parent[5]=null and Deleted[2,right]=5, so that now 5 has no parent,
but the fact that the right child of 2 was 5 is recorded (the pointer
from 5 to 2 is “reversed”). When we then visit (1,left), we also
assign Parent[2]=null and Deleted[1,left]=2. The second time b is
read, the parent of 5 is found to be null, hence no action is taken,
apart from counting b. When a is read, its UnvisitedAncerstors list
only contains (2,left), since the parent of 2 has been deleted. When
node 2 is visited, we set Parent[4]=null and Deleted[2,left]=4. The
situation is depicted in Figure 6.

Now, the arrival of any letter l from {a, b}would only increment
Count[l], but no ancestor would be visited. When c is read, both
Parent[6] and Parent[3] are deleted, but, since OC[1]=≺ and the
direction is right, Reactivate(1,left) is invoked, which restores all
pointers that are reachable from the left pointer of 1; the resulting
tree is depicted in Figure 7.

8a 9ε

5b 6c 7d4+

2& CC=true 3+ OC=c−

1· CC=true, OC=ab−

Figure 7. The tree for T = ((a+ε)&b [1..5])· (c+d+) after word
bbac has been read

The algorithm would now terminate with success. If a new a or
b were read at this point, it would not be missed, but would cause
the algorithm to stop with false.

No upward pointer can be deleted and rebuilt twice. Assume
that an edge e has been deleted and rebuilt; this only happens if e
is in the left subtree of a node n with constraint A1 ≺ A2, and two
symbols from A1 and A2 have been met, and hence OC[n] is now

7 2008/1/4

L−. If the same e is deleted again, then the algorithm will return
false as soon as the n ancestor of e is reached. Hence, any edge is
traversed at most three times, to be deleted, rebuilt, and deleted for
good. Similarly, the linear algorithm visits any internal node of the
type at most three times, arriving twice from the left subtree and
once from the right subtree. Hence, the algorithm has an O(|T |)
set-up cost, an O(|w|) cost to access NodeOfSymbol[a] for |w|
times, and a total residuation cost which is bound byO(|T |), which
gives a total of O(|T |+ |w|).

The initialization of the algorithm is identical to the non-
optimized version, apart from the construction of the empty Deleted[]
array. The body of the algorithm only changes when pointers are
cut, and in the management of the (≺, right) case (Figure 8).

MemberLin(w,T)
...;
for a in w
do ...;

for (nchild,(n,direction))
in UnvisitedAncestors(NodeOfSymbol[a])
do Parent[nchild]:=null;

Deleted[n,direction] := nchild;
case (CC[n], direction)
...;
else ; esac;
case (OC[n], direction)
when (≺�, right) then OC[n] := L−;
when (≺, right) then OC[n] := L−;

Reactivate(n,left);
when (≺�, left) then OC[n] := R−;
when (L−, left) or (R−, right)

then return(false);
else ; esac;

od;
od;
...;

Reactivate(parent,direction)
if (Deleted[parent,direction] is not null)
then child := Deleted[parent,direction];

Deleted[parent,direction] := null;
Parent[child] := (parent,direction);
Reactivate(child,left); Reactivate(child,right);

fi

UnvisitedAncestors(n)
if (Parent[n] is null) then return(emptylist);
else return((n,Parent[n])

++ UnvisitedAncestors([Parent[n]])); fi;

Figure 8. Version in O(|w|+ |T |)

Theorem 5.2 (soundness) MemberLin(w,T) yields true iff w ∈
JT K.

Theorem 5.3 (complexity) MemberLin(w,T) runs in timeO(|w|+
|T |).

This optimization can be easily combined with flattening, ob-
taining a MemberFlatLin version, which would outperform Mem-
berFlat in situations where we have long words with repeated char-
acters, and would outperform MemberLin when types are “large”,
especially if the set-up phase can be shared by different runs of the
algorithms, as discussed in the next section (see Appendix ?? for
the code).

6. Multi-Words Checking
Before moving from words to trees, we must study the multi-words
membership problem, the case where one type T is used to check
m wordsw1, . . . , wm. The repeated application of MemberFlatLin
gives us an upper bound ofm∗(|T |+|w|), where |w| is the average
length of the words. This bound is not linear, in general, in the input
size |T | + (m ∗ |w|). In the special case when |T | ≤ |w|, then
m ∗ (|T | + |w|) is smaller than 2m ∗ |w|, hence the algorithm is
indeed linear. In the general case, where |T | may be much bigger
than |w|, we get a better result if we avoid re-building the T
structure from scratch after each word is checked. To this aim, we
build the Parent[], CC[], OC[], etc., structures once, and we also
build two copies CCSave[], OCSave[] of CC[] and OC[]. We then
run a version MultiFlatLin of the MemberFlatLin algorithm with
an undo-enabling line

Updated[n,direction] := nchild;

added immediately after the line

Deleted[n,direction] := nchild;

(See the Appendix for the whole code.) After each word is checked,
we apply the following code to the root of the type, to restore
Parent[], CC[], OC[], Updated[], Deleted[], and Count[] to their
original state; we have first built a Symbol[] array that associates
each a?[m..n] node with its symbol a.

OC[root]:= OCSave[root]; CC[root]:= CCSave[root];
RestoreChild(root,left); RestoreChild(root,right);

where

RestoreChild(parent,direction)
if (Updated[parent,direction] is not null)
then child := Updated[parent,direction];

Updated[parent,direction] := null;
Deleted[parent,direction] := null;
Parent[child] := (parent,direction);
OC[child]:= OCSave[child];
CC[child]:= CCSave[child];
if (Symbol[child] is not null)
then Count[Symbol[child]]:=0;
else RestoreChild(child,left);

RestoreChild(child,right);
fi;

fi

This restoring phase does not visit the whole T but only the
modified part, hence is inO(min(|T |, |w|∗flatdepth(T))), hence,
after a set-up phase with cost O(|T |), the cost of checking each
word is in O(min(|w|+ |T |, |w| ∗ flatdepth(T))).

In the “easy case”, when |T | is smaller than |w|, each word
is checked in O(|w|), including the O(|T |) time needed to set-
up and restore the T structure, which gives the same linear com-
plexity O(m ∗ |w|) as if T were rebuilt from scratch. In the “hard
case”, when |T | is not bound by |w|, we at least know that this
algorithms checks each word, and restores the structures, in time
O(|wi| ∗ flatdepth(T)), giving a total complexity of O(|T |+m ∗
|w| ∗ flatdepth(T)). If we assume a constant upper-bound k for
flatdepth(T), the complexity is in O(|T |+m ∗ |w| ∗ k), hence is
still linear in the input size. Without the “restoring” optimization,
the total cost would be O(m ∗ (|T |+ |w|)), which is much worse,
since, in practice, we cannot reasonably assume an upper bound on
either m or |T |.

7. Membership for XSD schemas
We are now ready to extend our techniques from words to trees.
For the purpose of this discussion, we focus on XML trees where

8 2008/1/4

every node is an element node, hence on forests generated by the
following grammar:

x ::= ε | 〈a〉x〈/a〉x
Following a long tradition, (see (Gelade et al. 2007), for exam-
ple), we model an XSD schema as an extended DTD, that is, as
a quintuple (Σ,∆, τ, µ, ρ), where Σ is a set of labels, ∆ is a set of
type-names, τ is a function mapping each type-name to a content-
model, which is a type expressed on the alphabet ∆, µ is a func-
tion from ∆ to Σ, and ρ ∈ ∆ is the root type-name. Although
µ is not injective in general, the Element Declarations Consis-
tent (EDC) constraint specifies that µ must be injective when re-
stricted to a specific content model (see (Thompson et al. 2004)).
As a consequence, it is possible to check membership of an XML
tree x into an XSD schema as follows. Membership checking hap-
pens in the context of a specific type-name β, which is initially the
root type-name of the schema, hence of a specific content-model
T = τ(β). To check whether 〈a1〉x1〈/a1〉 . . . 〈an〉xn〈/an〉 sat-
isfies T , we retrieve the content model Ti = τ(µ−1

β (ai)) of each
subelement, check that each xi matches Ti, and check that the se-
quence w = µ−1

β (a1) . . . µ−1
β (an) matches T . Here, µ−1

β () is the
inverse of µ restricted to the type-names appearing in the content
model of β; this inverse function is well-defined thanks to the EDC
constraint.

We assume here that each content model is expressed in our
type language and satisfies the conflict-freedom constraint. The
cost of verifying whether x satisfies (τ, µ, ρ) depends on the cost of
checking whether a word belongs to a content model τ(α), as fol-
lows. We assume that the XSD schema contains |J | content mod-
els {τ(αj)}j∈J , each of size |τ(αj)|, that x contains (immedi-
ately or recursively) |I| elements {ei}i∈I , and that wi is the se-
quence of the labels of the children of ei. We assume that Mul-
tiFlatLin is used for word-membership. We have a set-up phase
with cost O(

∑
j∈J |τ(αj)|) = O(|τ |). We have a checking phase

with costO(min(|τ(αi)|+|wi|, |wi|∗flatdepth(τ(αi)))) for each
wi ∈ Jτ(αi)K test.2 If the size of each wi dominates the size of
τ(αi), then the total cost is linear, by∑

i∈I min(|τ(αi)|+ |wi|, |wi| ∗ flatdepth(τ(αi)))

≤
∑
i∈I(|τ(αi)|+ |wi|)

≤ 2
∑
i∈I |wi| ≤ 2|x|

Here we exploit the optimization described in Section 5. Observe
that it is not true, in general, that

∑
i∈I |τ(αi)| ≤ |τ | since the set

I enumerates the elements inside x, not the components of τ .
This linear approximation does not hold when τ(αi) may be

bigger than wi, as happens in cases where complex content models
are used to check documents where each element has a small
number of children. In this case, which is quite common, we still
have a quasi-linear complexity, by:∑

i∈I min(|τ(αi)|+ |wi|, |wi| ∗ flatdepth(τ(αi)))

≤
∑
i∈I(|wi| ∗ flatdepth(τ(αi)))

≤ (
∑
i∈I |wi|) ∗max(flatdepth(τ(αi)))

≤ |x| ∗max(flatdepth(τ(αi)))

This upper bound is linear if we assume a constant upper bound k
for flatdepth(τ(αi)). Here we exploit the combined optimizations
described in Section 4 and Section 6.

Since DTDs can be modeled as a special case of EDTDs, this
quasi-linearity result holds for DTDs as well.

2 Although XSD-checking uses top-down recursion, its total run-time can
be still evaluated by just adding the time needed to verify that the wi label
sequence of each element, at any depth level in the document, matches the
element content model

8. Intersection Types
8.1 Conflict-free Intersection Types
We left intersection out of our system because intersection is not
present in XSD or in the DTD language, and also because it makes
subtyping NP-hard, as proved in (Ghelli et al. 2007). However, in-
tersection is extremely natural when types are seen as constraints,
since it corresponds to constraint conjunction, and we prove here
that it does not increase the complexity of our membership algo-
rithm.

We first extend the syntax and semantics of types, and the
definition of N(T), with intersection and empty types.

T ::= ... | ∅ | T ∩ T
...
J∅K = ∅
JT1 ∩ T2K = JT1K ∩ JT2K
...
N(∅) = false
N(T ∩ T ′) = N(T) and N(T ′)
...

In this system, some types may be empty. Emptiness is CoNP-
hard, even if we restrict ourselves to normal-form conflict-free
types (defined later) where intersection is used just once (Ghelli
et al. 2007). On the other side, nullability is still decidable in linear
time, using the N(T) function.

Lemma 8.1 ε ∈ JT K iff N(T).

Conflict-freedom interacts well with intersection types: any two
types T1 and T2 can be combined through intersection, with no
constraint about the relationship between S(T1) and S(T2). We
call this notion weak conflict-freedom.

Definition 8.2 (Weakly-Conflict-free types) A type T is weakly-
conflict-free if for each subexpression (U + V) or (U � V):
S(U) ∩ S(V) = ∅.

Equivalently, a type T is weakly-conflict-free if, for any two
distinct subterms a [m..n] and a [m′..n′] that occur in T , their
lowest common ancestor is a ∩ node.

Every weakly-conflict-free type can be transformed into a
normal-form conflict-free type, defined as follows.

Definition 8.3 (Normal-form) A type T is normal-form conflict-
free if (a) for each subexpression (U + V) or (U � V): S(U) ∩
S(V) = ∅; (b) for each subexpression (U ∩ V): Atoms(U) =
Atoms(V); (c) ∅ is not a proper subtree of T .

Observe that, in a normal-form conflict-free type T with j
intersections, each symbol in S(T) appears up to j + 1 times, and
always with the same m-n bounds.

Informally, the normalization algorithm considers any T ∩ T ′
node that violates (b) because of a symbol a, and distinguishes two
cases.

1. If a appears in T but not in T ′ (or vice versa), it is substituted
with the empty type; the semantics of T ∩ T ′ does not change,
since we have just removed all and only the words with a from
JT K, and these words do not belong to JT ∩ T ′K.

2. If a [m..n] appears in T , a [m′..n′] appears in T ′, and m′′ =
max(m,m′) and n′′ = min(n, n′′), then, if m′′ ≤ n′′,
both a [m..n] and a [m′..n′] are substituted with a [m′′..n′′];
ifm′′ > n′′, they are both substituted with the empty type; also
in this case, we are only deleting words, from T and T ′, which
do not belong to the intersection.

The empty type is then easily eliminated using equivalences like
∅� T = ∅ and ∅+ T = T .

9 2008/1/4

8.2 Constraint Extraction
Flat constraints only depends on Atoms(T), and their definition is
not affected by the addition of ∅ and ∩. In particular, since ∅ is not
nullable, we have that SIf (∅) = S+(∅) = ∅+ = false, hence
FC(∅) is equivalent to false, as expected. Intersection nodes do
not add any new nested constraint either.

Definition 8.4 (Nested constraints)

CC(T1 ∩ T2) =def OC(T1 ∩ T2) =def true
CC(∅) =def OC(∅) =def true

The following theorem states that such constraints provide a
sound and complete characterization of type semantics.

Theorem 8.5 Given a (normal-form) conflict-free type T , it holds
that:

w ∈ JT K ⇔ w |= FC(T) ∧NC(T)

8.3 Membership checking
In a conflict-free type T with n intersections, each symbol in
S(T) appears many times, up to n + 1, hence, instead of an array
NodeOfSymbol[] of nodes, we have an array NodesOfSymbol[] of
node lists. Whenever we meet an a in w, we check whether a is
“to-do” (Figure 9), in which case we residuate all the ancestors of
each node in NodesOfSymbol[a]. A symbol is “to-do” if it has never
been seen before, or if it has been seen once and has been later
re-activated, because it is in the A1 set of a constraint A1 ≺ A2

which has been transformed into L−; this means that each symbol
has to be examined at most twice. This is the only change to the
MultiFlatLin algorithm. Observe that no constraint is associated
with the internal nodes that correspond to ∩ in the type.

The algorithm needs one to-do test for each a in w plus, at
most, a constant number of traversals and constant-time manipu-
lations of the links and nodes of a |T |-size data structure, hence
we have an upper bound |T | for the set-up and an upper bound
O(|w|+|T |) for each word, hence the algorithm is linear for single-
word membership. For the multi-word problem, the further bound
O(|w|∗flatdepth(T)), which holds for the MultiFlatLin algorithm,
must be upgraded here to O(|w| ∗ flatdepth(T) ∗ (intnum(T) +
1)), where intnum(T) is the number of intersections in T , be-
cause each symbol of w may occur at most intnum(T) times in
T , and for any such occurrence we have at most flatdepth(T) con-
straints to residuate. This gives us a total complexity of O(|T | +
m ∗ |w| ∗ flatdepth(T) ∗ (intnum(T) + 1)). While we do not ex-
pect intnum(T) ever to grow in practice, we have no experimental
data to check, since the DTD and XSD languages do not support
intersection.

9. Conclusions
Membership checking is NP-hard for REs with interleaving. We
have presented here a subclass of these REs which admits a simple
polynomial membership algorithm. The algorithm is based on the
transformation of the RE into a set of constraints, and on the paral-
lel incremental residuation of these constraints. We have discussed
the practical relevance of this class of extended REs, and have pre-
sented some optimizations that make our algorithm linear in the
size of |T |+ |w|. Apart from the practical motivations, we believe
that it is important to understand how far the expressive power of
REs can be extended with “hard” operators such as interleaving and
counting before making membership NP-hard.

Our algorithm is not linear when used to check m words
{wi}i∈1..m against one type T , since T appears once in the in-
put, but it is visited m times by the algorithm. We have presented

IntMemberFlatLin(w,T)
...;
for a in w
do if (NodesOfSymbol[a] is null)

then return(false); fi;
Count[a] := Count[a]+1;
if (ToDo[a])
then ToDo[a]:=false;

for leaf in NodesOfSymbol[a]),
(nchild,(n,childPos))

in UnvisitedAncestors(leaf)
do ... od;

fi;
od;
...;

Figure 9. Checking with intersection types

an optimization that makes the algorithm almost linear for re-
peated checking, that is, makes it linear in |T |+ (

∑
i∈1..m |wi|) ∗

flatdepth(T), and flatdepth(T) is very small in practice. Re-
peated checking is at the heart of XML membership checking with
respect to DTDs and XSD schemas, hence the same quasi-linear
complexity is preserved when we use our approach for XML mem-
bership checking. Finally, we showed how to extend the approach
to REs with intersection.

References
Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet,

and Marcelo Arenas. Efficient incremental validation of XML docu-
ments. In ICDE, pages 671–682. IEEE Computer Society, 2004.

Denilson Barbosa, Gregory Leighton, and Andrew Smith. Efficient incre-
mental validation of XML documents after composite updates. In XSym,
volume 4156 of LNCS, pages 107–121. Springer, 2006.

Geert Jan Bex, Frank Neven, and Jan Van den Bussche. DTDs versus XML
schema: A practical study. In WebDB, pages 79–84, 2004.

Geert Jan Bex, Frank Neven, Thomas Schwentick, and Karl Tuyls. Infer-
ence of concise DTDs from XML data. In VLDB, pages 115–126, 2006.

Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring XML
schema definitions from XML data. In VLDB, pages 998–1009, 2007.

J.A. Brzozowski. Derivates of regular expression. Journal of the ACM, 11:
481–494, 1964.

Byron Choi. What are real DTDs like? In WebDB, pages 43–48, 2002.
Wouter Gelade, Wim Martens, and Frank Neven. Optimizing schema

languages for XML: Numerical constraints and interleaving. In ICDT,
2007.

G. Ghelli, D. Colazzo, and C. Sartiani. Efficient inclusion for a class of
XML types with interleaving and counting. In DBPL, 2007. To appear.

Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML
processing language. ACM Transactions on Internet Technology, 3(2):
117–148, May 2003.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

Alain J. Mayer and Larry J. Stockmeyer. Word problems — this time with
interleaving. Inf. Comput., 115(2):293–311, 1994.

Manizheh Montazerian, Peter T. Wood, and Seyed R. Mousavi. XPath query
satisfiability is in PTIME for real-world DTDs. In XSym, volume 4704
of LNCS, pages 17–30. Springer, 2007.

Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML Schema Part 1: Structures Second Edition. Technical report,
World Wide Web Consortium, Oct 2004. W3C Recommendation.

Peter T. Wood. Containment for xpath fragments under DTD constraints.
In ICDT, pages 300–314, 2003.

10 2008/1/4

