
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-03-11

Decidability of Freshness,

Undecidability of

Revelation

Giorgio Ghelli Giovanni Conforti

July 24, 2003

ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Decidability of Freshness,

Undecidability of Revelation

Giorgio Ghelli Giovanni Conforti

July 24, 2003

Abstract

We study decidability of a logic for describing processes with restricted

names. We choose a minimal fragment of the Ambient Logic, but the

techniques we present should apply to every logic which uses Cardelli and

Gordon revelation and hiding operators, and Gabbay and Pitts freshness

quantifier.

We start from the static fragment of ambient logic that Calcagno

Cardelli and Gordon proved to be decidable. We prove that the addition

of a hiding quantifier makes the logic undecidable. Hiding can be decom-

posed as freshness plus revelation. Quite surprisingly, freshness alone is

decidable, but revelation alone is not.

1 Introduction

The term Spatial Logics has been recently used to refer to logics equipped with
the composition-separation operator A |B. Spatial logics are emerging as an
interesting tool to describe properties of several structures. Models for spatial
logics include computational structures such as heaps [19, 17], trees [6], trees
with hidden names [8], graphs [7], concurrent objects [4], as well as process
calculi such as the π-calculus [2, 3] and the Ambient Calculus [10, 12].

In all these structures, a notion of name restriction arises. The restriction
(νn)P (in π-calculus notation) of a name n in a structure P , is a powerful ab-
straction mechanism that can be used to model many kinds of information that
are protected by the computational model, such as hidden encryption keys [1],
the actual variable names in λ-calculus, object identifiers in object calculi, loca-
tions in a garbage-collected heap. Here “protected” means that no public name
can ever clash with one that is protected, and that any observable behaviour
may depend on the equality between two names, but not on the actual value of
a protected name.

Reasoning about protected names is difficult, since you have no name for
them. Cardelli and Gordon suggest an elegant solution to this problem [11].
They adopt Gabbay and Pitts fresh name quantification, original used for binder

1

manipulation and for Nominal Logics [15, 18], and combine it with a new op-
erator, revelation, which can use a public name to denote a private one. The
combination of freshness quantification and revelation gives raise to a new quan-
tifier, hidden name quantification, which can be used to describe properties of
restricted names in a natural way.

In [5] decidability of validity and model-checking of a spatial logic describing
trees without local names is studied. This logic is the quantifier free static frag-
ment of the Ambient Logic. Extensions of this logic can be used to describe [6],
query [9], and reason about [14] tree-shaped semistructured data.

In this paper we study decidability of validity and model-checking for spatial
logics describing trees (or static ambients) with local names. In particular we
study how the introduction of freshness, revelation, and hiding influences the
decidability problem. While we started this work with the aim of proving de-
cidability of hiding, we found out quite a different situation. Our main results
are:

• freshness without revelation gives a rich decidable logic (Theorem 4.8)

• even a minimal logic (conjunction, negation, and binary relations) becomes
undecidable if it is enriched with revelation (Corollary 5.28) or with hiding
(Corollary 5.33)

Another contribution is the study of quantifier extrusion in spatial logic. We
introduce an extrusion algorithm for freshness (Lemma 4.6), and we prove that
no extrusion algorithm exists for first order quantifiers, revelation, and hiding
(Corollary 4.12).

We will discuss decidability of validity, satisfiability, and model-checking
for various logics. Throughout the paper, “decidability of a logic” is used for
“decidability of validity and satisfiability for that logic”.

2 The Tree Model

Definition 2.1 The set TN of the abstract trees generated by an infinite name
set N is defined by the following grammar, with n∈N .

trees T, U ::= 0 empty tree

n[T] tree branch

T |U composition of trees

(νn)T local name

Free names fn(T) and bound names are defined as usual. On these trees we
define the usual congruence rules, with extrusion of local names:

Table 2.1. Congruence rules

T ≡ T (Struct Refl)
T ≡ U ⇒ U ≡ T (Struct Symm)

2

T ≡ U, U ≡ V ⇒ T ≡ V (Struct Trans)
T ≡ U ⇒ T |V ≡ U |V (Struct Par)
T ≡ U ⇒ n[T] ≡ n[U] (Struct Amb)
T ≡ U ⇒ (νn)T ≡ (νn)U (Struct Res)

T |U ≡ U |T (Struct Par Comm)
(T |U) |V ≡ T | (U |V) (Struct Par Assoc)
T |0 ≡ T (Struct Zero Par)

m /∈ fn(T)⇒ (νn)T ≡ (νm)T {n←m} (Struct Renaming)
n /∈ fn(T)⇒ T | (νn)U ≡ (νn) (T |U) (Struct Extr Par)
(νn)0 ≡ 0 (Struct Extr Zero)
n1 6= n2 ⇒ n1[(νn2)T] ≡ (νn2)n1[T] (Struct Extr Amb)
(νn1) (νn2)T ≡ (νn2) (νn1)T (Struct Extr Comm)

Lemma 2.2 (Free Names) If T ≡ U then fn(T) = fn(U)

Lemma 2.3 (Inversion (see [11]))

1. If (νn)T ≡ 0 then T ≡ 0

2. If (νn)T ≡ m[U] then ∃U ′∈TN . T ≡ m[U ′], U ≡ (νn)U ′

3. If (νn)T ≡ U |U ′ then ∃Ū , Ū ′∈TN . T ≡ Ū | Ū ′, Ū ≡ (νn)U, Ū ′ ≡ (νn)U ′

Definition 2.4 The set of trees in extruded normal form (ENF) is the mini-
mum set such that:

• a tree with no local restriction is in ENF;

• if T is in ENF and n ∈ fn(T) then (νn)T is in ENF.

Hence, a tree is in ENF iff it is composed by a prefix of restrictions followed
by an restriction-free matrix, all the restrictions define names that actually
appear in the tree, and all the restricted names are mutually different.

Lemma 2.5 For every tree T there exists U such that T ≡ U and U is in ENF.

The next lemma says that the ENF of a congruence class of trees is unique
modulo renaming of bound names, reordering of the prefix, and congruence of
the renamed matrix.

Lemma 2.6 If (νn1) . . . (νnj)U ≡ (νn′1) . . . (νn
′
k)U ′, and the two trees are in

ENF, and U and U ′ are the matrixes, then j = k and there exists a bijection τ
between {n1, . . . , nj} and {n′1, . . . , n

′
k} such that

∃U ′′. U ≡ U ′′ = U ′{n′i←τ(ni)}
i∈1..j

3

Notation 2.7 Let n be injective from I = {i1, . . . , ij} to N . Then:

(~νi∈Ini)T
△

= (νni1) . . . (νnij
)T

Notation 2.8 We will use ENF to denote the set of all terms in ENF, and
ENF (T) to denote the set {U : U ∈ENF , U ≡ T }.

3 The Logic

3.1 Definition

We will study a sublogic of the Ambient Logic without recursion and where no
temporal operator appears. We will call it Spatial Logic (SL). It is defined as
follows.

Definition 3.1 The set A of the formulas of the full logic is defined by the
following grammar; we will consider some sub-logics later on. η stands for
either a name n∈N or a name variable x∈X .

A,B ::= 0 empty tree

η[A] location

A |B composition of trees

Nx.A fresh quantification

∃x.A existential quantification

A ∧B conjunction

¬A negation

η R©A revelation

A ⊲ B composition adjunct

A@η location adjunct

A�η revelation adjunct

We will also study the property of the following derived operators:

Hx.A
△

= Nx. x R©A hiding

c©η
△

= ¬η R©T η appears free

η = η′
△

= (η[T])@η′ equality

We will always assume that ∃x, Nx and η R© bind as far to the right as
possible, so that, for example, ∃x.A ∧ ∃y.B is the same as ∃x. (A ∧ ∃y.A).

We assume the usual definitions for: (i) the derived operators A ∨ B, T, F,
∀x.A, η 6= η′, A⇒ B, A⇔ B; (ii) free variables fv(A). It is worth emphasizing
that revelation is not a binder, i.e. fv (η R©A) = fv(η)∪ fv (A). fv (η) is defined as
{η} when η is a variable x, and as ∅ when η is a name n. Closed formulas are
formulas without free variables.

4

We will use the nm(A) to denote the set of all names that appear in a

formula. We define fn(T,A)
△

= fn(T) ∪ nm(A); notice that every name that
appears in a formula is free, since ∃ and Nonly bind variables.

Definition 3.2 We define the satisfaction relation T |= A between trees in TN
and closed formulas as follows:

T |= 0
△

= T ≡ 0

T |= n[A]
△

= ∃U ∈TN . T ≡ n[U] and U |= A

T |= A |B
△

= ∃T1, T2 ∈TN . T ≡ T1 |T2 and T1 |= A and T2 |= B

T |= Nx.A
△

= ∃n /∈ fn(T) ∪ nm(A). T |= A{x←n}

T |= ∃x.A
△

= ∃n ∈ N . T |= A{x←n}

T |= A ∧B
△

= T |= A and T |= B

T |= ¬A
△

= T 6|= A

T |= n R©A
△

= ∃U ∈TN . T ≡ (νn)U and U |= A

T |= A ⊲ B
△

= ∀U ∈TN . U |= A⇒ T |U |= B

T |= A@n
△

= n[T] |= A

T |= A�n
△

= (νn)T |= A

We will also use the notation T, ρ |= A, where ρ is a ground substitution
mapping all the free variables of A into names in N , with the following meaning
(where ρ↓ is the domain of ρ):

T, ρ |= A ⇔def ρ↓⊇ fv(A) ∧ T |= Aρ

Now we define the standard notions of formula validity, satisfiability, of
formula implication, and of formula equivalence for SL.

vld(A)
△

= ∀T ∈TN , ρ : fv (A)→ N . T, ρ |= A (validity)

sat(A)
△

= ∃T ∈TN , ρ : fv (A)→ N . T, ρ |= A (satisfiability)

A ⊢ B
△

= ∀T ∈TN , ρ : (fv (A) ∪ fv (B))→ N .
T, ρ |= A ⇒ T, ρ |= B (implication)

A ⊣⊢ B
△

= A ⊢ B and B ⊢ A (equivalence)

The following lemmas come from [11], or are easily derivable from there.

Lemma 3.3 (Implication)

A ⊢ B ⇔ vld(A⇒ B)
A ⊣⊢ B ⇔ vld(A⇔ B)

Let ~∀A denote ∀x1 . . . ∀xn. A, where {x1 . . . xn} = fv (A), and similarly for
~∃A.

5

Lemma 3.4 (Closure)

vld(A)⇔ vld(~∀A)

sat(A)⇔ sat(~∃A)

The following lemma expresses the fact that validity can be reduced to
model-checking using ⊲ and quantification, or just ⊲ alone, when the formula is
closed.

Lemma 3.5 (Validity by Model-Checking)

vld(A) ⇔ 0 |= T ⊲ ~∀A ⇔ 0 |= ~∀(T ⊲ A)

Definition 3.6 (Formula with Holes (see [11])) We use B{−} to indicate
a formula with a set of formula holes, indicated by −, and B{A} to denote the
formula obtained by filling these holes with A, after renaming the variables in
B to avoid capturing variables of A.

Lemma 3.7 (Substitution (see [11]))

vld(A⇔ A′) ⇒ vld(B{A} ⇔ B{A′})

i.e. A ⊣⊢ A′ ⇒ B{A} ⊣⊢ B{A′}

Notation 3.8 (Disjointness)

K#K ′ ⇔def K ∩K ′ = ∅

Notation 3.9 We write M : M
in
⇀ N to specify that M is partial and injective

from M to N, and M : M
in
→ N to specify that M is total and injective from M

to N.
For any partial function N : M ⇀ N, we will use N↓ to denote its actual

domain and M↑ to denote its actual range, i.e.:

N↓= {m : ∃n∈N. N(m) = n} N↑= {n : ∃m∈M. N(m) = n}

The following properties hold for the Ambient Logic with revelation and
fresh quantification [11].

Lemma 3.10 (Satisfaction is up to ≡) If T |= A and T ≡ U then U |= A

Lemma 3.11 If m /∈ fn(T,A) and n /∈ fn(T,A) then:

T |= A{x←m} ⇔ T |= A{x←n}

Corollary 3.12 If ρ, ρ′ : X
in
⇀ N , ρ↓ = ρ′↓, ρ↑ # fn(T,A), and ρ′↑ # fn(T,A),

then:
T, ρ |= A ⇔ T, ρ′ |= A

6

The next Corollary will be used throughout the paper: we will use each of
(1)-(4) as if it were the definition of (5). From now on, every quantification
on sets on names will always be implictly (or explictly) qualified to range over
finite sets of names only.

Corollary 3.13 (Gabbay-Pitts Property) For any N ⊂ N finite, all the
following are equivalent:

1. ∀m /∈ fn(T,A). T |= A{x←m}

2. ∀m /∈(fn(T,A) ∪N). T |= A{x←m}

3. ∃m /∈(fn(T,A) ∪N). T |= A{x←m}

4. ∃m /∈ fn(T,A). T |= A{x←m}

5. T |= Nx.A

Proof (1)⇒ (2): m /∈(fn(T,A) ∪N)⇒ m /∈ fn(T,A).
(2)⇒ (3): N \ (fn(T,A) ∪N) is not empty, since fn(T,A) ∪N is finite.
(3)⇒ (4): m /∈(fn(T,A) ∪N)⇒ m /∈ fn(T,A).
(4)⇒ (1): by Lemma 3.11
(4)⇔ (5): by Definition 3.2 2

We introduce a couple of lemmas and corollaries which will be useful in
Section 5.

Lemma 3.14 Let (~νi∈Ini)T be in ENF, let T be the matrix, and let m be a
name not in {ni}i∈I ; then:

(~νi∈Ini)T |= m R©A ⇔ m /∈ fn(T) ∧ ((∃h∈I. (~νi∈(I\{h})ni)T {nh←m} |= A)

∨ (~νi∈Ini)T |= A)

Corollary 3.15 For (~νi∈Ini)T in ENF, where T is the matrix, if

∀n∈ fn(T). ∃T ′. T ≡ n[0] |T ′

then:
(~νi∈Ini)T |= m R©(A ∧ (m[0] |T))

⇔ m /∈ fn(T) ∧ ∃h∈I. (~νi∈(I\{h})ni)T {nh←m} |= A

Lemma 3.16 For (~νi∈Ini)T in ENF, where T is the matrix:

(~νi∈Ini)T |= Hx.A

⇔ (∀m /∈(nm(A) ∪ fn(T)).

∃h∈I. (~νi∈(I\{h})ni)T {nh←m} |= A{x←m})

∨ (~νi∈Ini)T |= A

⇔ (∃m /∈(nm(A) ∪ fn(T)).

∃h∈I. (~νi∈(I\{h})ni)T {nh←m} |= A{x←m})

∨ (~νi∈Ini)T |= A

7

Corollary 3.17 For (~νi∈Ini)T in ENF, where T is the matrix, if

∀n∈ fn(T). ∃T ′. T ≡ n[0] |T ′

then:
(~νi∈Ini)T |= Hx.A ∧ (x[0] |T)

⇔ ∀m /∈(nm(A) ∪ fn(T)).

∃h∈I. (~νi∈(I\{h})ni)T {nh←m} |= A{x←m}

⇔ ∃m /∈(nm(A) ∪ fn(T)).

∃h∈I. (~νi∈(I\{h})ni)T {nh←m} |= A{x←m}

4 Decidable Sublogics

4.1 Quantifier-free Decidable Sublogics

We start from the following result presented in [5].

Theorem 4.1 (Calcagno-Cardelli-Gordon) The model-checking problem
restricted to closed formulas with no quantification and revelation is decidable
over trees with no local names.

Model-checking and closed-validity problems are equivalent in SL fragments
with composition adjunct (Lemma 3.5).

Corollary 4.2 (Calcagno-Cardelli-Gordon) The validity and satisfiability
problems restricted to closed formulas with no quantification and revelation are
decidable over trees with no local names.

We now extend this result by adding restricted names to the models and the
revelation adjunct (A�n) to the logic.

Theorem 4.3 (Adding Restricted Names and Revelation Adjunct)
The model-checking problem restricted to closed formulas generated by the fol-
lowing grammar (∃, N,H, R©: no, �: yes):

A ::= 0 | n[A] | A |A | A ∧A | ¬A | A ⊲ A | A@n | A�n

is decidable over all trees (i.e., including trees with restricted names).

Proof (Sketch) We follow the schema of [5]. We define the following equiva-
lence relation ∼h,w,N :

T ∼0,w,N U ⇔ fnN (T) = fnN (U) where fnN (T) = fn(T) ∩N

T ∼h+1,w,N U ⇔
∀M ⊆ N, i∈1..w, n∈N, Tj such that for j∈1..i. fnN (Tj) = M

if T ≡ n[T1] | . . . |n[Ti] |T
′

then U ≡ n[U1] | . . . |n[Ui] |U ′

8

such that Tj ∼h,w,N Uj for j∈1..i

and vice versa

and ∀i∈1..w, Tj

if T ≡ T1 | . . . |Ti

then U ≡ U1 | . . . |Ui

with fnN (Tj) = fnN (Uj) for j∈1..i

and vice versa

We first prove that ∼h,w,N is a congruence:

T ∼h,w,N U ⇒ n[T] ∼h+1,w,N n[U]

T ∼h,w,N U ⇒ (νn)T ∼h,w,N (νn)U

T ∼h,w,N U, T ′ ∼h,w,N U ′ ⇒ T |T ′ ∼h,w,N U |U ′ (1)

Then we show how to enumerate a witness for each equivalence class of
∼h,w,N . We say that a tree T is “sealed” if it is only congruent to restricted
terms, i.e.

T is sealed ⇔ ∀U. U ≡ T ⇒ ∃n,U ′. U = (νn)U ′.

(For example, (νn) (n[0] |m[n]) is sealed while (νn) (νm) (n[0] |m[0]) is not.)
We say that a term is in NF (h,w,N) iff it can be written as

Σn∈N,T∈NF(h,w,N) bn,T · n[T] | ΣM⊆N bM · (νm)m[M]

Where bn,T and bM satisfy 0 ≤ bi ≤ w, and i · T stands for i copies of T
separated by |. We show that for each T and for each (h,w,N) there exists
U ∼h,w,N T such that U ∈ NF (h,w,N). By induction on (h,w,N) we show
that, for each (h,w,N), the corresponding set of vectors bn,T and bM is finite
and can be effectively enumerated.

Now we define a size |A| for each formula A, and we prove that

|A| = (h,w,N), T |= A, T ∼h,w,N U ⇒ U |= A (2).

If |B| = (h,w,N) and U
(h,w,N)
i is an enumeration of a witness for each

equivalence class of ∼h,w,N , (1) + (2) imply that checking T |= A ⊲ B can be

reduced to checking that, for each U
(h,w,N)
i , U

(h,w,N)
i |= A⇒ U

(h,w,N)
i |T |= B.

Model-checking the other operators is easy. 2

We show now that presence c©n can be encoded in terms of revelation ad-
junct A�n.

Lemma 4.4 (Presence from Revelation Adjunct) Given n 6= m:

c©n ⊣⊢ (n[0] ⊲ ((¬(¬0 | ¬0))�n))@m

9

Proof

T |= (n[0] ⊲ ((¬(¬0 | ¬0))�n))@m
⇔ m[T] |= n[0] ⊲ ((¬(¬0 | ¬0))�n)
⇔ m[T] |n[0] |= (¬(¬0 | ¬0))�n
⇔ (νn) (m[T] |n[0]) |= ¬(¬0 | ¬0)

(1) ⇔ ∀T1, T2. T1 |T2 ≡ (νn) (m[T] |n[0])⇒ T1 ≡ 0 ∨ T2 ≡ 0

Now if n ∈ fn(T) then the tree U = (νn) (m[T] |n[0]) is sealed, thus it can be
splitted into U ′ |T0 and T0 |U ′ only (where U ′ ≡ U and T0 ≡ 0) and (1) is true.
If n /∈ fn(T) then (νn) (m[T] |n[0]) ≡ m[T] | (νn)n[0] and (1) is false. Hence
(1) ⇔ n ∈ fn(T)⇔ T |= c©n 2

Note that the previous encoding c©mη = (η[0] ⊲ ((¬(¬0 | ¬0))�η))@m is not
applicable when η is a variable, since the encoding relies on m never clashing
with η. For example:

0 6|= ∃x. c©x but 0 |= ∃x. c©mx since 0 |= c©mm

However we can use Lemma 4.4 to encode the general case: given two names
m,m′ such that m 6= m′, c©η ⊣⊢ c©mη ∧ c©m′

η

T, ρ |= c©mη ∧ c©m′

η ⇔ (by cases)

ηρ = m ⇒ T |= T ∧ c©m′

m⇔ T, ρ |= c©η
ηρ = m′ ⇒ T |= c©mm′ ∧ T⇔ T, ρ |= c©η

ηρ 6= m, ηρ 6= m′ ⇒ T |= c©mηρ ∧ T |= c©m′

ηρ⇔ T, ρ |= c©η

Of course, Ny. c©yη, where y is a fresh variable, would work as well, but we
are trying to encode c©η without quantifiers.

The encoding gives us the following corollary.

Corollary 4.5 (Adding Presence Revelation)
The model-checking problem restricted to closed formulas generated by the fol-
lowing grammar (∃, N,H, R©: no, c©,�: yes):

A ::= 0 | n[A] | A |A | A ∧A | ¬A | c©n | A ⊲ A | A@n | A�n

is decidable over all trees (i.e., including trees with restricted names).

4.2 Quantifier Extrusion

An extrusion algorithm for a set of logical operators O is an algorithm that
transforms a formula into an equivalent formula in O-prenex form, i.e. into a
formula formed by a prefix of operators from O followed by a matrix where they
do not appear.

First order logic admits a simple extrusion algorithm for the pair ∃, ∀. We
will show that:

10

• in a spatial logic with the ⊲ operator, extrusion implies decidability (Corol-
laries 4.9, 4.10, and 4.11);

• the freshness quantifier admits extrusion (Lemma 4.6), hence is decidable;

• undecidability of the revelation operator, existential quantifier, and hiding
quantifier, implies that no extrusion algorithm can exist for them (Corol-
lary 4.12).

We start our discussion of extrusion on a familiar ground, by listing, in
Table 4.1, some logical equivalences that can be used to extrude universal and
existential quantifiers from some of the other operators. The first four are the
usual First Order Logic (FOL) rules.

Table 4.1. Extrusion of existential quantifier

x /∈ fv(B) (∀x.A) ∧B ⊣⊢ ∀x. (A ∧B) (∀-∧)

x /∈ fv(B) (∃x.A) ∧B ⊣⊢ ∃x. (A ∧B) (∃-∧)

¬(∀x.A) ⊣⊢ ∃x. (¬A) (∀-¬)

¬(∃x.A) ⊣⊢ ∀x. (¬A) (∃-¬)

y 6= η η[∀y.A] ⊣⊢ ∀y. (η[A]) (∀-[])

y 6= η η[∃y.A] ⊣⊢ ∃y. (η[A]) (∃-[])

x /∈ fv(B) (∀x.A) |B ⊢ ∀x. (A |B) (∀- | ⊢)

x /∈ fv(B) (∃x.A) |B ⊣⊢ ∃x. (A |B) (∃- |)

y 6= x Nx. ∀y.A ⊢ ∀y. (Nx.A) (∀- N⊢)

y 6= x Nx. ∃y.A ⊣ ∃y. (Nx.A) (∃- N⊣)

m R©∀y.A ⊢ ∀y. (m R©A) (∀- R© ⊢)

m R©∃y.A ⊣⊢ ∃y. (m R©A) (∃- R©)

x /∈ fv(B) (∀x.A) ⊲ B ⊣ ∃x. (A ⊲ B) (∀- ⊲ l ⊣)

x /∈ fv(B) (∃x.A) ⊲ B ⊣⊢ ∀x. (A ⊲ B) (∃- ⊲ l)

x /∈ fv(A) A ⊲ (∀x.B) ⊣⊢ ∀x. (A ⊲ B) (∀- ⊲ r)

x /∈ fv(A) A ⊲ (∃x.B) ⊣ ∃x. (A ⊲ B) (∃- ⊲ r ⊣)

y 6= η (∀y.A)@η ⊣⊢ ∀y. (A@η) (∀-@)

y 6= η (∃y.A)@η ⊣⊢ ∃y. (A@η) (∃-@)

y 6= η (∀y.A)�η ⊣⊢ ∀y. (A�η) (∀-�)

y 6= η (∃y.A)�η ⊣⊢ ∃y. (A�η) (∃-�)

If all the rules were double implications (⊣⊢), we may use them to extrude
the existential quantifier in any formula, thanks to Lemma 3.7. However, the
presence of some single implications prevents their direct use for this aim. Each
simple implication we write is actually strict, i.e. whenever we write A ⊢ B in
the table above we also mean that B ⊢ A is not valid in general. We prove this
fact by exhibiting, for any such schematic implication, an instance A′ ⊢ B′ and
a tree T such that T 6|= A′ and T |= B′. This proves that B ⊢ A cannot be
valid. Below, we will often use a name m as an abbreviation for m[0]. We write

11

T |= A when any tree satisfies A, and T 6|= A when no tree satisfies A. The
notation η∈{η1, . . . , ηi} stands for the formula η = η1 ∨ . . . ∨ η = ηi.

(∀-| 6⊣) n[0] |m[0] 6|= (∀x. x∈{n,m} ⇒ x[0]) |T

n[0] |m[0] |= ∀x. (x∈{n,m} ⇒ x[0] |T)

(∀- N6⊣) T 6|= Nx. ∀y. x 6= y

T |= ∀y. Nx. x 6= y

(∃- N6⊢) T 6|= ∃y. Nx. x = y

T |= Nx. ∃y. x = y

(∀- R© 6⊣) (νn) (νn′)n[m] |n′[m′] 6|= p R©∀x. (p[¬ c©x] |T)

(νn) (νn′)n[m] |n′[m′] |= ∀x. p R©(p[¬ c©x] |T)

(∀- ⊲ l 6⊢) T 6|= ∃x. (x[0] ⊲ F)

T |= (∀x. x[0]) ⊲ F

(∃- ⊲ r 6⊢) T 6|= ∃x. (T ⊲ ¬ c©x)

T |= T ⊲ (∃x.¬ c©x)

The table above shows that ∀-∃ extrusion is not trivial in SL, but it does
not prove it to be impossible (for example, simple double-implication rules for
∃- Nand ∀- Ndo exist); the actual impossibility proof will come later.

Similar rules, riddled with single implications, govern the extrusion of hiding
quantifiers and of R©. In this case as well, we will show later that they cannot
be adjusted.

The situation looks very similar for the freshness quantifier (Table 4.2), apart
from the fact that, thanks to its self-duality, we only need half of the rules.

Table 4.2. Extrusion of freshness quantifier

x /∈ fv(B) (Nx.A) ∧B ⊣⊢ Nx. (A ∧B) (N-∧)

¬(Nx.A) ⊣⊢ Nx. (¬A) (N-¬)

y 6= η η[Ny.A] ⊣⊢ Ny. (η[A]) (N-[])

x /∈ fv(B) (Nx.A) |B ⊣⊢ Nx. (A |B) (N-|)

y 6= x ∃x. Ny.A ⊢ Ny. (∃x.A) (N-∃ ⊢)

y 6= η η R© Ny.A ⊣⊢ Ny. (η R©A) (N- R©)

x /∈ fv(B) (Nx.A) ⊲ B ⊣ Nx. (A ⊲ B) (N- ⊲ l ⊣)

x /∈ fv(A) A ⊲ (Nx.B) ⊣ Nx. (A ⊲ B) (N- ⊲ r ⊣)

y 6= η (Ny.A)@η ⊣⊢ Ny. (A@η) (N-@)

y 6= η (Ny.A)�η ⊣⊢ Ny. (A�η) (N-�)

And, once more, all the single implications are strict.

12

(N-∃ 6⊣) (νn)n[0] 6|= ∃x. Ny. y R© c©x
(νn)n[0] |= Ny. ∃x. y R© c©x

(N- ⊲ l 6⊢) T 6|= Nx. (c©x ⊲ F)
⇔ ¬(∀n. n /∈ fn(T)⇒ T |= c©n ⊲ F)
⇔ ¬(∀n. n /∈ fn(T)⇒ ∀U. U |= c©n⇒ T |U |= F)
⇔ ¬(∀n. n /∈ fn(T)⇒ ∀U. U |= ¬ c©n)
⇔ ∃n. n /∈ fn(T) ∧ ∃U. U |= c©n
consider U = n[0]

T |= (Nx. c©x) ⊲ F

⇔ ∀U. U |= Nx. c©x⇒ T |U |= F

⇔ ∀U. U 6|= Nx. c©x
⇔ ∀U, n. n /∈ fn(U)⇒ U 6|= c©n
⇔ ∀U, n. n /∈ fn(U)⇒ U |= ¬ c©n

(N- ⊲ r 6⊢) T 6|= Nx. (T ⊲ ¬ c©x)
⇔ ¬(∀n. n /∈ fn(T)⇒ T |= T ⊲ ¬ c©n)
⇔ ¬(∀n,U. n /∈ fn(T)⇒ T |U |= ¬ c©n)
⇔ ∃n,U. n /∈ fn(T) ∧ T |U |= c©n
consider U = n[0]

T |= T ⊲ (Nx.¬ c©x)
⇔ ∀U. T |U |= Nx.¬ c©x
⇔ ∀U, n. n /∈ fn(T, U)⇒ T |U |= ¬ c©n

However, the three single-implication rules admit a double-implication ver-
sion, as shown in the following table.

Table 4.3. Extrusion of freshness quantifier - part two

x 6= y ∃x. Ny.A ⊣⊢ Ny. (∃x.A ∧ x 6= y) (N-∃)

y /∈ fv (B) (Ny.A) ⊲ B ⊣⊢ Ny. ((¬ c©y ∧A) ⊲ B)(N- ⊲ l)

y /∈ fv (A) A ⊲ (Ny.B) ⊣⊢ Ny. ((¬ c©y ∧A) ⊲ B)(N- ⊲ r)

The last two rules are bizarre: regardless of which side (of ⊲) Nis extruded
from, y must always be excluded from the left hand side. The proof of the next
Lemma shows that this is indeed the case.

Lemma 4.6 (Extrusion of freshness) There is an algorithm to transform
any formula in the full logic in an equivalent formula in N-prenex form.

Proof The algorithm exhaustively applies the double-implication rules of
Tables 4.2 and 4.3, left to right, until possible. The result is equivalent to the
original formula thanks to Lemma 3.7. Termination is easy.

To prove the correctness of the rules, we must prove that any ground instance
of the left hand side is equivalent to the corresponding instance of the right hand

13

side. We assume that ρ is an arbitrary ground substitution defined on all the
free variables of the involved formulas (in all the rules both sides have the same
free variables). We will also assume that all bound variables in A (and in B)
are different, and that ρ is not defined on those variables (hence, in all cases
below we assume that ρ is not defined on either x or y).

In the proof we will make extensive use of Corollary 3.13, which expresses
the fundamental semantic property of the Gabbay-Pitts freshness quantifier.
(N-∧), (N-¬), (N- |): see [11].

(N-[]): assume y 6= η, hence y 6= (ηρ).

T |= (η[Ny.A])ρ⇔

T |= ηρ[Ny.Aρ]⇔

∃T ′. T ≡ ηρ[T ′] ∧ T ′ |= Ny.Aρ⇔

∃T ′. T ≡ ηρ[T ′] ∧ ∃m /∈ fn(T ′, Aρ). T ′ |= Aρ{y←m} ⇔

By Corollary 3.13

∃T ′. T ≡ ηρ[T ′] ∧ ∃m /∈(fn(T ′, Aρ) ∪ {ηρ}). T ′ |= Aρ{y←m} ⇔

By Lemma 2.2, we have that fn(T ′, Aρ) ∪ {ηρ} = fn(T, ηρ,Aρ)

∃T ′. T ≡ ηρ[T ′] ∧ ∃m /∈ fn(T, ηρ,Aρ). T ′ |= Aρ{y←m} ⇔

∃m /∈ fn(T, ηρ,Aρ). ∃T ′. T ≡ ηρ[T ′] ∧ T ′ |= Aρ{y←m} ⇔

∃m /∈ fn(T, ηρ,Aρ). T |= ηρ[Aρ{y←m}]⇔ (By y 6= ηρ)

∃m /∈ fn(T, ηρ,Aρ). T |= (ηρ[Aρ]){y←m} ⇔

T |= Ny. ηρ[Aρ]⇔

T |= (Ny. η[A])ρ

(N- R©) with y 6= ηρ

T |= (η R© Ny.A)ρ⇔

T |= ηρ R© Ny.Aρ⇔

∃T ′. T ≡ (νηρ)T ′ ∧ T ′ |= Ny.Aρ⇔

∃T ′. T ≡ (νηρ)T ′ ∧ ∃m /∈ fn(T ′, Aρ). T ′ |= Aρ{y←m} ⇔

By Corollary 3.13

∃T ′. T ≡ (νηρ)T ′ ∧ ∃m /∈(fn(T ′, Aρ) ∪ {ηρ}). T ′ |= Aρ{y←m} ⇔

By Lemma 2.2, we have that fn(T ′) ∪ {ηρ} = fn(T, ηρ)

∃T ′. T ≡ (νηρ)T ′ ∧ ∃m /∈ fn(T, ηρ,Aρ). T ′ |= Aρ{y←m} ⇔

∃m /∈ fn(T, ηρ,Aρ). ∃T ′. T ≡ (νηρ)T ′ ∧ T ′ |= Aρ{y←m} ⇔

∃m /∈ fn(T, ηρ,Aρ). T |= ηρ R©Aρ{y←m} ⇔ (By y 6= ηρ)

∃m /∈ fn(T, ηρ,Aρ). T |= (ηρ R©Aρ){y←m} ⇔

T |= Ny. ηρ R©Aρ⇔

T |= (Ny. η R©A)ρ

(N-@) with y 6= ηρ

T |= (Ny.A@η)ρ⇔

T |= Ny.Aρ@ηρ⇔

ηρ[T] |= Ny.Aρ⇔

14

∃m /∈ fn(ηρ[T], Aρ). ηρ[T] |= Aρ{y←m} ⇔

∃m /∈ fn(T, ηρ,Aρ). T |= Aρ{y←m}@ηρ⇔ (By y 6= ηρ)

∃m /∈ fn(T, ηρ,Aρ). T |= (Aρ@ηρ){y←m} ⇔

T |= Ny.Aρ@ηρ⇔

T |= (Ny.A@η)ρ

(N-�) with y 6= ηρ

T |= ((Ny.A)�η)ρ⇔

T |= (Ny.Aρ)�ηρ⇔

(νηρ)T |= (Ny.Aρ)⇔

∃m /∈ fn((νηρ)T,Aρ). (νηρ)T |= Aρ{y←m} ⇔

∃m /∈(fn((νηρ)T,Aρ) ∪ {ηρ}). (νηρ)T |= Aρ{y←m} ⇔

∃m /∈ fn(T, ηρ,Aρ). T |= Aρ{y←m}�ηρ⇔ (By y 6= ηρ)

∃m /∈ fn(T, ηρ,Aρ). T |= (Aρ�ηρ){y←m} ⇔

T |= Ny.Aρ�ηρ⇔

T |= (Ny.A�η)ρ

(N-∃) Assume x 6= y. In the following proof, we use Ay
x, Am

x , Ay
n, and Am

n , to
abbreviate Aρ, Aρ{y←m}, Aρ{x← n}, and Aρ{x←n}{y←m}, respectively.
Aρ{x←n}{y←m} and Aρ{y←m}{x←n} are equal by x 6= y, hence are both
abbreviated as Am

n .

T |= (∃x. Ny.A)ρ⇔

T |= ∃x. Ny.Ay
x ⇔

∃n. T |= Ny.Ay
n ⇔

∃n. ∃m /∈ fn(T,Ay
n). T |= Am

n ⇔ (Corollary 3.13)

∃n. ∃m /∈(fn(T,Ay
x) ∪ {n}). T |= Am

n ⇔

∃m /∈ fn(T,Ay
x). ∃n. m 6= n ∧ T |= Am

n ⇔

∃m /∈ fn(T,Ay
x). ∃n. T |= (Am

n ∧m 6= n)⇔

∃m /∈ fn(T,Ay
x). T |= ∃x. (Am

x ∧m 6= x)⇔

∃m /∈ fn(T,Ay
x). T |= (∃x. (Ay

x ∧ y 6= x)){y←m} ⇔

∃m /∈ fn(T, ∃x. (Ay
x ∧ y 6= x)). T |= (∃x. (Ay

x ∧ y 6= x)){y←m} ⇔

T |= Ny. (∃x.Aρ ∧ x 6= y)⇔

T |= (Ny. (∃x.A ∧ x 6= y))ρ

(N- ⊲ l) Assume y 6∈ fv (B).

T |= ((Ny.A) ⊲ B)ρ⇔

T |= (Ny.Aρ) ⊲ Bρ⇔

∀T ′. T ′ |= Ny.Aρ ⇒ T |T ′ |= Bρ⇔

∀T ′. (∃n /∈ fn(T ′, Aρ). T ′ |= Aρ{y←n}) ⇒ T |T ′ |= Bρ⇔

∀T ′. (∃n /∈ fn(T, T ′, Aρ,Bρ). T ′ |= Aρ{y←n}) ⇒ T |T ′ |= Bρ⇔

∀T ′. ∀n /∈ fn(T, T ′, Aρ,Bρ). (T ′ |= Aρ{y←n} ⇒ T |T ′ |= Bρ)⇔

∀n /∈ fn(T,Aρ,Bρ).

15

∀T ′. n /∈ fn(T ′)⇒ (T ′ |= Aρ{y←n}) ⇒ T |T ′ |= Bρ)⇔

∀n /∈ fn(T,Aρ,Bρ).
∀T ′. (n /∈ fn(T ′) ∧ T ′ |= Aρ{y←n}) ⇒ T |T ′ |= Bρ⇔

∀n /∈ fn(T,Aρ,Bρ). ∀T ′. (T ′ |= ¬ c©n ∧Aρ{y←n}) ⇒ T |T ′ |= Bρ⇔

∀n /∈ fn(T,Aρ,Bρ). ∀T ′. T ′ |= (¬ c©y ∧Aρ){y←n} ⇒ T |T ′ |= Bρ⇔

∀n /∈ fn(T,Aρ,Bρ). T |= (¬ c©y ∧Aρ){y←n} ⊲ Bρ⇔

∀n /∈ fn(T,Aρ,Bρ). T |= ((¬ c©y ∧Aρ) ⊲ Bρ){y←n} ⇔

T |= Ny. ((¬ c©y ∧Aρ) ⊲ Bρ)

T |= (Ny. (¬ c©y ∧A) ⊲ B)ρ

(N- ⊲ r) Assume y 6∈ fv (A).

T |= (A ⊲ Ny.B)ρ⇔

T |= Aρ ⊲ Ny.Bρ⇔

∀T ′. T ′ |= Aρ ⇒ T |T ′ |= Ny.Bρ⇔

∀T ′. T ′ |= Aρ ⇒ (∀n /∈ fn(T, T ′, Bρ). T |T ′ |= Bρ{y←n})⇔ (Cor. 3.13)

∀T ′. T ′ |= Aρ ⇒ (∀n /∈ fn(T, T ′, Aρ,Bρ). T |T ′ |= Bρ{y←n})⇔

∀T ′. ∀n /∈ fn(T, T ′, Aρ,Bρ). (T ′ |= Aρ ⇒ T |T ′ |= Bρ{y←n})⇔

∀n /∈ fn(T,Aρ,Bρ). ∀T ′. n /∈ fn(T ′)⇒ (T ′ |= Aρ ⇒ T |T ′ |= Bρ{y←n})⇔

∀n /∈ fn(T,Aρ,Bρ). ∀T ′. (n /∈ fn(T ′) ∧ T ′ |= Aρ) ⇒ T |T ′ |= Bρ{y←n} ⇔

∀n /∈ fn(T,Aρ,Bρ). ∀T ′. (T ′ |= ¬ c©n ∧Aρ) ⇒ T |T ′ |= Bρ{y←n} ⇔

∀n /∈ fn(T,Aρ,Bρ). T |= (¬ c©n ∧Aρ) ⊲ (Bρ{y←n})⇔ (By y /∈ fv(A))

∀n /∈ fn(T,Aρ,Bρ). T |= (¬ c©y ∧Aρ ⊲ Bρ){y←n} ⇔

T |= Ny. ((¬ c©y ∧Aρ) ⊲ Bρ)

T |= (Ny. (¬ c©y ∧A) ⊲ B)ρ

2

We now use this result to prove decidability of the freshness quantifier.

4.3 Decidable Sublogics With Quantifiers

We first observe that model-checking is decidable for prenex logics; of course,
this is not true, in general, for validity.

Theorem 4.7 (Decidability of Prenex Model-Checking) Model-checking
is decidable for the closed formulas F generated by the following grammar (∃,
H, R©, N: outermost only, c©, � : unlimited):

F ::= ∃x. F | x R©F | Hx. F | Nx. F | ¬F | A

A ::= 0 | η[A] | A |A | A ∧A | ¬A | c©η | A ⊲ A | A@η | A�η

is decidable over all trees.

Proof By induction on the size of F and by cases.
Case ¬F is trivial induction.

16

Case A is Corollary 4.5.
To model-check T |= ∃x. F , consider a finite set N of names containing

fn(T, F) plus one more fresh name m and model-check T |= F{x ← n} for
n∈N. No other name needs to be considered, by Lemma 3.11.

To model-check T |= n R©F , transform T in ENF and apply Lemma 3.14.
To model-check T |= Hx. F , transform T in ENF and apply Lemma 3.16.
To model-check T |= Nx. F , choose a name n /∈ fn(T, F) and model-check

T |= F{x←n}. The result does not depend on the name by Corollary 3.13. 2

Now, we can prove that the addition of freshness preserves the decidability
of the logic of Corollary 4.5.

Theorem 4.8 (Decidability of Fresh Quantifiers) Model-checking and va-
lidity are decidable for the closed formulas generated by the following grammar
(∃,H, R© : no, c©, �, N: yes):

A ::= 0 | η[A] | A |A | Nx.A | A ∧A | ¬A | c©η | A ⊲ A | A@η | A�η

are decidable over all trees.

Proof Model-checking: we apply the algorithm of Lemma 4.6 to transform
the formula in N-prenex form. This can be model-checked by Theorem 4.7.

Validity: given a formula A, we extrude the freshness quantifier from T ⊲ A,
obtaining B. We then model-check 0 |= ~∀B, which is decidable by Theorem 4.7.

By Lemma 3.5, 0 |= ~∀B iff A is valid. 2

To sum up, fresh quantification alone is not enough to lose decidability, even
if combined with a limited form of revelation (c©n).

The proof is based on the possibility of extruding freshness quantifiers through
all operators, including the parallel adjunct operator that internalizes validity
in the logic and, more essentially, negation. This reveals a deep algebraic dif-
ference between fresh and existential quantification, where such extrusion is not
possible. We now formalize this fact.

4.4 Impossibility of Extrusion

Theorem 4.7 has the following Corollaries, whose proof is identical to the second
part of the proof of Theorem 4.8.

Corollary 4.9 (Extrusion of ∃ Implies Decidability) Consider the follow-
ing logic:

A ::= ∃x.A | 0 | η[A] | A |A | Nx.A | A ∧A | ¬A | c©η | A ⊲ A | A@η | A�η

If there exists an extrusion algorithm for this logic, i.e. an algorithm that trans-
form every formula into an equivalent formula generated by the grammar of
Theorem 4.7, then the logic is decidable.

17

Corollary 4.10 (Extrusion of Revelation Implies Decidability) Consider
the following logic:

A ::= x R©A | 0 | η[A] | A |A | Nx.A | A ∧A | ¬A | c©η | A ⊲ A | A@η | A�η

If there exists an extrusion algorithm for the revelation operator, i.e. an algo-
rithm that transform every formula into an equivalent formula generated by the
grammar of Theorem 4.7, then the logic is decidable.

Corollary 4.11 (Extrusion of Hiding Implies Decidability) Consider the
following logic:

A ::= Hx.A | 0 | η[A] | A |A | Nx.A | A ∧A | ¬A | c©η | A ⊲ A | A@η | A�η

If there exists an extrusion algorithm for the hiding quantifier, i.e. an algo-
rithm that transform every formula into an equivalent formula generated by the
grammar of Theorem 4.7, then the logic is decidable.

By Fact 5.1, Corollary 5.28 and Corollary 5.33, the three logics of Corollar-
ies 4.9, 4.10, 4.11 are all undecidable. Hence, we have the following Corollary.

Corollary 4.12 (No Extrusion) No extrusion algorithm (as defined in Corol-
laries 4.9, 4.10, 4.11) exists for the existential quantifier, the revelation operator,
and the hiding quantifier.

5 Undecidable Logics

5.1 Known Results

Fact 5.1 (Undecidability of Existential Quantification) Validity of closed
formulas built from ∃x.A, A ∧A, ¬A, x[A] |T is not decidable.

Proof Proved in [13], by encoding any first-order formula whose vocabulary
is just a binary relation in the fragment above. The undecidability over finite
trees follows by Trakhtenbrot Theorem. The undecidability over infinite trees
follows by Church-Turing Theorem. 2

5.2 Standard Model

In this section we focus on a tiny sublogic of SL that contains the revelation
operator and show that for each formula A of that sublogic, when a tree T
satisfies A, there exists a cut-down version of T that satisfies the same formula.
This will be a key technical tool in order to prove that the decidability of this
tiny logic is already as hard as decidability of first order logic.

Notation 5.2 (Path-Formulas) A path-formula p is a formula that denotes
the existence of a path of edges, starting from the root and leading to a leaf, as

18

follows (we only define path formulas of length one and two, since we need no
more).

length one: .η =def η[0] |T

length two: .η′.η =def η′[η[0] |T] |T

When a tree satisfies .m.n we say that it “contains a path m.n”; observe
that the path must end with a leaf. The minimal tree containing such path,
m[n[0]], is called a “line for the path m.n”, and similarly m[0] is a line for m.

We now introduce a notion of path cutting. Intuitively, the tree CutN (T)
contains one line for each of those paths m.n of T such that m and n are either
bound or in N . In this way, for any formula A with shape .n.m, n R©m R©.n.m,
n R©.n.m, Cutnm(A)(T) is A-equivalent to T , i.e. Cutnm(A)(T) |= A iff T |= A.
Moreover, CutN(T) contains a list n1[0] | . . . |nj [0], where {ni}i∈I = fn(T)∩N ,
so that the validity of formulas n R©T, for n∈N , is preserved as well.

We will prove that this cut-down structure is logically equivalent to the
original tree, with respect to those formulas that only contain path-formulas of
length 2 and names that are in N (Corollary 5.17).

Before giving the formal definition, we give some examples. In the exam-
ples below, n,m, p abbreviate n[0],m[0], p[0]. Cutting is only defined up-to-
congruence.

flattening Cut{n,m}(n[m |n]) ≡ n[m]|n[n]|n|m

cutting long paths Cut{n,m}(n[m[n]]) ≡ n|m

cutting w.r.t. more names Cut{n,m,p}(n[m |n]) ≡ n[m]|n[n]|n|m

deleting free names Cut{n}(n[m |n]) ≡ n[n]|n

preserving bound names Cut{n}((νm)n[m |n]) ≡ (νm)n[m]|n[n]|n|m

name clashes don’t matter Cut{n,m}((νm)n[m |n]) ≡ (νm)n[m]|n[n]|n|m

preserving the name m Cut{n,m}(n[n] |m[p]) ≡ n[n]|n|m

We first define an auxiliary partial function enfCutN (T), that is only defined
on trees in ENF, and is deterministic (while CutN (T) is total but is defined
only up to congruence). enfCutN (T) behaves as CutN (T) in all the examples
above. Then we define CutN (T) by closing the partial function enfCutN (T)
with respect to tree equivalence.

Definition 5.3 (Path cutting for ENF) For each tree (νm1) . . . (νmj)U in
ENF, where U is the matrix, for each set of names N = {ni : i ∈ I} we define the
operation enfCutN () as follows. Par{T : cond} combines (using |) all instances
Tσ of T such that the corresponding instance of “cond” is satisfied.

enfCutN ((νm)T)

=def (νm) enfCutN∪{m}(U)

enfCutN (U) (where U contains no (νn)A′ subterm)

=def Par{n1[n2[0]] : U |= .n1.n2, {n1, n2} ⊆ N}

|Par{n[0] : n ∈ (fn(U) ∩N)}

19

Remark 5.4 (Cutting, Reordering, and Renaming) Some remarks about
cutting:

1. In definition 5.3 we do not require that {mj} and N are disjoint. This is
exploited in Corollary 5.10.

2. enfCutN ((~νi∈{1,...,j}ni)U), i.e. (~νi∈{1,...,j}ni) enfCutN∪{n1,...,nj}(U), is al-

ways in ENF: all the names in {ni}i∈{1,...,j} are free in U , hence they
appear in an edge ni[0] of the result.

3. fn(enfCutN (T)) = fn(T) ∩N

4. If T ′ has the same matrix of T and a reordered prefix, then enfCutN (T ′)
has the same matrix as enfCutN (T) (modulo the edge order, which is not
fixed) but has the prefix of T ′. In other terms, when the prefix of the input
of enfCutN () is reordered, the prefix of the output is reordered in the same
way.

Lemma 5.5 (Congruence of enfCutN ()) if T and T ′ are in ENF then

T ≡ T ′ ⇒ enfCutN (T) ≡ enfCutN (T ′)

Proof We consider the case when N ⊆ fn(T), hence, by congruence, N ⊆
fn(T ′). The general case follows immediately by observing that enfCutN (T) =
enfCutN∩fn(T)(T).

By Lemma 2.6, T ≡ T ′ implies that exist U , T ′′, U ′′, U ′, {ni}i∈{1..j},
{n′i}

i∈{1..j}, and a bijection τ , such that all the U ’s are restriction-free and

T = (~νi∈{1,...,j}ni)U
T ′′ = (~νi∈{1,...,j}ni)U

′′

T ′ = (~νi∈{1,...,j}n
′
i)U

′

with

• N# {ni}i∈{1..j} and N# {n′i}
i∈{1..j}, by N ⊆ fn(T) = fn(T ′);

• U ≡ U ′′;

• U ′′ = U ′{n′l←τ(nl)}l∈{1..j}.

U ≡ U ′′ implies that enfCutN (U) ≡ enfCutN (U ′′), since fn(U) = fn(U ′′) and
U |= .n1.n2 iff U ′′ |= .n1.n2, hence enfCutN (T) ≡ enfCutN (T ′′).

Similarly, U ′′ = U ′{n′l←τ(nl)}l∈{1..j}. implies that

enfCutN∪{ni}i∈{1..j}(U ′′)

= enfCutN∪{ni}i∈{1..j}(U ′{n′l←τ(nl)}l∈{1..j})

= (enfCutN∪{n′
i
}i∈{1..j}(U ′)){n′l←τ(nl)}l∈{1..j}

20

hence

enfCutN (T ′′) = (~νi∈{1,...,j}ni) enfCutN∪{ni}i∈{1..j}(U ′′)

= (~νi∈{1,...,j}ni) (enfCutN∪{n′
i
}i∈{1..j}(U ′){n′l←τ(nl)}l∈{1..j})

≡ (~νi∈{1,...,j}n
′
i) enfCutN∪{n′

i
}i∈{1..j}(U ′)

= enfCutN ((~νi∈{1,...,j}n
′
i)U

′)
= enfCutN (T ′)

2

We now extend cutting from ENF to general terms.

Definition 5.6

CutN (T)
△

= {enfCutN (U) : U ∈ENF (T)}

Corollary 5.7 (Congruence of CutN ())

T ≡ T ′ ∧ U ∈ CutN (T) ∧ U ′ ∈ CutN (T ′) ⇒ U ≡ U ′

Proof By definition,

U ∈ CutN (T) ∧ U ′ ∈ CutN (T ′) ⇒

∃T̄ , T̄ ′. T̄ ∈ENF (T), enfCutN (T̄) = U

T̄ ′∈ENF (T ′), enfCutN (T̄ ′) = U ′

By transitivity, T̄ ≡ T̄ ′. By Lemma 5.5, U ≡ U ′.
2

Because of the property above, hereafter we will always write, with a slight
notational abuse, T ′ = CutN (T) or CutN (T) = T ′, instead of T ′ ∈ CutN (T),
i.e. we will have CutN (T) standing for an arbitrary element of the set, whenever
we are only interested in its value modulo congruence.

Lemma 5.8

fn(CutN (T)) = fn(T) ∩N

Lemma 5.9

CutN ((νn)T) ≡ (νn)CutN∪{n}(T)

Proof If n /∈ fn(T), then it neither appears free in CutN∪{n}(T), hence the
property holds trivially:

CutN ((νn)T) ≡ CutN (T) ≡ CutN∪{n}(T) ≡ (νn)CutN∪{n}(T).

Otherwise, a ENF of (νn)T is (νn)T ′, where T ′ is a ENF of T , and

CutN ((νn)T) ≡ enfCutN ((νn)T ′) ≡ (νn) enfCutN∪{n}(T
′)

≡ (νn)CutN∪{n}(T).

2

21

Corollary 5.10

n∈N ⇒ CutN ((νn)T) ≡ (νn)CutN (T)

Lemma 5.11 (Inversion) For any n 6∈ fn(T):

CutN (T) ≡ (νn)U ′ ⇒ ∃T ′. T ≡ (νn)T ′ ∧ U ′ ≡ CutN∪{n}(T
′)

Proof If n /∈ fn(U ′) the thesis follows immediately with T ′ = T :

T ≡ (νn)T ∧ U ′ ≡ (νn)U ′ ≡ CutN (T) = CutN∪{n}(T)

We consider now the case n ∈ fn(U ′).
CutN (T) ≡ (νn)U ′ means that

∃T̄ , Ū . T̄ ∈ ENF , Ū ∈ ENF , T ≡ T̄ , enfCutN (T̄) = Ū , Ū ≡ (νn)U ′

Choose a ¯̄U ∈ ENF with ¯̄U ≡ U ′. Ū and (νn) ¯̄U are congruent and ENF,
hence they only differ for prefix reordering and renaming, and have equivalent
matrixes. By Ū = enfCutN (T̄), if we apply the same reordering and renaming

that transform Ū into (νn) ¯̄U to T̄ , we get ¯̄T ≡ T̄ such that enfCutN (¯̄T) =

(νn) ¯̄U . Hence, ∃T ′. ¯̄T = (νn)T ′ and enfCutN(T ′) = ¯̄U . This is the thesis,

since ¯̄U ≡ U ′. 2

Corollary 5.12 (Inversion with n∈N) If n∈N , then:

CutN(T) ≡ (νn)U ′ ⇒ ∃T ′. T ≡ (νn)T ′ ∧ U ′ ≡ CutN (T ′)

Proof (νn)U ′ ∈ CutN (T) implies that n is not free in CutN (T), hence, by
Lemma 5.8 and n∈N , n /∈ fn(T). Then we apply the lemma above. 2

Before proving our key lemma, we introduce the De Morgan dual of revela-
tion. This is useful so that we can distribute negation down to the leaves of any
formula in our logic.

Notation 5.13 (Corevelation)

η U©A =def ¬(η R©¬A)

Lemma 5.14

T |= n U©A ⇔ ∀T ′. T ≡ (νn)T ′ ⇒ T ′ |= A

Lemma 5.15 (Standard Model) Let A be a closed formula generated by the
following grammar:

A ::= .η1.η2 | ¬.η1.η2 | A ∧A | A ∨A | η R©A | η U©A | Nx.A

then:
T |= A⇒ Cutnm(A)(T) |= A.

22

Proof We prove the following stronger property, that goes better through
induction, by induction on the size of A, and by cases:

∀N finite. T |= A⇒ Cutnm(A)∪N(T) |= A.

If A is a path-formula .n1.n2 then n1[n2[0]] is in Cut{n1,n2}∪N(T) iff T |= .n1.n2,
by construction. This proves the lemmas for both cases .n1.n2 and ¬.n1.n2.
Observe that, by the closure hypothesis, we do not consider cases .x.n, .n.x,
.x.y.

If A = A′ ∧A′′, or A = A′ ∨A′′, the thesis follows by induction.
If A = n R©A′, then:

T |= n R©A′ ⇔ def of R©

∃T ′. T ≡ (νn)T ′, T ′ |= A′ ⇒ by ind.

∃T ′. T ≡ (νn)T ′, ∀M. Cutnm(A′)∪M(T ′) |= A′ ⇒M← N ∪ {n}

∃T ′. T ≡ (νn)T ′, ∀N. Cutnm(A′)∪N∪{n}(T
′) |= A′ ⇒ def of R©

∃T ′. T ≡ (νn)T ′, ∀N. (νn)Cutnm(A′)∪N∪{n}(T
′) |= n R©A′ ⇔ by Cor. 5.10

∃T ′. T ≡ (νn)T ′, ∀N. Cutnm(A′)∪N∪{n}((νn)T ′) |= n R©A′ ⇒

∀N. ∃T ′. T ≡ (νn)T ′, Cutnm(A′)∪N∪{n}((νn)T ′) |= n R©A′ ⇔ by T ≡ (νn)T ′

∀N. Cutnm(A′)∪N∪{n}(T) |= n R©A′ ⇔

∀N. Cutnm(n R©A′)∪N(T) |= n R©A′

Now, assume A = n U©A′ and T |= A. We want to prove that.:

∀N. Cutnm(n U©A′)∪N(T) |= n U©A′ i.e.

∀N, T ′. (νn)T ′ ≡ Cutnm(n U©A′)∪N(T)⇒ T ′ |= A′ (1)

We assumed that T |= n U©A′ i.e. ∀T ′′. T ≡ (νn)T ′′ ⇒ T ′′ |= A′; by induc-
tion:

∀T ′′,M. T ≡ (νn)T ′′ ⇒ Cutnm(A′)∪M(T ′′) |= A′ (2)

To prove (1), we assume (νn)T ′ ≡ Cutnm(n U©A′)∪N(T) (a).
Since n∈nm(n U©A′)∪N, we can apply Corollary 5.12 to (a), obtaining that:

∃T ′′′. T ≡ (νn)T ′′′

∧ T ′ ≡ Cutnm(n U©A′)∪N(T ′′′) = Cutnm(A′)∪N∪{n}(T
′′′) (3)

Hence we can apply (2), with T ′′ ← T ′′′ and M← N ∪ {n}, obtaining

Cutnm(A′)∪N∪{n}(T
′′′) |= A′,

which implies the thesis T ′ |= A′, since, by (3)

T ′ ≡ Cutnm(A′)∪N∪{n}(T
′′′).

23

If A = Nx.A′, then:

T |= Nx.A′ ⇔ def of N

∀N. ∃n. n /∈(fn(T,A′) ∪N)
∧ T |= A′{x←n} ⇒ by ind.

∀N. ∃n. n /∈(fn(T,A′) ∪N)
∧ ∀M. Cutnm(A′{x←n})∪M(T) |= A′{x←n} ⇒

∀N. ∃n. n /∈(fn(T,A′) ∪N)
∧ Cutnm(A′{x←n})∪N(T) |= A′{x←n} ⇔ by n /∈ fn(T)

∀N. ∃n. n /∈(fn(T,A′) ∪N)
∧ Cutnm(A′{x←n})\{n}∪N(T) |= A′{x←n} ⇔ by n /∈nm(A′)

∀N. ∃n. n /∈(fn(T,A′) ∪N)
∧ Cut

nm(Nx. A′)∪N(T) |= A′{x←n} ⇔ by Cor. 3.13 (3⇔ 5)

∀N. Cut
nm(Nx. A′)∪N(T) |= Nx.A′

2

Corollary 5.16 (Standard Model) Let A be a closed formula generated by
the following grammar:

A ::= .η1.η2 | A ∧A | η R©A | Nx.A | ¬A

then:
T |= A⇒ Cutnm(A)(T) |= A.

Corollary 5.17 Let A be a closed formula generated by the following grammar:

A ::= .η1.η2 | A ∧A | η R©A | Nx.A | ¬A

then:
T |= A⇔ Cutnm(A)(T) |= A.

Proof T |= A⇒ Cutnm(A)(T) |= A by Corollary 5.16.
For the other direction, assume T 6|= A; then:

T 6|= A ⇔ def of ¬A

T |= ¬A ⇒ Corollary 5.16

Cutnm(A)(T) |= ¬A ⇔ def of ¬A

Cutnm(A)(T) 6|= A

2

5.3 Undecidability Results

Since we are studying undecidability, we focus here on weak versions of the logic.
We prove undecidability for a logic with just ∧, ¬, R©, and path formulas, hence
we show that undecidability comes from revelation, and not from the other
spatial operators. The undecidability of any richer logic follows immediately.

24

We are going to define a translation of FOL formulas into SL formulas,
and FOL structures into SL trees, in order to reduce SL satisfiability to FOL
satisfiability over a finite domain, which is known to be undecidable.

We first define our specific flavour of FOL. We consider formulas over a
vocabulary which only consists of a binary relation R, i.e. formulas generated
by the following grammar:

φ ::= ∃x. φ | φ ∧ ψ | ¬φ | R(x, x′)

We define satisfaction of a formula, over an interpretation consisting of a
domain D and a binary relation R over D, with respect to a variable assignment
σ with σ↓⊇ fv(φ), as follows.

D,R, σ |= ∃x. φ ⇔ ∃c∈D. D,R, σ[x 7→c] |= φ

D,R, σ |= φ ∧ ψ ⇔ D,R, σ |= φ ∧ D,R, σ |= ψ

D,R, σ |= ¬φ ⇔ ¬(D,R, σ |= φ)

D,R, σ |= R(x, x′) ⇔ (σ(x), σ(x′)) ∈ R

Essentially, we will translate a model D,R into an ENF term (~νni) [[D]] | [[R]],
with one name ni for each element of D, with R encoded as set of lines of length
two, and D encoded as a set of lines of length one, obtaining structures that
have the same shape as the cut-down trees introduced in Section 5.2.

In the formula, we will translate ∃ into R© and R(x, y) into .m.n. To translate
∃ into R©, we have to overcome some differences between the two operators. The
most obvious difference is the fact that ∃ is a binder while R© is not. In FOL
semantics, we associate each variable x that is bound in a formula ∃x.φ with
a value c that is “free” in the domain. In the SL translation this becomes an
association between a name m that is free in a formula m R©A and a name ni

that is bound in the model (~νni)T . So, while in FOL we are able to bind
variables in the formula with values in the domain, in the SL translation we will
rename bound names in the model to have them matching the free names in the
formula.

A second difference is the fact that the same value can be bound to two
different FOL variables, while the same hidden name cannot be revealed twice,
hence,

{(c, c)} |= ∃x1. ∃x2. R(x1, x2)

but
(νn)n[n[0]] 6|= n1 R©n2 R©.n1.n2.

We solve this problem by translating

∃x1. ∃x2. φ

as if it were
∃x1. ((∃x2 6= x1. φ) ∨ φ{x2←x1}),

i.e. as:
x1 R©((x2 R©[[φ]]) ∨ [[φ{x2←x1}]]),

25

so that ∃x. ∃y. R(x, y) becomes x R©((y R©.x.y) ∨ .x.x) (Actually, it is translated
as the closed term (x R©((y R©.x.y) ∨ .x.x))[x 7→m][y 7→n].)

Finally, while x in ∃x. φ can only be associated to an element that is in the
domain, n in n R©A can also be associated to a name that does not appear in the
model at all (see Lemma 3.14). We solve this problem by translating ∃x. φ as
x R©([[φ]] ∧ .x) and by restricting our attention to models where, for every name
n in a term, a line n[0] is present. We use our results on tree-cutting to show
that this restriction is without loss of generality.

We can finally define our translation. We map a formula to a formula,
an interpretation D,R to a tree [[D,R]]M,N , and a variable assignment to a
ground substitution. The translation is parametrized on a couple of functions,
M and N , with disjoint domains and ranges, such that MN (see Notation 5.19)
injectively maps the whole D into N . In a nutshell, elements in M↓ are mapped
into names that are free in [[D,R]]M,N , while N↓ is mapped over bound names.

Notation 5.18 (Bound Variables) We use bv(φ) to denote the set of all the
variables bound in φ. We will always assume that all bound variables in a
formula are distinct.

Notation 5.19 When M,N : M ⇀ N, we use MN to denote function exten-
sion, as follows:

MN(x)
△

= if x∈N↓ then N(x) else M(x)

Hence, M [c 7→n] yelds n on c and coincides with M elsewhere.
M \ c is undefined on c and coincides with M elsewhere.
When ρ and ρ′ are two substitutions, we define ρ; ρ′ as the only substitution

such that:
A(ρ; ρ′) = (Aρ)ρ′

(ρ; ρ′)(x) = ρ′(ρ(x))

(e.g., [x 7→y]; [y 7→c] = [x 7→c][y 7→c].) Hence, ρ; ρ′ = ρρ′ for any pair of ground
substitutions.

Definition 5.20 (Formula translation) We define here a translation of FOL
formulas, interpretations, and variable assignments, into SL formulas, inter-
pretations, and variable assignments. Moreover, each FOL formula φ is also
mapped to a ground substitution, defined on all and only the bound variables
in φ, which we assume to be mutually distinct. The translation is parametric
with respect to a subset P of N , and to a couple of functions M , N such that

MN : D
in
→ N . P is used to express freshness as “not belonging to P”. In

the first clause of the “formulas into substitutions” we do not specify how m′

is chosen, but we will assume that the choice is deterministic, i.e. that (φ)P is

26

uniquely determined.

formulas into formulas

[[∃x. φ]]Y =def x R©([[φ]]Y∪{x} ∧ .x) ∨
∨

y∈Y [[φ{x←y}]]Y

[[φ ∧ ψ]]Y =def [[φ]]Y ∧ [[ψ]]Y

[[¬φ]]Y =def ¬[[φ]]Y

[[R(x, x′)]]Y =def .x.x′

formulas into substitutions
(∃x. φ)P =def (φ)P[x 7→m′] choose m′ ∈ N \ (P ∪ (φ)P↑)

(φ ∧ ψ)P =def (φ)P(ψ)P∪(φ)P↑

(¬φ)P =def (φ)P

(R(x, x′))P =def ∅

interpretations
[[D,R]]M,N =def (~νc∈N↓N(c)) ([[D]]MN | [[R]]MN)

domains
[[{c} ∪ D]]M =def M(c)[0] | [[D]]M

[[∅]]M =def 0

relations
[[{(c, c′)} ∪ R]]M =def M(c)[M(c′)[0]] | [[R]]M

[[∅]]M =def 0

assignments
[[σ[x 7→c]]]M =def [[σ]]M [x 7→M(c)]

[[0]]M =def 0

Lemma 5.21

fn([[D,R]]M,N) ⊆M↑ (0)

c∈M↓ ∧ M : M↓
in
⇀ N ⇒ [[D]]M [c 7→m] = [[D]]M{M(c)←m} (1)

c∈M↓ ∧ M : M↓
in
⇀ N ⇒ [[R]]M [c 7→m] = [[R]]M{M(c)←m} (2)

[[σ[x 7→c]]]M = [[σ]]M [x 7→M(c)] (3)

c /∈σ↑ ⇒ [[σ[x 7→c]]]M [c 7→m] = [[σ]]M [x 7→m] (4)

{x, y}# bv(φ), x /∈ Y ⇒ [[φ{x←y}]]Y = [[φ]]Y{x←y} (5)

x /∈σ↓, y∈σ↓ ⇒ [x 7→y]; [[σ]]M = [[σ]]M [x 7→M(σ(y))] (6)

x /∈σ↓ ⇒ [x 7→m][[σ]]M = [[σ]]M [x 7→m] (7)

Proof

(4)
[[σ[x 7→c]]]M [c 7→m] = [[σ]]M [c 7→m][x 7→(M [c 7→ m])(c)]

= [[σ]]M [c 7→m][x 7→m] = (by c /∈σ↑) [[σ]]M [x 7→m]

27

(5) By induction and by cases. Case φ = ∃z. ψ:

[[(∃z. ψ){x←y}]]Y by x, y 6= z
= [[∃z. ψ{x←y}]]Y by def.
= z R©([[ψ{x←y}]]Y∪{z} ∧ .z) ∨

∨
w∈Y [[ψ{x←y}{z←w}]]Y by x, y 6= z,

w 6= x

= z R©([[ψ{x←y}]]Y∪{z} ∧ .z) ∨
∨

w∈Y [[ψ{z←w}{x←y}]]Y ind.
(x /∈ Y ∪ {z})

= z R©([[ψ]]Y∪{z}{x←y} ∧ .z) ∨
∨

w∈Y [[ψ{z←w}]]Y{x←y} by x 6= z
= (z R©([[ψ]]Y∪{z} ∧ .z) ∨

∨
w∈Y [[ψ{z←w}]]Y){x←y} by def.

= [[∃z. ψ]]Y{x←y}

2

Theorem 5.22 (Faithfulness of translation) For any FOL formula φ, for
any interpretation (D,R), for any set of variables Y, for any variable assign-

ment σ, for any pair of partial injective functions M ,N : D
in
⇀ N , for any finite

set of names P, such that:

(a) σ↓⊇ fv (φ) ∪Y σ closes the free variables of φ and those in Y
(b) σ↑⊆M↓ σ sends everything into the M -elements
(c) σ(Y) = M↓ every M -element is reached by σ
(d) M↓ ∪N↓= D we know how to translate any c∈D
(e) M↓ #N↓ M -elements and N -elements are distinct
(f) M↑ #N↑ M -names and N -names are distinct
(g) P ⊇ (MN)↑ names not in P are “fresh”
(h) bv(φ)#σ↓ bv(φ)# fv (φ) and bv(φ)#Y
(i) all the variables bound in φ are mutually distinct

then we have:

(D,R), σ |= φ ⇔ [[D,R]]M,N , [[σ]]M (φ)P |= [[φ]]Y

Note that [[σ]]M↓ #(φ)P↓, since (φ)P↓= bv(φ) and bv(φ)#σ↓,
hence [[σ]]M (φ)P = (φ)P[[σ]]M .

Proof
By induction on φ and by cases.
Case ∃x. ψ

[[D,R]]M,N , [[σ]]M (∃x. ψ)P |= [[∃x. ψ]]Y

choose any m′ ∈ N \P; let P′ = P ∪m′

⇔ [[D,R]]M,N , [[σ]]M (ψ)P
′

[x 7→m′] |= x R©([[ψ]]Y∪{x} ∧ .x)

∨
∨

y∈Y [[ψ{x←y}]]Y

⇔ [[D,R]]M,N , [[σ]]M (ψ)P
′

[x 7→m′] |= x R©([[ψ]]Y∪{x} ∧ .x)

∨ [[D,R]]M,N , [[σ]]M (ψ)P
′

[x 7→m′] |=
∨

y∈Y [[ψ{x←y}]]Y

28

By (h) and (i), x is not in the domain of σ or of (ψ)P
′

,
hence in the first line we can move [x 7→m′] to the term;
second line: remove [x 7→m′] since x does not appear in the formula

⇔ [[D,R]]M,N , [[σ]]M (ψ)P
′

|= (x R©([[ψ]]Y∪{x} ∧ .x)){x←m′}

∨ [[D,R]]M,N , [[σ]]M (ψ)P
′

|=
∨

y∈Y [[ψ{x←y}]]Y

We apply {x←m′} and expand [[D,R]]M,N

⇔ (~νc∈N↓N(c)) ([[D]]MN | [[R]]MN),

[[σ]]M (ψ)P
′

|= m′ R©([[ψ]]Y∪{x}{x←m′} ∧ .m′)

∨ ∃y ∈ Y. [[D,R]]M,N , [[σ]]M (ψ)P
′

|= [[ψ{x←y}]]Y

Since m′ /∈ fn([[D,R]]M,N) (by P ⊇M↑⊇ fn([[D,R]]M,N)), we apply
Corollary 3.15 (first line)
⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) (([[D]]MN | [[R]]MN){N(c′)←m′}),

[[σ]]M (ψ)P
′

|= [[ψ]]Y∪{x}{x←m′}

∨ ∃y ∈ Y. [[D,R]]M,N , [[σ]]M (ψ)P
′

|= [[ψ{x←y}]]Y

By Lemma 5.21 (1,2), since MN [c′ 7→m′] is injective by m′ /∈ P ⊇MN↑
and N(c′) = MN(c′)

⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) [[D]]MN [c′7→m′] | [[R]]MN [c′7→m′],

[[σ]]M (ψ)P
′

|= [[ψ]]Y∪{x}{x←m′}

∨ ∃y∈Y. [[D,R]]M,N , [[σ]]M (ψ)P
′

|= [[ψ{x←y}]]Y

By Lemma 5.21 (5), since x# bv (ψ) (i), y# bv(ψ) (h), and x /∈ Y (h)

⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) [[D]]MN [c′7→m′] | [[R]]MN [c′7→m′],

[[σ]]M (ψ)P
′

|= [[ψ]]Y∪{x}{x←m′}

∨ ∃y∈Y. [[D,R]]M,N , ([x 7→y]; [[σ]]M)(ψ)P
′

|= [[ψ]]Y

y∈σ↓ and x /∈σ↓, hence, by Lemma 5.21 (7,6)

⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) [[D]]MN [c′7→m′] | [[R]]MN [c′7→m′],

[[σ]]M [x 7→m′](ψ)P
′

|= [[ψ]]Y∪{x}

∨ ∃y∈Y. [[D,R]]M,N , [[σ]]M [x 7→M(σ(y))](ψ)P
′

|= [[ψ]]Y

By Lemma 5.21 (4), since c′ /∈ σ↑ by N↓ #M↓ (e) and M↓⊇ σ↑ (b)
and by Lemma 5.21 (3) (second line)

⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) [[D]]MN [c′7→m′] | [[R]]MN [c′7→m′],

[[σ[x 7→c′]]]M [c′7→m′](ψ)P
′

|= [[ψ]]Y∪{x}

∨ ∃y∈Y. [[D,R]]M,N , [[σ[x 7→σ(y)]]]M (ψ)P
′

|= [[ψ]]Y

We now prepare the first line for the inductive step. We define M ′ = M [c′ 7→m′],

29

N ′ = N \ c′, Y′ = Y ∪ {x}, σ′ = σ[x 7→c′]. We check the induction conditions.

(a) σ′↓ = σ↓ ∪{x} ⊇ fv(∃x. ψ) ∪Y ∪ {x} ⊇ fv (ψ) ∪Y′

(b) σ′↑ = σ↑ ∪{c′} ⊆ M↓ ∪{c′} = M ′↓
(c) σ′(Y′) = σ(Y) ∪ {c′} = M↓ ∪{c′} = M ′↓
(d) M ′↓ ∪N ′↓ = M↓ ∪{c′} ∪ (N↓ \{c′}) = M↓ ∪N↓ = D
(e) M ′↓ #N ′↓ ⇔ (M↓ ∪{c′})# (N↓ \{c′}) ⇐ M↓ #N↓
(f) M ′↑ #N ′↑ ⇐ (M↑ ∪{m′})#N↑ ⇔ (M↑ #N↑ ∧ m′ /∈ N↑)
(g) P′ = P ∪ {m′} ⊇ (MN)↑ ∪{m′} ⊇ (M ′N ′)↑
(h) bv(ψ)#σ′↓ ⇔ (bv (∃x. ψ) \ {x})# (σ↓ ∪{x}) ⇐ bv(∃x. ψ)#σ↓

Second line: ⇒: let c = σ(y). ⇐ follows by σ(Y) = M↓

⇔ ∃c′∈N↓ . (~νc∈N ′↓N
′(c)) [[D]]M

′N ′

| [[R]]M
′N ′

, [[σ′]]M
′

(ψ)P
′

|= [[ψ]]Y
′

∨ ∃c∈M↓ . [[D,R]]M,N , [[σ[x 7→c]]]M (ψ)P
′

|= [[ψ]]Y

By def. of [[D,R]]M
′,N ′

⇔ ∃c′∈N↓ . [[D,R]]M
′,N ′

[[σ′]]M
′

(ψ)P
′

|= [[ψ]]Y
′

∨ ∃c∈M↓ . [[D,R]]M,N , [[σ[x 7→c]]]M (ψ)P
′

|= [[ψ]]Y

We now apply induction to both disjuncts. For the second line, we observe
that (g) P′ ⊇MN , (c) (σ[x 7→c])(Y) = σ(Y) = σ↑, (b) (σ[x 7→c])↑= σ↑ ∪{c} ⊆
M↓.

⇔ ∃c′∈N↓ . (D,R), σ[x 7→c′] |= ψ ∨ ∃c∈M↓ . (D,R), σ[x 7→c] |= ψ

⇔ ∃c∈D. (D,R), σ[x 7→c] |= ψ

⇔ (D,R), σ |= ∃x. ψ

Cases ¬ψ, ψ ∨ ψ′

Simple induction.

Case R(x, x′) Observe that, for any c′, c′′∈D:

(c′, c′′)∈R ⇔ ∃T. [[D,R]]M,N = (~νc∈N↓N(c)) (MN(c′)[MN(c′′)[0]] |T)

By M↑ #N↑, if c′, c′′∈M↓, the condition above is equivalent to:

(c′, c′′)∈R ⇔ ∃T. [[D,R]]M,N ≡M(c′)[M(c′′)[0]] | (~νc∈N↓N(c))T

i.e., for c′, c′′∈M↓:

(c′, c′′)∈R

⇔ ∃U. [[D,R]]M,N ≡M(c′)[M(c′′)[0]] |U

⇔ [[D,R]]M,N |= .M(c′).M(c′′)

30

Hence:

[[D,R]]M,N , [[σ]]M (R(x, x′))P |= [[R(x, x′)]]Y

⇔ [[D,R]]M,N , [[σ]]M |= .x.x′

⇔ [[D,R]]M,N |= .M(σ(x)).M(σ(x′))

by σ↑⊆M↓ ⇔ (σ(x), σ(x′))∈R

⇔ D,R, σ |= R(x, x′)

2

Corollary 5.23 For any closed FOL formula φ where all the free and bound

variables are disjoint, for any N : D
in
→ N :

D,R |= φ ⇔ [[D,R]]∅,N |= [[φ]]∅(φ)∅

Proof By Theorem 5.22, letting M be the empty function, Y be the empty
set, P = N↑, and σ be the empty assignment, we have that

D,R |= φ ⇔ [[D,R]]∅,N |= [[φ]]∅[[∅]]∅(φ)N↑ ⇔ [[D,R]]∅,N |= [[φ]]∅(φ)N↑

[[D,R]]∅,N |= [[φ]]∅(φ)N↑ is equivalent to [[D,R]]∅,N |= [[φ]]∅(φ)∅ by Corollary 3.12,
since (φ)∅ and (φ)N↑ are injective by construction, (φ)∅↓ = (φ)N↑↓ = bv (φ), and
fn([[D,R]]∅,N , [[φ]]∅) is empty. 2

Corollary 5.24 For any closed FOL formula φ where all the free and bound
variables are disjoint SATFOL(φ)⇒ SATSL([[φ]]∅(φ)∅)

Unfortunately, the inverse implication does not hold. Consider (∃x. T) ∧
¬(∃y. T). It is clearly unsatisfiable, but it is translated (under Y = ∅) as
m R©(T ∧ .m) ∧ ¬n R©(T ∧ .n), which is satisfied by the model (νm′)m′[0] |n[0],
since the presence of n free prevents the model from satisfying n R©(T ∧ .n),
while it satisfies m R©(T ∧ .m).

This fact does not contradict Theorem 5.22, since (νm′)m′[0] |n[0] is not
the translation of any FOL model under Y = ∅ (because Y = ∅ implies that M
is the empty function, hence [[D,R]]M,N must be closed, by Lemma 5.21-(0)).
The fact that the model is not closed is actually the core of the problem. We
solve this problem by considering a new mapping that rules some of the non-
closed models out, and we use the cut operation and Corollary 5.16 to show
that each of the remaining models actually corresponds to a FOL model, hence
finally reducing SATSL to SATFOL.

Lemma 5.25 Let T = CutN ′(P) for some N ′,P; then:

fn(T) = ∅ ⇒ ∃D,R, N. T = [[D,R]]∅,N

31

Proof T = CutT ′(P) implies that T is a set of two-lines Par{mi[m
′
i[0]] : i∈I}

plus a set of one-lines Par{nj[0] : j ∈ J}, with the property that ∀i∈ I. mi ∈
{nj}j∈J ,m′i∈{nj}j∈J . This set of one- and two-lines is preceded by a string of
restrictions. fn(T) = ∅ implies that every name in T is actually restricted, i.e.
that:

T = (~νj∈Jnj)Par{mi[m
′
i[0]] : i∈I} |Par{nj[0] : j∈J}

Now, the thesis follows by choosing D = {nj}
j∈J , R = {(mi,m

′
i)}

i∈I , and
letting N be the identity function over D. 2

We can now define a translation that will ensure that the any model of the
translated formula is “closed enough”, i.e. all its free names are disjoint from
the names in the formula. This means that those free names will be erased by
the Cut () procedure that we exploit in the proof of Lemma 5.27.

Definition 5.26

[[φ]]+ =def [[φ]]∅(φ)∅ ∧
∧

m∈nm([[φ]]∅(φ)∅) ¬ c©m

Lemma 5.27 (Equivalence of satisfiability) For any closed FOL formula
φ, SATFOL(φ)⇔ SATSL([[φ]]+)

Proof (⇒) LetD,R be such that (D,R), ∅ |= φ. By Corollary 5.23, [[D,R]]∅,N

satisfies [[φ]]∅(φ)∅. Since [[D,R]]∅,N is closed, it also satisfies ¬ c©m for any m.
(⇐) Assume SATSL([[φ]]+). Then, there exists T such that:

T |= [[φ]]∅(φ)∅ (1)

T |=
∧

m∈nm([[φ]]∅(φ)∅) ¬ c©m (2)

Consider now U = Cutnm([[φ]]∅(φ)∅)(T). By Lemma 5.15:

U |= [[φ]]∅(φ)∅ (3)

U |=
∧

m∈nm([[φ]]∅(φ)∅) ¬ c©m (4)

By Lemma 5.8
fn(U) ⊆ nm([[φ]]∅(φ)∅)

by (4)
fn(U)#nm([[φ]]∅(φ)∅)

hence
fn(U) = ∅

By Lemma 5.25, U is the translation of a FOL interpretation D,R. By Corol-
lary 5.23, (3) implies D,R |= φ; hence SATFOL(φ). 2

Corollary 5.28 (Undecidability of revelation) Satisfiability (hence valid-
ity) of closed formulas built from n R©A, A∧A, ¬A, .n, .n1.n2, is not decidable.

Theorem 4.8 and Corollary 5.28 together constitute our main result: hiding
can be expressed as freshness plus revelation, freshness quantification without
revelation gives a rich decidable logic (Theorem 4.8) while revelation makes a
minimal logic undecidable (Corollary 5.28).

32

5.4 Undecidability of Hiding Quantification

The proof of undecidability of hiding quantification is very similar to that of
revelation. The translation is slightly simpler since we do not need the (φ)P

substitution any more. Moreover, since the translation of a formula contains no
free name, the step from the faithfulness theorem to the undecidability corollary
is shorter as well.

Definition 5.29 (Formula translation) FOL formulas, assignments, inter-
pretations, domains, and relations, are translated as in Definition 5.20, under
the same conditions over φ, Y, N , M , and N , with the only exception of the
existential quantifier, as specified below. This time we need no translation of
formulas into substitutions, hence we do not need the set P.

formulas

[[∃x. φ]]Y =def Hx. ([[φ]]Y∪{x} ∧ .x) ∨
∨

y∈Y [[φ{x←y}]]Y

. . .

Lemma 5.30 If {x, y}# bv(φ) and x /∈ Y, then:

[[φ{x←y}]]Y = [[φ]]Y{x←y}

Proof By induction and by cases. Case φ = ∃z. ψ:

[[(∃z. ψ){x←y}]]Y by x, y 6= z
= [[∃z. ψ{x←y}]]Y by def.

= Hz. ([[ψ{x←y}]]Y∪{z} ∧ .z) ∨
∨

w∈Y [[ψ{x←y}{z←w}]]Y by x, y 6= z
w 6= x

= Hz. ([[ψ{x←y}]]Y∪{z} ∧ .z) ∨
∨

w∈Y [[ψ{z←w}{x←y}]]Y ind.
(x /∈ Y ∪ {z})

= Hz. ([[ψ]]Y∪{z}{x←y} ∧ .z) ∨
∨

w∈Y [[ψ{z←w}]]Y{x←y} by x 6= z

= (Hz. ([[ψ]]Y∪{z} ∧ .z) ∨
∨

w∈Y [[ψ{z←w}]]Y){x←y} by def.
= [[∃z. ψ]]Y{x←y}

2

Theorem 5.31 (Faithfulness of translation) For any FOL formula φ, for
any interpretation (D,R), for any set of variables Y, for any variable assign-

ment σ, for any pair of partial injective functions M ,N : D
in
⇀ N , such that:

(a) σ↓⊇ fv (φ) ∪Y σ closes the free variables of φ and those in Y
(b) σ↑⊆M↓ σ sends everything into the M -elements
(c) σ(Y) = M↓ every M -element is reached by σ
(d) M↓ ∪N↓= D we know how to translate any c∈D
(e) M↓ #N↓ M -elements and N -elements are distinct
(f) M↑ #N↑ M -names and N -names are distinct
(g) bv(φ)#σ↓ bv(φ)# fv (φ) and bv(φ)#Y
(h) all the variables bound in φ are mutually distinct

33

then we have:

(D,R), σ |= φ ⇔ [[D,R]]M,N , [[σ]]M |= [[φ]]Y

Proof
By induction on φ and by cases, along the lines of Theorem 5.22.
Case ∃x. ψ

[[D,R]]M,N , [[σ]]M |= [[∃x. ψ]]Y

⇔ [[D,R]]M,N , [[σ]]M |= Hx. ([[ψ]]Y∪{x} ∧ .x)

∨
∨

y∈Y [[ψ{x←y}]]Y

⇔ [[D,R]]M,N , [[σ]]M |= Hx. ([[ψ]]Y∪{x} ∧ .x)

∨ [[D,R]]M,N , [[σ]]M |=
∨

y∈Y [[ψ{x←y}]]Y

⇔ (~νc∈N↓N(c)) [[D]]MN | [[R]]MN , [[σ]]M |= Hx. ([[ψ]]Y∪{x} ∧ .x)

∨ [[D,R]]M,N , [[σ]]M |=
∨

y∈Y [[ψ{x←y}]]Y

Choose m′ /∈MN↑; this makes it fresh enough to apply Corollary 3.17
⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) (([[D]]MN | [[R]]MN){N(c′)←m′}),

[[σ]]M |= [[ψ]]Y∪{x}{x←m′}

∨ ∃y∈Y. [[D,R]]M,N , [[σ]]M |= [[ψ{x←y}]]Y

By Lemma 5.21 (1,2), since MN(c′) = N(c′) and MN : MN
in
⇀ N

⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) [[D]]MN [c′7→m′] | [[R]]MN [c′7→m′],
[[σ]]M |= [[ψ]]Y∪{x}{x←m′}

∨ ∃y∈Y. [[D,R]]M,N , [[σ]]M |= [[ψ{x←y}]]Y

By Lemma 5.30 (x /∈ bv(ψ) by (h); y /∈ bv(ψ) by Y# bv (∃x. ψ);
x /∈ Y by Y# bv (∃x. ψ))

⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) [[D]]MN [c′7→m′] | [[R]]MN [c′7→m′],
[[σ]]M |= [[ψ]]Y∪{x}{x←m′}

∨ ∃y∈Y. [[D,R]]M,N , [x 7→y]; [[σ]]M |= [[ψ]]Y

y∈σ↓ and x /∈σ↓, hence, by Lemma 5.21 (7,6)

⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) [[D]]MN [c′7→m′] | [[R]]MN [c′7→m′],

[[σ]]M [x 7→m′] |= [[ψ]]Y∪{x}

∨ ∃y∈Y. [[D,R]]M,N , [[σ]]M [x 7→M(σ(y))] |= [[ψ]]Y

By Lemma 5.21 (4), since c′ /∈ σ↑ by N↓ #M↓ (e) and M↓⊇ σ↑ (b)
and by Lemma 5.21 (3) (second line)

⇔ ∃c′∈N↓ . (~νc∈N↓\{c′}N(c)) [[D]]MN [c′7→m′] | [[R]]MN [c′7→m′],

[[σ[x 7→c′]]]M [c′7→m′] |= [[ψ]]Y∪{x}

∨ ∃y∈Y. [[D,R]]M,N , [[σ[x 7→σ(y)]]]M |= [[ψ]]Y

We now prepare the first line for the inductive step. We define M ′ = M [c′ 7→m′],

34

N ′ = N \ c′, Y′ = Y ∪ {x}, σ′ = σ[x 7→c′]. We check the induction conditions.

(a) σ′↓ = σ↓ ∪{x} ⊇ fv(∃x. ψ) ∪Y ∪ {x} ⊇ fv (ψ) ∪Y′

(b) σ′↑ = σ↑ ∪{c′} ⊆ M↓ ∪{c′} = M ′↓
(c) σ′(Y′) = σ(Y) ∪ {c′} = M↓ ∪{c′} = M ′↓
(d) M ′↓ ∪N ′↓ = M↓ ∪{c′} ∪ (N↓ \{c′}) = M↓ ∪N↓ = D
(e) M ′↓ #N ′↓ ⇔ (M↓ ∪{c′})# (N↓ \{c′}) ⇐ M↓ #N↓
(f) M ′↑ #N ′↑ ⇐ (M↑ ∪{m′})#N↑ ⇔ (M↑ #N↑ ∧ m′ /∈ N↑)
(g) bv(ψ)#σ′↓ ⇔ (bv (∃x. ψ) \ {x})# (σ↓ ∪{x}) ⇐ bv(∃x. ψ)#σ↓

Second line: ⇒: let c = σ(y). ⇐ follows by σ(Y) = M↓

⇔ ∃c′∈N↓ . (~νc∈N ′↓N
′(c)) [[D]]M

′N ′

| [[R]]M
′N ′

, [[σ[x 7→c′]]]M
′

|= [[ψ]]Y
′

∨ ∃c∈M↓ . [[D,R]]M,N , [[σ[x 7→c]]]M |= [[ψ]]Y

By def. of [[D,R]]M
′,N ′

⇔ ∃c′∈N↓ . [[D,R]]M
′,N ′

[[σ[x 7→c′]]]M
′

|= [[ψ]]Y
′

∨ ∃c′∈M↓ . [[D,R]]M,N , [[σ[x 7→c′]]]M |= [[ψ]]Y

We now apply induction to both disjuncts.

⇔ ∃c′∈N↓ . (D,R), σ[x 7→c′] |= ψ ∨ ∃c′∈M↓ . (D,R), σ[x 7→c′] |= ψ

⇔ ∃c∈D. (D,R), σ[x 7→c] |= ψ

⇔ (D,R), σ |= ∃x. ψ

Cases ¬ψ, ψ ∨ ψ′, R(x, y): As in the proof of Theorem 5.22.

2

Lemma 5.32 (Equivalence of satisfiability) For any closed FOL formula
φ, SATFOL(φ)⇔ SATSL([[φ]]∅)

Proof (⇒) Assume all variables in φ are distinct. Let D,R be such that

(D,R), ∅ |= φ. Consider any N : D
in
→ N . By Theorem 5.31, [[D,R]]∅,N satisfies

[[φ]]∅ (as in the proof of Corollary 5.23).
(⇐) Assume SATSL([[φ]]∅). Then, there exists T such that:

T |= [[φ]]∅

Consider now U = Cutnm([[φ]]∅)(T) = Cut∅(T). By Lemma 5.15, U |= [[φ]]∅ .

By Lemma 5.8, fn(U) = ∅. By Lemma 5.25, U = [[D,R]]∅,N for some D, R, N .
By Theorem 5.31, U = [[D,R]]∅,N |= [[φ]]∅ implies D,R |= φ; hence SATFOL(φ).

2

Corollary 5.33 (Undecidability of Hiding) Satisfiability (hence validity) of
closed formulas built from Hx.A, A ∧A, ¬A, .x1, and .x1.x2, is not decidable.

35

6 Related Work

Independently of this study, an extrusion algorithm for the freshness quantifier
(Section 4.2) has been developed in [16]. That version is however incorrect,
since its rule (⊲R) is the one that we disprove in counterexample (N- ⊲ r 6⊢).

That error does not influence the main result of that paper, a surprising
adjunct elimination theorem.

Theorem 6.1 (Adjunct elimination (Lozes)) For any formula A generated
by the grammar below, there exists A′ such that A ⊣⊢ A′ and A′ contains no
adjunct.

A ::= 0 | η[A] | A |A | Nx.A | A ∧A | ¬A | η R©A | A ⊲ A | A@η | A�η

The result is surprising in view of the fact that the parallel-adjunct seems to
be extremely expressive, being able to quantify over infinite sets of trees, and
of internalizing validity into model-checking.

Lozes leaves the open problem of the existence of an effective adjunct-
elimination procedure. As a corollary of our undecidability results, we can
close that problem.

Corollary 6.2 No effective adjunct-elimination can exist for the logic of The-
orem 6.1.

A calculus to manipulate trees with hidden names has been presented in [8],
whose type system includes SL. As a result, type inclusion in that calculus and
validity in SL are mutually reducible. Decidability of subtype-checking was left
as an open problem in [8]. Our results imply that it is undecidable.

7 Conclusions

This paper answers these previously open questions:

1. Decidability of Spatial Logics (without revelation and quantifiers) equipped
with fresh name quantifier.

2. Decidability of Spatial Logics equipped with revelation or hiding quanti-
fier.

3. Existence of extrusion algorithm for hiding, revelation, existential quan-
tification.

4. Existence of an effective adjunct-elimination procedure in the Spatial
Logic with freshness and revelation.

The decidability result (1) is based on the extrusion of freshness into a prenex
form. The proof of decidability by extrusion is very attractive because it does

36

not need combinatorial explorations of the model, but is based on the “algebraic”
properties of the logic, and is robust with respect to variations on the logic itself.

The undecidable logic (2) is obtained adding revelation to a minimal logic
of propositional connectives and simple path formulas, hence we show that un-
decidability comes from revelation and not from the spatial nature of SL. Un-
decidability of any richer logic (e.g. the static fragment of the Ambient Logic
with revelation and without composition adjunct) follows immediately.

8 Acknowledgments

We would like to thank Lúıs Caires, Cristiano Calcagno, Luca Cardelli, Dario
Colazzo, Anuj Dawar, Philippa Gardner, Andy Gordon, for suggestions and
discussions which influenced this work in many ways.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148(1):1–70, 10 January 1999.

[2] L. Caires and L. Cardelli. A spatial logic for concurrency (Part I). In Proc.
of Theoretical Aspects of Computer Software; 4th International Symposium,
TACS 2001, volume 2215 of LNCS, pages 1–37. Springer-Verlag, 2001.

[3] L. Caires and L. Cardelli. A spatial logic for concurrency (Part II). In
Proc. of CONCUR’02, volume 2421 of LNCS, page 209. Springer-Verlag,
2002.

[4] L. Caires and L.Monteiro. Verifiable and executable logic specifications
of concurrent objects in Lπ. In Proc. of the 7th European Symposium on
Programming (ESOP’98), volume 1381 of LNCS, pages 42–56. Springer-
Verlag, 1998.

[5] C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding validity in a spatial
logic for trees. In Proc. of ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI’03), 2003.

[6] L. Cardelli. Describing semistructured data. SIGMOD Record, Database
Principles Column, 30(4), 2001.

[7] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs.
In Proc. of ICALP, volume 2380 of LNCS, page 597. Springer-Verlag, 2002.

[8] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden
labels. In Proc. of FOSSACS ’03, volume 2620 of LNCS, pages 216–232.
Springer-Verlag, 2003.

37

[9] L. Cardelli and G. Ghelli. A query language based on the ambient logic.
In Proc. of European Symposium on Programming (ESOP), Genova, Italy,
volume 2028 of LNCS, pages 1–22. Springer-Verlag, 2001.

[10] L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile
ambients. In Proc. of POPL. ACM Press, 2000.

[11] L. Cardelli and A. D. Gordon. Logical properties of name restriction. In In-
ternational Conference on Typed Lambda Calculi and Applications (TCLA
2001, Krakow, Poland), volume 2044 of LNCS, pages 46–60. Springer, 2001.

[12] L. Cardelli and A. D. Gordon. Ambient logic. Submitted for publication,
available from the authors, 2002.

[13] W. Charatonik and J.M. Talbot. The decidability of model checking mobile
ambients. In CSL: 15th Workshop on Computer Science Logic, volume 2142
of LNCS, page 339, 2001.

[14] G. Conforti and G. Ghelli. Spatial logics to reason about semistructured
data. In Proc. of SEBD 2003: Eleventh Italian Symposium on Advanced
Database Systems. Rubettino Editore, 2003.

[15] M. Gabbay and A.M. Pitts. A new approach to abstract syntax involving
binders. In Proc. of LICS’99, pages 214–224. IEEE Computer Society Press,
1999.

[16] É. Lozes. Adjuncts elimination in the static ambient logic. As published
in http://www.ens-lyon.fr/∼elozes/adjunct.pdf, July 2003.

[17] Peter O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In In Proc. of CSL, volume
2142 of LNCS, pages 1–19. Springer-Verlag, 2001.

[18] A. M. Pitts. Nominal logic: A first order theory of names and binding.
In Proc. of TACS 2001, volume 2215 of LNCS, pages 219–242. Springer-
Verlag, 2001.

[19] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proc. LICS’02, pages 55–74. IEEE Computer Society, 2002.

38

