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IBM Research

An effective approach to support XML updates is to use XQuery extended with update operations.
This approach results in very expressive languages which are convenient for users but are difficult

to optimize or reason about. A crucial question underlying many static analysis problems for

such languages, from optimization to view maintenance, is whether two expressions commute.
Unfortunately, commutativity is undecidable for most existing XML update languages. In this

paper, we propose a conservative analysis for an expressive XML update language that can be
used to determine commutativity. The approach relies on a form of path analysis that computes

upper bounds for the nodes that are accessed or modified in a given expression. Our main result

is a commutativity theorem that can be used to identify commuting expressions. We illustrate
how the technique applies to concrete examples of query optimization in the presence of updates.

Categories and Subject Descriptors: H.2.3 [Database Management]: Query languages; H.2.4

[Database Management]: Query processing

General Terms: Algorithms, Performance
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1. INTRODUCTION

Most of the proposed XML update languages [Chamberlin et al. 2007; Lehti 2001;
Tatarinov et al. 2001; Benedikt et al. 2005a; Ghelli et al. 2006] rely on extending
a full-fledged query language such as XQuery [Boag et al. 2007] with update prim-
itives. To simplify specification and reasoning, some of the first proposals [Cham-
berlin et al. 2007; Lehti 2001; Benedikt et al. 2005a] have opted for a so-called
snapshot semantics, which delays update application until the end of the query.
However, this leads to counter-intuitive results for some queries, limits the expres-
siveness in a way that is not always acceptable for applications, and introduces a
semantic distinction between queries and subqueries. For that reason, more recent
proposals [Ghelli et al. 2006; Carey et al. 2006; Hidders et al. 2006] give the abil-
ity to apply updates in the course of query evaluation. Such languages are usually
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specified using a semantics with a strict evaluation order. For example, consider the
following query, which first inserts a set of elements, then accesses those elements
using a path expression.

for $x in $doc/country return do insert <new/> into $x,
count($doc/country/new)

Such an example cannot be written in a language based on a snapshot semantics,
as the count function always returns zero.1 However, it can be written in the
XQuery! [Ghelli et al. 2006] or the XQueryP [Carey et al. 2006] proposals, which
both support immediate update application and explicit left-to-right evaluation
order. Still, such semantics severely restricts the optimizer’s ability for rewritings,
unless the optimizer is able to decide that some pairs of expressions commute,
i.e., they return the same value and have the same effect independently of their
evaluation order.

Deciding commutativity, or more generally whether an update and a query in-
terfere, has numerous applications, including optimizations based on rewritings,
detecting when an update needs to be propagated through a view (usually specified
as a query), deciding whether sub-expressions of a given query can be executed in
parallel, etc. Unfortunately, commutativity is undecidable for XQuery extended
with updates. In this paper, we propose a conservative approach to detect whether
two query/update expressions commute. Our technique relies on an extension of
the path analysis proposed by Marian and Siméon [2003] that infers upper bounds
for the nodes accessed and modified by a given expression. Such upper bounds are
specified as simple path expressions for which disjointness is decidable [Benedikt
et al. 2005; Miklau and Suciu 2004; Hammerschmidt et al. 2005].

1.1 Problem Statement

In the rest of the paper, we focus on a simple XQuery extension with insert and
delete operations, whose syntax and semantics is essentially that of the XQuery!
language proposed by Ghelli et al. [2006]. To simplify exposition, we use a language
in which updates are always applied immediately, i.e., without XQuery! fine-grained
control over the snapshot semantics. This language is powerful enough to exhibit
the main problems related to commutativity analysis, yet simple enough to allow
a complete formal specification and treatment within the space of this paper. To
illustrate our purpose, let us consider a few queries and updates in that language,
shown in Figure 1. Some of the examples obviously commute, for instance (U1)
deletes nodes that are unrelated to the nodes accessed by (Q1) or (Q2). This can be
inferred easily by looking at the paths in the query used to access the corresponding
nodes. On the contrary, (U2) does not commute with (Q1) since the query accesses
some of the nodes being inserted. Deciding whether the set of nodes accessed or
modified are disjoint is hard for any non-trivial update language. For instance,
deciding whether (U3) and (Q2) interfere requires some analysis of the predicates,
which can be arbitrarily complex in XQuery.

In this paper, we propose a commutativity analysis that relies on a form of
abstract interpretation that approximates the set of nodes processed by a given ex-

1More precisely, the number of new elements in the original document
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(Q1) count($doc/country/new)

(Q2) $doc/country[population > 20]

(Q3) for $x in $doc//country
return ($x//name)

(Q4) for $x in $doc/country
return $x/new/../very-new

(U1) do delete $doc/wines/california

(U2) for $x in $doc/country
return do insert <new/> into $x

(U3) for $x in
$doc/country[population < 24]

return do delete $x/city

Fig. 1. Some sample queries.

pression. To be useful, this analysis must satisfy the following properties. Firstly,
since we are looking to check disjointness, we must infer an upper bound for the
corresponding nodes. Secondly, the analysis must be precise enough to be use-
ful in practical applications. Finally, the language used to describe those upper
bounds must be such that disjointness is decidable [Hammerschmidt et al. 2005].
In the context of XML updates, paths are a natural choice for the approximation
of the nodes being accessed or updated, provided we can show that they satisfy the
precision and decidability requirements.

1.2 Approach

The path analysis itself is a relatively intuitive extension of the analysis from Marian
and Siméon [2003] to handle update operations. This is done by computing not
only the set of paths for the nodes being accessed by the query, as in Marian and
Siméon [2003], but also the set of paths for the nodes being updated by the query.
The following table illustrates the result of our path analysis for query (Q3) and
update (U3).

query accessed paths updated paths
(U3) $doc/country $doc/country/city//∗

$doc/country/population//node()
$doc/country/city

(Q3) $doc//country none
$doc//country//name

A specific challenge in extending the work of Marian and Siméon [2003] in the
context of updates is to find a precise definition for which nodes are being accessed
and updated. For instance, one may argue that (U3) only modifies nodes reached
by the path country/city, since, in our language, do delete only detaches nodes
from their parents [Chamberlin et al. 2007; Ghelli et al. 2006]. However, one would
then miss the fact that (U3) interferes with (Q3) because the city nodes may have
a country or a name descendant, which is made unreachable by the deletion. In
this particular case, our analysis considers that all the descendants below the path
country/city are affected by the deletion in update (U3) .

A second issue is the volatile nature of the store being analyzed. A natural
interpretation for the paths resulting from the analysis is to denote the set of nodes
returned by that path. However, such an interpretation would change during the
execution of an update statement. We define a way to associate a meaning to a path
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that is stable in the face of a changing data model instance. To address that issue,
we formalize XQuery execution as a manipulation of store histories. This approach
is better adapted to path-based analysis in the presence of immediate updates,
compared to more traditional techniques [Tofte and Talpin 1997; Benedikt et al.
2005a], which partition the store into regions to which the different locations are
immutably associated.

Finally, the analysis requires an unusual interpretation for path expressions.
Traditionally, the semantics of a path expression is defined as the set of nodes
that are returned by that path. However, that interpretation is not sufficient
in the presence of reverse axes. Consider for instance query (Q4). If the re-
turned expression $x/new/../very-new were just associated to the nodes denoted by
country/new/../very-new, then the interference with (U2) would not be observed,
since the path country/new//∗ updated by (U2) refers to a disjoint set of nodes.
Hence, the analysis must also consider the nodes traversed by the evaluation of
$x/new/../very-new, corresponding to the path country|country/new|country/new/..,
whose second component intersects with country/new//∗.

1.3 Commutativity and Optimization

Optimization based on rewritings is one of the main applications and motivations for
our work. In practice, commutativity must often be checked in order for rewritings
to be sound. For instance, consider the following query.

for $x in $doc/wines return (do delete $x/price, count($doc/country))

Since the count expression does not depend on the $x variable used in the loop, one
may want to hoist that expression as follows.

let $y := count($doc/country) return
for $x in $doc/wines return (do delete $x/price, $y)

This is an important optimization, which avoids recomputing the number of coun-
tries many times. However, this rewriting is only sound if the deletion inside the
loop does not apply to the nodes being accessed in the count expression. In other
words, the rewriting is sound only because the subqueries count($doc/country) and
do delete $x/price commute.

More generally, consider any complex FLWOR2 expression with some side-effects.
Almost invariably, the code is designed so that the side-effects do not affect the
queried data. If the optimizer can indeed prove that the different subexpressions
commute, it can explore plans with different evaluation orders, and can also con-
sider pipelined execution. Without commutativity analysis the search space for the
optimizer is severely limited. Also, observe that commutativity must in general
be checked on subexpressions, for which some variables may be free. We show
how the path analysis and commutativity theorem can be performed on such sub-
expressions, by using a notion of environment which binds free variables to paths.
Even though our path analysis only provides an approximation for the nodes being
used or accessed, we believe it is a good starting point that covers a lot of common
cases found in practice.

2FLWOR stands for the key for-let-where-order by-return query construct of XQuery.
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1.4 Contributions

The main contributions of the paper are as follows:

—We develop static analysis techniques to infer paths which approximate the nodes
that are accessed and updated by a given expression in an XML update language;

—We present a formal definition of when such an analysis is sound, based on a
notion of store history equivalence and a notion of stability ; this formal definition
provides a guide for the definition of the inference rules;

—We provide a detailed soundness proof for the proposed path analysis;
—We present a commutativity theorem, that provides a sufficient condition for the

commutativity of two expressions, based on the given path analysis;
—We provide several examples of the use of the analysis for query optimization.

Part of this work was previously published in Ghelli et al. [2007]; this article con-
tains a revised formal framework which greatly simplifies the soundness proof for
commutativity, and extended proof material that provides additional insights into
the approach (Section 5). We also extend Ghelli et al. [2007] with several concrete
examples that illustrate the use of the proposed path analysis techniques for query
optimization (Section 7). We believe the study of commutativity properties to be
crucial in order to support optimization in real XML updates or XQuery Script-
ing [Carey et al. 2006] compilers. To the best of our knowledge, this is the first
attempt at such a study. In the absence of any prior work in the area, we focused
on a simple incarnation of the general commutativity analysis problem. Notably,
the following aspects are not treated in the paper, and are left for future work:
aspects related to XML Schema validation, snapshot semantics, and namespaces
handling.

1.5 Related Work

Numerous update languages have been proposed in the last few years [Chamberlin
et al. 2007; Lehti 2001; Tatarinov et al. 2001; Benedikt et al. 2005a; Ghelli et al.
2006]. Some of the most recent proposals [Ghelli et al. 2006; Carey et al. 2006] are
very expressive, notably providing the ability to observe the effect of updates during
query evaluation. Although the language proposed by Carey et al. [2006] limits the
locations where updates occur, this has little impact on our static analysis, which
also works for a language where updates can occur anywhere in the query such as
XQuery! [Ghelli et al. 2006]. Very little work has been done so far on optimization
or static analysis for such XML update languages, a significant exception being the
work of Benedikt et al. [2005a; 2005b]. However, they focus on analysis techniques
for a language based on snapshot semantics, while we consider a much more ex-
pressive language. A notion of path analysis was proposed by Marian and Siméon
[2003], which we extend here by considering side effects.

Independence between updates and queries has been studied for the relational
model by Elkan [1990] and Levy and Sagiv [1993]. The problem becomes more
difficult in the XML context because of the expressivity of XML languages. In
the relational case, the focus has been on trying to identify fragments of Datalog
for which the problem is decidable, usually by reducing the problem to deciding
reachability. Instead, we propose a conservative approach using a technique based
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on paths analysis which works for arbitrary XML updates and queries. Finally,
commutativity properties for tree operations are important in the context of trans-
actions for tree models [Dekeyser et al. 2003; 2004; Lanin and Shasha 1986], but
these papers rely on dynamic knowledge while we are interested in static commu-
tativity properties, hence the technical tools involved are quite different.

1.6 Organization

The rest of the paper is organized as follows. Section 2 presents the XML data
model and store. Section 3 presents the update language syntax and semantics.
Section 4 presents the path analysis followed by the soundness theorem in Section 5
and the commutativity theorem in Section 6. In Section 7 we illustrate the use of
the analysis for query optimization purposes. Finally, we conclude in Section 8.

2. AN XML STORE FOR UPDATES

In this section we define a notion of XML store that can support XML queries and
updates. The proposed formalization is consistent with the XPath 2.0 and XQuery
1.0 Data Model [Fernández et al. 2007]. In addition, we define a notion of store
history that we use to keep track of the evolution of the data model during the
evaluation of update expressions. For simplicity, we only treat element and text
nodes. We also ignore sibling order, since it has little impact on the approach and
on the analysis precision.

Notations. We use ~a for vectors (a1, . . . , an) of length n and ~a,~b for the concate-
nated vector (a1, . . . , an, b1, . . . , bm), and we permit ~a in set contexts to mean the
set {a1, . . . , an}. We use ⊥ to denote undefined values, specifically functions have
the “value” ⊥ where undefined. We use the notation x 7K v to indicate that x is
mapped to v, and f + f ′ to denote the extension of f with f ′, where the second
overrides the first, if needed; this is notably used in the notation for environments
used during path analysis. For instance, (dEnv + $x 7K ~v1) denotes the environment
dEnv, extended with variable $x bound to value ~v1.

2.1 The Store

In our model, we assume an infinite set of nodes N which are pre-arranged into
an infinite set of trees; a store is built by selecting a finite subset of N . Formally,
we assume the existence of disjoint sets of node ids N (denoted by n and m), node
kinds K = {element, text}, names Q (denoted by q, f , and x), and strings S used
to specify the content of text nodes. All these sets, apart from K, are infinite.
We assume a binary relation E ⊆ (N × N ) that structures N as a forest, i.e.,
the transitive closure E+ of E is irreflexive and {(n,m), (n′,m)} ⊆ E ⇒ n = n′.
Moreover, for each n, the set {m | (n,m) ∈ E } is infinite. A “root” is a node
that has no parent in E . We also assume a function R mapping roots to node
locations; locations are defined as follows (the notation ` ∈ L ::= production is used
to indicate that L is the set of all terms produced by the non-terminal `)

` ∈ L ::= uri | cl

A “uri-location” uri specifies that the tree rooted at nr can be reached with
doc(uri). A “code-location” cl specifies that the tree rooted in nr has been created
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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by the execution of a piece of code identified by cl. Every path used in our analysis
starts from a location. For each location ` ∈ L, the set {n | R(n) = ` } is infinite.
Hence, locations add one more level of tree-structure on top of the trees of N . We
are now ready to define our notion of store.

Definition 1 (store). A store σ is a triple (N,D,F) where N ⊂ N contains
the finite set of the document nodes, D ⊆ N contains the set of nodes that have
been “deleted”, i.e., that have been detached from their parent, and the node
description F maps each node n to a node descriptor [kind : k, name : q, value : v],
where F(n).kind ∈ K is the kind of n, F(n).name ∈ Q is its name (or is undefined)
and F(n).value ∈ S is its string content (or is undefined).

We use Nσ, Dσ, and Fσ to denote the components of a particular store σ. When
two nodes in Nσ are related by E , and the second has not been “deleted”, we say
that m is a parent of n and n is a child of m in σ, and write (m,n) ∈ Eσ, or
Eσ(m,n). Formally we define Eσ = (E ∩ (Nσ × (Nσ \Dσ))). As usual, E+

σ is the
transitive closure of Eσ, and E∗σ is the transitive and reflexive closure. Finally, Rσ
denotes the restriction of R to Nσ \Dσ.

Further constraints, such as the fact that text nodes have no children, can be
easily added, but we ignore such details for simplicity.

Example 2. Consider the following document, assumed to be associated to the
URL http://example.com/1.xml.

<root><a><b/></a><a>c</a></root>

Assuming that n1, n2, n3, n4 , n5 are such that E ⊇ {(n1, n2), (n1, n4), (n2, n3), (n4, n5)}
and that R(n1) = http://example.com/1.xml, the document can be encoded
through the following store σ1, where kindσ1 represents the function that maps
each n to Fσ1(n).kind, and similarly for nameσ1 and valueσ1 .

Nσ1 = {n1, n2, n3, n4, n5}
Dσ1 = {}

kindσ1 = {n1 7K element, n2 7K element, n3 7K element, n4 7K element, n5 7K text}
nameσ1 = {n1 7K root, n2 7K a, n3 7K b, n4 7K a}
valueσ1 = {n5 7K “c”}

According to our definition, the edges and the root mapping of σ1 are:

Eσ1 = {(n1, n2), (n1, n4), (n2, n3), (n4, n5)}
Rσ1 = n1 7K http://example.com/1.xml

If the <b/> element (node n3) were later deleted, we would get a store σ2 whose D
and E are listed below, while N , R, and F are equal to those for σ1.

Dσ2 = {n3}
Eσ2 = {(n1, n2), (n1, n4), (n4, n5)}

Remark 3. Extending this notion of store to the complete XPath 2.0 and XQuery
1.0 Data Model [Fernández et al. 2007] should not pose any fundamental difficulties.
The missing aspects include: (1) namespaces [Bray et al. 1999], which introduce
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two levels of naming, (2) the generalization of “textual content” to lists of “atomic”
as defined by XML Schema [Biron and Malhotra 2001], (3) attribute, comment,
processing instruction, and document node kinds, and (4) document order, which
requires a “next-sibling” relation in the store. Also note that some subtleties of the
semantics of updates are not fully covered here, such as merging of adjacent text
nodes after an update or potential revalidation. Those issues are largely orthogonal
to our purpose here.

2.2 Access and Updates

For convenience, we define here some of the usual accessors, plus a node-test auxil-
iary function, as follows.

children(σ, n) def= {n′ | Eσ(n, n′) }

desc(σ, n) def= {n′ | E+
σ (n, n′) }

parent(σ, n) def= {n′ | Eσ(n′, n) }

ancestor(σ, n) def= {n′ | E+
σ (n′, n) }

node-test(σ, q, n) def⇔ Fσ(n).name = q

node-test(σ, ∗, n) def⇔ ∃q : Fσ(n).name = q

node-test(σ, text(), n) def⇔ Fσ(n).kind = text
node-test(σ, node(), n) is always true

We now focus on operations that modify the store. Most existing XML update
languages [Chamberlin et al. 2007; Lehti 2001; Tatarinov et al. 2001; Benedikt
et al. 2005a; Ghelli et al. 2006] rely on a few kinds of atomic updates, such as node
insertion, deletion, replacement and renaming. Here we focus on simple insert and
delete operations. Replace adds no new issues and can be easily added; however,
as we will see later on in Remark 22, renaming actually raises some problems
with our path analysis. Some proposals also support operations for moving nodes
from one part to another in the tree, which differs from inserting a copy in the new
location and deleting the original, because moving preserves the node identity. Most
proposals do not include moving, because it makes it impossible to encode parent-
child relationship through node identities, and because it has bad interactions with
optimization. We can only confirm this belief. Our store model is incompatible
with moving, but we could easily adopt one which supports moving, as we did
in Ghelli et al. [2007]. Nevertheless, a moving operation would severely weaken our
ability to infer commutativity, as discussed later (Remark 22).

According to the “snapshot” semantics used by XQuery Updates [Chamberlin
et al. 2007] and XQuery! [Ghelli et al. 2006], an update operation generates an
atomic update request, which is applied to the store when the snapshot scope is
closed. We ignore this issue and apply every update immediately (but comment on
it in Remark 34). However, we still record the update details in “atomic update
records”, essential to define our notion of store history. Atomic update records rep-
resent update operations with enough detail to allow the update to be re-executed
on a store, using the “update application” operation apply defined below.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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Definition 4 (atomic update records). Atomic update records are tuples with
the following structure, where ~n is a set of nodes and F maps ~n to node descriptors
as in Definition 1.

δ ∈ Update ::= insert(~n,F) | delete(~n)

Definition 5 (update application). The operation apply(σ,~δ) applies a list of
updates to a store, producing a new store, as follows.

apply((Nσ, Dσ,Fσ), (insert(~n,F), ~δ)) def= apply((Nσ ∪ ~n,Dσ,Fσ + F), ~δ)

apply((Nσ, Dσ,Fσ), (delete(~n), ~δ)) def= apply((Nσ, Dσ ∪ ~n,Fσ), ~δ)

apply(σ, ()) def= σ

Definition 6. We use inserted(~δ) to denote the set of nodes inserted by ~δ, and
F(~δ) to indicate their node description.

inserted(~δ) def=
⋃

insert(~n,F)∈~δ ~n

deleted(~δ) def=
⋃

delete(~n)∈~δ ~n

F(()) def= ()

F(delete(), ~δ) def= F(~δ)

F(insert(~n,F′), ~δ) def= F′ + F(~δ)

2.3 Store History

Finally, we introduce the notion of store history, denoted by η, as pairs (σ,~δ). In
our semantics each expression, instead of modifying its input store, extends the
input history with new updates. With this tool we will be able, for example,
to discuss commutativity of two expressions ex1,ex2 by analyzing the histories
(σ, (~δ1, ~δ2)) and (σ, (~δ′2, ~δ

′
1)) produced by their evaluations in different orders, by

proving that ~δ1 = ~δ′1 and ~δ2 = ~δ′2, and by finally invoking a permutation property
(see Property 10) to conclude that apply(σ, (~δ1, ~δ2)) = apply(σ, (~δ′2, ~δ

′
1)).

A store history (σ,~δ) can be mapped to a plain store either by apply(σ,~δ), as
in Definition 5, or by applying no-delete(~δ) only, which is ~δ without any deletion.
The latter mapping, denoted merge(σ,~δ), yields a store that over-approximates
apply(σ,~δ), but has the advantage of always growing when ~δ grows. This always-
growing mapping will be crucial in order to define an approximation of the store
content that is stable in presence of updates.

Definition 7 (store history application and merging).

apply((σ,~δ)) def= apply(σ,~δ)

merge((σ,~δ)) def= apply(σ,no-delete(~δ))

where

no-delete(()) def= ()

no-delete(insert(~n,F), ~δ) def= insert(~n,F),no-delete(~δ)

no-delete(delete(~n), ~δ) def= no-delete(~δ)
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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By abuse of notation we shall:

—implicitly promote a store σ to the corresponding history (σ, ());
—extend accessors to store histories using the convention that, for any function f

defined on stores, f(η) def= f(apply(η)), in particular, we use this convention for
Nη, Fη, Eη; and

—when η = (σ,~δ), we will write η, ~δ′ to denote (σ, (~δ, ~δ′)).

Finally, we define history difference η \ η′ as follows: (σ, (~δ, ~δ′)) \ (σ,~δ) def= ~δ′.

We introduce here a couple of properties which will be useful later on. We first
observe that the effect of an update is fully described by inserted(~δ), deleted(~δ) and
F(~δ), as follows.

Property 8 (Total effect).

apply(σ,~δ) = apply(σ, insert(inserted(~δ),F(~δ)), delete(deleted(~δ)))

merge(σ,~δ) = apply(σ, insert(inserted(~δ),F(~δ)))

We say that a history is non-rewriting if no node n is inserted twice; when a
history is non-rewriting, the order of the update records is irrelevant. As we will see,
the evaluation of any expression in our language always produces a non-rewriting
history.

Definition 9 (~δ is non-rewriting). A history (σ,~δ) is non-rewriting iff for any
~δ1, ~m,F, ~δ2 with ~δ1, insert(~m,F), ~δ2 = ~δ, the set ~m is disjoint from Napply(σ,(~δ1,~δ2))

.

Property 10 (Permutation). If ~δ1 is a permutation of ~δ2, and, for any insert(~m,F)
and insert(~m′,F′) in δ1 with ~m ∩ ~m′ 6= ∅, the relative order of the two insertions
is the same in ~δ1 and ~δ2, equalities (1) and (2) below hold. In particular, if either
(σ,~δ1) or (σ,~δ2) is non-rewriting, then (1) and (2) hold.

apply(σ,~δ1) = apply(σ,~δ2) (1)

merge(σ,~δ1) = merge(σ,~δ2) (2)

Remark 11. We have here adopted a very liberal notion of update application,
where every update sequence is well-formed, hence the same node may be inserted
or deleted many times, in any order, regardless of its previous presence or absence in
the store. On the contrary, the language semantics we define in Section 3 is totally
standard, since it only inserts fresh nodes, and only deletes nodes that are present,
hence we are not going to exploit application liberality in Section 3. However, the
lack of well-formedness restrictions will be extremely handy to lighten the amount
of bookkeeping that we need in the definitions and proofs of Sections 4 and 5.

3. UPDATE LANGUAGE

We consider XQueryU, a simple language based on XQuery with updates [Boag
et al. 2007], and characterized by the fact that the evaluation order is fixed and each
update operation is applied immediately. It is not difficult to extend our analysis
to languages with snapshot semantics, but the machinery becomes heavier, while
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.
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we are trying here to present the simplest incarnation of our approach. We briefly
come back to this issue at the beginning of Section 4.

3.1 Syntax

Our syntax just includes the core constructs of XQuery with minimal update fea-
tures, however, we do not restrict XML navigation or construction in any essential
way except for not supporting navigation through “ID” references.

Definition 12 (syntax of XQueryU). The syntax of the language that we shall
study:

ex ∈ Expression ::= $x | ex/st | () | (ex,ex) | lit
| let $x := ex return ex | for $x in ex return ex
| if (ex) then ex else ex | f(ex, . . . ,ex) | data(ex)
| elementcl q { } | textcl {ex } | doc(uri)
| do delete ex | do insert ex into ex

st ∈ Step ::= ax::nt

ax ∈ Axis ::= child | descendant | parent | ancestor

nt ∈ NodeTest ::= text() | node() | q | ∗

where $x are variables, q and f are names, lit are literal constants. Element creation
is written element q { } by the programmer, and the cl code-location (introduced in
Section 2) is inserted by the compiler, using a different cl for each different element
constructor. Code-locations are used for path inference, as exemplified in the next
section.

We use the usual abbreviations: ex/.. for ex/parent::∗, ex/nt for ex/child::nt,
and ex//nt for ex/descendant::nt.3

Remark 13. We only include enough in the language to model our simplified store.
We have left out several complex features, notably recursive function declarations
and general FLWOR query expressions. In addition, we have simplified element
creation to not take any child arguments because of the equivalence

element q {ex1, . . . ,exn}
≡ let $n := element q {} return (do insert (ex1, . . . ,exn) into $n, $n)

This allows for a more uniform handling of the language’s effects over the store,
and simplies the forthcoming formal treatment.

3.2 Semantics

We define values, ranged over by ~v and ~w, to be sequences of nodes and constants.
The main semantic judgment “dEnv ` η0; ex Z⇒ η1;~v ” specifies that the evaluation
of an expression ex, with respect to a store history η0 and to a dynamic environment
dEnv (that associates a value to each variable free in ex), produces a value ~v, and
extends the history η0 to η1 = η0, ~δ . The judgment defines a relation, because the
choice of newly created nodes is non-deterministic, and because our store is not
ordered. In an implementation, we would not manipulate the history η0 but the

3For our use it does not matter that ex//nt usually means ex/descendant-or-self::node()/child::nt.
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store apply(η0), since the value of every expression only depends on that. However,
store histories allow us to isolate the store effect of each single expression, both in
our definition of soundness and in our proof of commutativity.

We interpret steps using JstKσ, that associates a step to a set of pairs, and
using JstKnσ, that associates a step to all the nodes reached from n. The result is
unordered, for simplicity, and because order is not tracked by the analysis we study
in this paper.

Definition 14 (step semantics).

Jchild::ntKσ
def= { (n1, n2) | n2 ∈ children(σ, n1) ∧ node-test(σ,nt, n2) }

Jdescendant::ntKσ
def= { (n1, n2) | n2 ∈ desc(σ, n1) ∧ node-test(σ,nt, n2) }

Jparent::ntKσ
def= { (n1, n2) | n2 ∈ parent(σ, n1) ∧ node-test(σ,nt, n2) }

Jancestor::ntKσ
def= { (n1, n2) | n2 ∈ ancestor(σ, n1) ∧ node-test(σ,nt, n2) }

JstKnσ
def= {n′ | (n, n′) ∈JstKσ }

We use the meta-variable conventions to constrain rule applicability, so if a judg-
ment in the premise uses n in the result position, as in:

dEnv ` η0; ex Z⇒ η1;n,

the judgment can only be applied if ex evaluates to a value which is a single node.
We can now present the semantic rules. The rule for do delete ex is simple: ex

is evaluated, produces a new history η1 and a sequence of nodes ~n, and delete(~n)
is then added to η1. Adding ~δ to the history η1 is equivalent to applying ~δ to
apply(η1), since our rules always access apply(η) rather than η itself.

dEnv ` η0; ex Z⇒ η1;~n η2 = η1, delete(~n)
dEnv ` η0; do delete ex Z⇒ η2; ()

(Delete)

do insert performs a deep copy of its arguments and creates a new element. The
rule for do insert depends on the auxiliary function prepare-deep-copy mapping
(σ, n, ~m) to (~mc,Fc). For each node m ∈ ~m, prepare-deep-copy(σ, n, ~m) chooses
a fresh node f(m) ∈ (N \ Nσ) having n as its parent. Then prepare-deep-copy
visits desc(σ, ~m) going top-down, and, for each md ∈ desc(σ, ~m) chooses a node
f(md) such that, if the parent of md is mp, then the parent of f(md) is f(mp);
since mp is the parent of a node in desc(σ, ~m), then mp has already been visited
and mapped to a fresh node. The chosen nodes are collected into ~mc and, for
mc ∈ ~mc, we define Fc(mc) = Fσ(f−1(mc)) (by construction, f is invertible over
~mc). Notice how the rule only depends on apply(η2), not on the internal struc-
ture of η2. The function prepare-deep-copy(σ, n, ~m) is non-deterministic, since it
freely chooses the fresh nodes ~mc; we formalize this non-determinism by stating
that prepare-deep-copy(σ, n, ~m) returns the set of all (~m′c,F

′
c) pairs that respect the

description above, and the evaluation of do insert ex1 into ex2 picks one of those
pairs.
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dEnv ` η0; ex1 Z⇒ η1; ~m
dEnv ` η1; ex2 Z⇒ η2;n

(~mc,Fc) ∈ prepare-deep-copy(apply(η2), n, ~m)
η3 = η2, insert(~mc,Fc)

dEnv ` η0; do insert ex1 into ex2 Z⇒ η3; ()
(Insert)

Element creation just creates a new empty element, whose content will be typ-
ically initialized by an insert operation. The new element is linked to cl, only for
the purposes of our analysis. The function fresh(Nσ, cl) returns all root nodes in
N \Nσ such that R(n) = cl.

n ∈ fresh(Napply(η0), cl)
η1 = η0, insert(n, (n 7K [kind : element, name : q, value : ⊥]))

dEnv ` η0; elementcl q { } Z⇒ η1;n
(Elt)

Text creation is similar but inserts the text value.

dEnv ` η0; ex Z⇒ η1; lit
n ∈ fresh(Napply(η0), cl)

η2 = η1, insert(n, (n 7K [kind : text, name : ⊥, value : lit ]))
dEnv ` η0; textcl {ex } Z⇒ η2;n

(Text)

(Insert), (Elt) and (Text) are the only rules that use the insert() primitive,
and they only insert fresh nodes, hence the following property holds.

Property 15 (non-rewriting). For any σ, dEnv, ex, ~v, η, ~δ such that dEnv `
η; ex Z⇒ (η, ~δ);~v, if η is non-rewriting, then η, ~δ is non-rewriting.

The other language construct rules are standard, apart from the fact that an
evaluation order is always specified through the way the store history is passed
around, e.g., the (Comma) rule specifies that ex2 is evaluated in the store modified
by, i.e., after, ex1.

dEnv ` η0; ex1 Z⇒ η1;~v1 dEnv ` η1; ex2 Z⇒ η2;~v2
dEnv ` η0; (ex1,ex2) Z⇒ η2;~v1, ~v2

(Comma)

dEnv ` η0; () Z⇒ η0; ()
(Empty)

dEnv ` η0; ex Z⇒ η1;~n1 ~n2 =
⋃
n∈~n1

JstKnapply(η1)
dEnv ` η0; ex/st Z⇒ η1;~n2

(Step)

dEnv ` η0; lit Z⇒ η0; lit
(Literal)

dEnv ` η0; ex1 Z⇒ η1;~v1 (dEnv + $x 7K ~v1) ` η1; ex2 Z⇒ η2;~v2
dEnv ` η0; let $x := ex1 return ex2 Z⇒ η2;~v2

(Let)
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dEnv ` η0; ex1 Z⇒ η1;~v
∀i ∈ 1..|~v| : (dEnv + $x 7K vi) ` ηi; ex2 Z⇒ ηi+1;~v′i

dEnv ` η0; for $x in ex1 return ex2 Z⇒ η|~v|+1; (~v′1, . . . , ~v
′
|~v|)

(For)

dEnv ` η0; ex Z⇒ η1;~v ~v 6= () dEnv ` η1; ex1 Z⇒ η2;~v1
dEnv ` η0; if (ex) then ex1 else ex2 Z⇒ η2;~v1

(IfT)

dEnv ` η0; ex Z⇒ η1; () dEnv ` η1; ex2 Z⇒ η2;~v2
dEnv ` η0; if (ex) then ex1 else ex2 Z⇒ η2;~v2

(IfF)

For the built-in function rule, the helper judgment f(~v1; . . . ;~vk) Z⇒ ~v is assumed
defined for every built-in function f . For the equality function written ex1 = ex2,
for example, we have that (~v1 = ~v2) Z⇒ ~v defines ~v as the literal value 1 for true if
the two sequences contain identical elements and () for false otherwise.

∀i ∈ 1..k : dEnv ` ηi−1; exi Z⇒ ηi;~vi f(~v1; . . . ;~vk) Z⇒ ~v

dEnv ` η0; f(ex1, . . . ,exk) Z⇒ ηk;~v
(Func)

As specified, built-in functions cannot access the store, hence they are restricted
to simple functions like equality, arithmetic operators, string operators, etc., which
is all we shall need in our examples. In the next section, we discuss the possible
addition of built-in functions that access the store (Remark 36).

The data accessor merely extracts the literal value from a text node.

dEnv ` η0; ex Z⇒ η1;n lit = Fapply(η1)(n).value

dEnv ` η0; data(ex) Z⇒ η1; lit
(Data)

Finally, doc(uri) returns the nodes that are mapped to uri and have not been
deleted yet. Similarly to XQuery, we assume that these nodes were already in the
store when the computation began, but the definition of a put(uri) function to
create a new document could be easily added, and would be defined almost exactly
as the element operation.

~n = {n | Rapply(η0)(n) = uri }
dEnv ` η0; doc(uri) Z⇒ η0;~n

(Doc)

4. PATH ANALYSIS

In this section we present the path analysis, which computes upper bounds for the
nodes accessed and updated by a given expression in XQueryU.

4.1 Paths

We first define the notion of path used by the analysis, which is not the same as
paths in the target language. For example, they are always rooted at a given lo-
cation, and the steps need not coincide: if we added order to the store, we could
add a following-sibling axis to the language, but we could approximate it with
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parent::∗/child::NT in the analysis. The fragment was chosen such that impor-
tant operations, notably intersection emptiness, can be checked using known algo-
rithms [Benedikt et al. 2005; Miklau and Suciu 2004; Hammerschmidt et al. 2005].
For the XPath fragment we consider here, [Hammerschmidt et al. 2005] describes
a polynomial time algorithm based on tree automata.

Definition 16 (static paths). Static paths, or simply paths, are defined as follows.

p ::= () | ` | p|p | p/st

where ` ranges over locations, and st is from the language grammar (Definition 12).

The / operator binds tighter than |, so that uri1|uri2/b means uri1|(uri2/b) rather
than (uri1|uri2)/b; we will use parenthesis either to force a different precedence, or
just for clarity. As in the language, st ranges over steps ax::nt.

Since static paths are rooted, their extensional semantics JpKσ maps them to sets
of nodes, rather than sets of pairs.

Definition 17 (extensional semantics of paths). For a path p and store σ,
JpKσ denotes the set of nodes selected from the store by the path, according to
the traditional semantics [Wadler 1999], except that order is ignored, and Rσ is
used to interpret the locations `; this definition is based on the step semantics of
Definition 14.

J()Kσ
def= ∅

J`Kσ
def= {n | Rσ(n) = ` }

Jp|p′Kσ
def= JpKσ ∪Jp′Kσ

Jp/stKσ
def=

⋃
n∈JpKσ

JstKnσ

The following concepts are derived from the extensional semantics.

Definition 18 (extensional relations between paths).

Inclusion. A path p1 is included in p2, denoted p1 ⊆ p2, iff ∀σ : Jp1Kσ ⊆Jp2Kσ.
Disjointness. Two paths p1, p2 are disjoint, denoted p1 # p2, iff ∀σ : Jp1Kσ ∩

Jp2Kσ = ∅.

While equivalence and disjointness only depend on the extensional semantics
of a path, we also need to deal with the following notions, which are intensional,
meaning that they discriminate paths that are extensionally equivalent. Intuitivelly,
the prefixes of a path p, denoted as pref(p), are the stepping stones that p jumps
through before reaching its destination (which is also inside pref(p)). The non-
interference relation u #∪ p specifies that u does not end in any of these stepping
stones.

Definition 19 (intensional notions: pref(p), JpK∪σ , u #∪ p).

pref(()) def= ∅

pref(`) def= {`}

pref(p/st) def= {p/st} ∪ pref(p)
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pref(p|p′) def= pref(p) ∪ pref(p′)

JpK∪σ =
⋃

p′∈pref(p)Jp′Kσ

u #∪ p⇔ ∀p′∈pref(p) : u # p′

4.2 The Meaning of the Analysis

Definition 20 (path analysis). Given an expression ex and a path environment
pEnv, which is a mapping from variables to paths, our path-analysis judgment

pEnv ` ex Z⇒ r; 〈a, u〉

associates three paths to the expression: r is an upper approximation of the nodes
that are returned by the evaluation of ex, a of the nodes that are accessed, and u
of the nodes that are updated.

The paths a and u will be used to check commutativity of expressions; the analysis
of an expression that updates, or accesses, the results of a subexpression ex′, uses
the path r associated to ex′ to compute u and a.

Clearly, the set of nodes being “returned” by an expression must correspond to
the result of the query. However, as was observed by Marian and Siméon [2003],
there are several reasonable interpretations to the set of nodes being “accessed”
by a query. For example, a path $x//a may be considered as accessing only the
descendants with an a name, or the descendants with an a name along with all
their ancestors. Furthermore, as we have seen in the introduction, there are some
interactions between the interpretation chosen for the “accessed” nodes and the
interpretation chosen for the “updated” nodes. Our specific choice is based on the
following requirements:

—the definition should be as natural as possible,
—it should allow for an easy computation of a static approximation, and
—it should satisfy the following property: if what is accessed by ex1 is disjoint

from what is updated by ex2, and vice-versa, then the two expressions commute.

In the following paragraphs we present our interpretation, which will guide the
definition of the inference rules and is one of the basic technical contributions of
this work.

The meaning of r seems the easiest to describe: it is an upper approximation of
the result, hence an analysis is sound if () ` ex Z⇒ r; 〈a, u〉 and () ` η0; ex Z⇒ η1;~v
imply that ~v ⊆ JrKapply(η1). Unfortunately, this is too simplistic. Consider the
following example:

let $x := doc(’u1’)/a return (do delete($x), $x/b)

Our rules bind a path u1/a to $x, and finally deduce a returned path p = u1/a/b
for the expression above. However, after do delete($x), the value of $x/b is not in
JpKapply(η) anymore; the best we can say is that it was in JpKapply(η′) for some past
η′, which we express by saying that it is in JpKmerge(η). This is just an instance of a
general “stability” problem: we infer something about a specific store history, but
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we need the same property to hold for the store in some future. We solve this prob-
lem by accepting that our analysis only satisfies ~v ⊆ JrKmerge(η1)

, which is weaker
than ~v ⊆JrKapply(η1) but is stable; we also generalize the notion to environments.

Definition 21 (approximation). A path p approximates a value ~v in the store
history η, denoted p ⊇η ~v, iff ~v ⊆JpKmerge(η). We generalize this to say that a path
environment pEnv approximates a dynamic environment dEnv in a store history η,
denoted pEnv ⊇η dEnv, iff

($x 7K ~v) ∈ dEnv ⇒ ∃p. ($x 7K p) ∈ pEnv and p ⊇η ~v

Thanks to this “merge” interpretation, a path also includes all nodes that were
reached by the path in some past version of the current history.

Remark 22 (on move and rename). This approach works for insertions, deletions,
and for a replace operation, although we did not present it here. It is not obvious,
however, whether it could be extended to other update operations, notably to move
nodes without changing their identity, or to rename nodes. The use of rename
interferes directly with the path analysis, since paths use names to identify nodes,
hence renaming would invalidate some of the paths collected by the analysis. The
case of move would also be difficult, for two reasons. Firstly, our current store model
links the parent-child relationship to the node identity; this problem could be easily
solved, by adopting a different store model. Secondly, consider an operation that
moves a node n from one parent to another, represented by a deletion followed
by an insertion of the same node. As a consequence, merge(η) may contain nodes
with two parents. Hence, one could not deduce, for example, that (a/d) # (b/c/d),
because $x/a/d and $x/b/c/d may denote the same node in merge(η). This reflects
the fact that the two paths, if evaluated at different times, may actually return the
same node, because its parent was moved from $x/a to $x/b/c in the meanwhile.

We move now to the formal interpretation of a and u. The intuition here is
that commutativity (to be presented as Theorem 44) is captured by the following
idea: assume that ex1 transforms η0 into (η0, ~δ) and only modifies nodes reachable
through a path u, while ex2 only depends on nodes reachable through a. Assume
now that u #∪ a; because ex1 only modifies nodes in u, the histories η0 and (η0, ~δ)
are “the same” with respect to an expression that only accesses a, hence we may
evaluate ex2 either before or after ex1.

This is formalized by defining a notion of history equivalence with respect to a
path η ∼p η

′, and by proving that the a and u that are inferred for an expression
ex and the result of evaluation are related by the following soundness properties:
equal results and immutability.

Assume that pEnv ` ex Z⇒ r; 〈a, u〉, dEnv ` η0; ex Z⇒ (η0, ~δ);~v, and pEnv ⊇η
dEnv. We define the following properties:

Equal results from a-equivalent stores (first version):.
η′0 ∼a η0 implies dEnv ` η′0; ex Z⇒ (η′0, ~δ);~v i.e., the same ~v and ~δ are produced
when starting from η0 or from η′0.

Immutability out of u. For any path c, u #∪ c implies η0 ∼c (η0, ~δ) i.e., for any
c, if u #∪ c, then the store after ex is equivalent, wrt. the path c, to the store
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before ex.

It is worth noting that the two properties depend, respectively, on a and u only,
while r is used during the analysis to compute both u and a.

To help explain our notion of path equivalence, let us consider the path analysis
rule for step traversal (introduced formally later in this section).

pEnv ` ex Z⇒ r; 〈a, u〉
pEnv ` ex/st Z⇒ r/st; 〈(r/st)|a, u〉

(Step)

By equal results, the rule says that if η′0 ∼(r/st)|a η0 then the evaluation of ex/st
gives the same result in both η0 and η′0. We expect to prove this by induction,
hence we need to prove that, during the parallel evaluation of ex/st starting from
η0 and η′0:

(1) The two evaluations of ex start from two stores that are equivalent with respect
to a, so that they produce the same set of nodes; for this aim, we need that
η′0 ∼(r/st)|a η0 implies η′0 ∼a η0. By induction, we can now prove that dEnv `
η0; ex Z⇒ (η0, ~δ);~v, implies dEnv ` η′0; ex Z⇒ (η′0, ~δ);~v, with the same ~v and ~δ.

(2) We now evaluate JstKnapply(η0,~δ) and JstKnapply(η′
0,
~δ), for each n ∈ ~v, and we need

to prove that the same nodes are reached in the two cases, hence we need to
prove that η′0 ∼(r/st)|a η0 implies η′0, ~δ ∼r/st η0, ~δ. Hence, we need a notion
of equivalence that is stable with respect to possible updates that take place
during the evaluation of subexpressions; this is required for the soundness of
essentially every operator. For the step operator, we also need to have that,
for each n ∈ ~v, η1 ∼r/st η

′
1 implies JstKnapply(η1) =JstKnapply(η′

1)
, where η1 = η0, ~δ

and η′1 = η′0,
~δ. For this reason, our notion of equivalence with respect to a

path r/st, is based on observing the behaviour of each step in the path.

(3) As we have seen that our approximation property only guarantees that the ~v
resulting from the evaluation of ex satisfies ~v ⊆ JrKmerge(η1)

, hence our equiv-
alence must ensure us that JstKnapply(η1) = JstKnapply(η′

1)
for each n ∈ merge(η1),

not just for the nodes in apply(η1).

As a last detail, η ∼p η
′ will also imply that nodes in JpK have the same description

F in η and in η′.
We now formalize this solution in two steps: we first define a notion of “immediate

equivalence” of η1 and η2 with respect to a path p, that specifies that η1 and
η2 are behaviourally equivalent wrt p, both in their apply() and in their merge()
interpretation. We then make the notion “stable” by quantifying over all possible
updates.

Definition 23 (immediate history path-equivalence). Immediate history equiv-
alence of η1 and η2 with respect to a path, denoted η1 ∼∅p η2, is defined by induction
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and by cases on p as follows:

η1 ∼∅() η2
def⇔ always

η1 ∼∅` η2
def⇔ J`Kmerge(η1)

=J`Kmerge(η2)

∧ ∀n ∈J`Kmerge(η1)
: Fmerge(η1)(n) = Fmerge(η2)(n)

η1 ∼∅p|p′ η2
def⇔ η1 ∼∅p η2 ∧ η1 ∼∅p′ η2

η1 ∼∅p/st η2
def⇔ η1 ∼∅p η2 ∧ ∀n ∈ (JpKmerge(η1)

∩JpKmerge(η2)
) :

(JstKnapply(η1) =JstKnapply(η2) ∧ JstKnmerge(η1)
=JstKnmerge(η2)

∧ ∀m ∈JstKnmerge(η1)
: Fmerge(η1)(m) = Fmerge(η2)(m))

In the last case η1 ∼∅p η2, n ranges overJpKmerge(η1)
∩JpKmerge(η2)

. The next lemma
shows that this is equivalent to n ∈ (JpKmerge(η1)

∪JpKmerge(η2)
).

Lemma 24 (equal semantics).

η1 ∼∅p η2 ⇒ (JpKmerge(η1)
=JpKmerge(η2)

∧JpKapply(η1) =JpKapply(η2)
∧∀n ∈JpK∪merge(η1)

: Fmerge(η1)(n) = Fmerge(η2)(n))

Lemma 25 ( ∼∅p equivalence). For any path p, the relation ∼∅p is reflexive,
symmetric, and transitive.

Equivalence is not extensional, but it only depends on the prefixes of p, as for-
malized by the following lemma.

Lemma 26 ( ∼∅p and pref(p)). η ∼∅p η′ ⇔ ∀p′ ∈ pref(p) : η ∼∅p′ η′.

Proof. By induction on p and by cases.
Cases () and ` are immediate.
Case p = p1|p2: η ∼∅p1|p2

η′ ⇔ η ∼∅p1|p2
η′ ∧ η ∼∅p1

η′ ∧ η ∼∅p2
η′

⇔(by induction) η ∼∅p1|p2
η′ ∧ (∀p′ ∈ pref(p1) : η ∼∅p′ η′) ∧ (∀p′ ∈ pref(p2) : η ∼∅p′ η′)

⇔ ∀p′ ∈ pref(p1|p2) : η ∼∅p′ η′

Case p = p1/ST : The ⇐ direction is trivial, since (p1/ST ) ∈ pref(p1/ST ). In
the other direction, η ∼∅p1/ST

η′ implies η ∼∅p1
η′, hence, by induction, ∀p′ ∈

pref(p1) : η ∼∅p′ η′.

Corollary 27 ( ∼∅p equivalence). If pref(p) = pref(p′) then η ∼∅p η′ ⇔ η ∼∅p′ η′.

We finally close the definition for all possible updates, to make it “stable”.

Definition 28 (History equivalence with respect to a path). Two histories
η1 and η2 are equivalent with respect to a path p, denoted η1 ∼p η2, iff:

∀~δ. (η1, ~δ) ∼∅p (η2, ~δ)

Lemma 29 ( ∼p equivalence). For any path p, the relation ∼p is reflexive,
symmetric, and transitive.

We are now ready for the formal definition of soundness.
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Definition 30 (soundness). The static analysis pEnv ` ex Z⇒ r; 〈a, u〉 is sound
for the semantic evaluation dEnv ` η0; ex Z⇒ η1;~v iff for any well-formed η0, η1,
dEnv, pEnv, ex, ~v, r, a, u, such that:

pEnv ` ex Z⇒ r; 〈a, u〉

dEnv ` η0; ex Z⇒ (η0, ~δ);~v
pEnv ⊇η0 dEnv

the following properties hold.

Approximation by r. r is an approximation of the result: r ⊇(η0,~δ)
~v.

Equal results from a-equivalent stores. For any store history η′0, if η′0 ∼a η0 and
Nη′

0
# inserted(~δ), then dEnv ` η′0; ex Z⇒ (η′0, ~δ);~v.

Immutability out of u. ∀c : u #∪ c⇒ η0 ∼c (η0, ~δ).

In the equal results property we have to add the Nη′
0

# inserted(~δ) assumption
because ~δ creates some nodes that are disjoint from Nη0 , and they have also to be
disjoint from Nη′

0
. This assumption is not really restrictive.

Immutability, together with equal results, implies that, for any ex1 that only
accesses an a1 such that u #∪ a1, the value returned by ex1 after ex has been
evaluated is the same value returned by ex1 before ex evaluation. Immutability is
hence the key to prove that an update and a query commute if u #∪ a1. We must
consider non interference u #∪ a1, rather than simple disjiontness u # a1, because
the disruption of any path in pref(a1) may affect the result of an expression that
accesses a1.

For example, delete(/a/b) updates a path u = /a/b|/a/b//∗, and affects the
semantics of a path /a/b/.. (where .. abbreviates parent::∗). However, we have
(/a/b|/a/b//∗) # (/a/b/..), because the first path reaches nodes which are one level
deeper than the nodes reached by /a/b/... On the other side, (/a/b|/a/b//∗) #∪

(/a/b/..) is false, because /a/b belongs to pref(/a/b/..), and this captures the fact
that deleting nodes reached by /a/b interferes with the evaluation of /a/b/...
Remark 31. The approximation and immutability properties only depend on JrK
and JuK respectively, hence r and u are extensional: if pEnv ` ex Z⇒ r; 〈a, u〉 is
sound, r′ is extensionally equivalent to r, and u′ is extensionally equivalent to u,
then pEnv ` ex Z⇒ r′; 〈a, u′〉 is sound as well. However, equal results depends on
∼a, hence a is not extensional: even if a′ is extensionally equivalent to a, soundness
of pEnv ` ex Z⇒ r; 〈a′, u〉 does not follow from soundness of pEnv ` ex Z⇒ r; 〈a, u〉.

As a consequence, a path-inference engine is free to substitute, at any time, any
path r or u, say //∗/b | //∗, with any equivalent path whose manipulation may be
more efficient, say //∗. The a component can be substituted with an a′ only if
they define the same equivalence. This happens, for example, when they have the
same prefixes (Corollary 27); hence, the a-path /a|/a/b|/a/b/c, that results from
following a path /a/b/c, can be safely substituted by the a-path /a/b/c. Lemma 32
below describes another situation when the substitution of a is safe. Note that this
remark can be used to help optimize implementations of the path analysis.

The following lemma shows that, in the accessed component, a path p/∗|p/a can
be safely substituted by a simpler path p/∗, or we may simplify a path p//∗|p/∗ to
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p//∗. The same substitutions are safe in the returned and updated components, but
in those cases this is simpler to prove, just by observing that such pairs of paths are
extensionally equivalent. The second lemma proves that, when a1 can be simplified
to a2, then a1|a can be simplified to a2|a as well.

Lemma 32. Let us write st ⊆ st′ iff, for any store σ and node n, JstKnσ ⊆Jst′Knσ.
If st ⊆ st′, then

η ∼p/st|p/st′ η′ ⇔ η ∼p/st′ η′

Lemma 33 (Union). For any η, η′, p, p’:

η ∼p|p′ η′ ⇔ (η ∼p η
′ ∧ η ∼p′ η′)

Remark 34 (snapshot semantics). Before we proceed, we say a word about dealing
with snapshot semantics in the context of this framework. Fundamentally, adding
support for delayed update application does not add any significant issue, although
it complicates the formal treatment. In essence, the following adjustments need to
be made. (i) At the language level, consider atomic updates as contributing to a
pending update list in the style of the XQuery Update Facility [Chamberlin et al.
2007], and add a new operator that applies the pending update list to the store, in
the style of XQuery! [Ghelli et al. 2006]. (ii) The path analysis judgment must be
extended in the form of pEnv ` ex Z⇒ r; 〈a, p, u〉, where p is the path approximating
the nodes that will be modified by the updates in the pending update list. (iii) The
path analysis must be fixed so that the atomic updates contribute their updated
paths to the pending updates paths, while the apply expression moves the pending
updates paths into the updated paths. Hence, the approach does not fundamentally
change, apart from this additional book-keeping. A complete description of those
changes is beyond the space allowed by this paper.

4.3 Framework Properties

Our approach is compatible with many different equivalence relations, provided
that the relation and the rules are mutually compatible, according to definition 30;
you find a very different relation defined in the preliminary version of this pa-
per [Ghelli et al. 2007]. While the exact details of our definitions of equivalence,
approximation, and non-interference, are crucial for the soundness of the update
rules, the soundness of our analysis of the functional constructs, such as let, for,
comma, only depends on the six sanity properties listed in Lemma 35 below, and
the same holds for the proof of the commutativity theorem. Hence, these “frame-
work” properties specify the high-level requirements for our notions of equivalence,
approximation, and non-interference, which fix the boundaries for our quest for the
“best” definitions. All these properties hold trivially for the equivalence that we
have chosen.

Lemma 35 (framework properties).

(p1 ⊇η ~v1) ∧ (p2 ⊇η ~v2)⇒ (p1|p2) ⊇η (~v1, ~v2) ( ⊇ |)
p ⊇η ~v ⇒ p ⊇η,~δ ~v ( ⊇ Stability)

for each p, ∼p is an equivalence relation (∼ Equivalence)

η0 ∼p η1 ⇒ η0, ~δ ∼p η1, ~δ (∼ Stability)
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η0 ∼(q0|q1)
η1 ⇒ η0 ∼q0

η1 (∼ |)
p #∪ (q0|q1)⇔ p #∪ q0 ∧ p #∪ q1 (#∪ |)

4.4 Path Analysis Rules

Our path inference rules are presented in Figure 2 and explained below in two
groups: update rules and selection rules.

Update rules. The (Delete) rule extends the “updated path” u with all the
descendants of r because u approximates those paths whose semantics may change
after the expression is evaluated, and the semantics of each path that reaches r|r//∗
is affected by the deletion.

Assume, for example, that ($x 7K `) ∈ pEnv, ($x 7K n) ∈ dEnv, and n is the
root of a tree of the form 〈a〉〈b〉〈c/〉〈b/〉〈a/〉. The evaluation of delete $x/b would
change the semantics of $x//c, although this path does not explicitly traverse `/b.
This is correctly dealt with, since the presence of `/b|`/b//∗ in u means: every
path that is not disjoint from `/b|`/b//∗ may be affected by this operation, and,
by Definition 18, `//c is not disjoint from `/b|`/b//∗.

Similarly, the (Insert) rule specifies how do insert ex1 into ex2 may modify the
semantics of every path that steps through the descendants of ex2. Moreover, it
depends on all the descendants of ex1, since it copies all of them. In principle, we
shoud add r1|r1//∗ to the set of accessed paths, since ex1 is also accessed. However,
pref(r1|r1//∗) = pref(r1//∗), hence we exploit the observation in Remark 31, and
use r1//∗. In Section 5, the soundness of this choice is proved formally.

Selection rules. These rules analyse the querying fragment of our language by
extending the rules from Marian and Siméon [2003] for the proper handling of
updated paths.

The (Comma) rule accumulates the accessed paths and the updated nodes from
its arguments. Concatenation in the result is mapped to union, since our analysis
does not keep the order, or multiplicity, of nodes into account.

(Literal) just specifies that a literal expression does not access or modify any
path.

The (Var) rule specifies that variable access does not access the store. The
only subtlety regarding that rule is that r is not regarded as “accessed”. This is
consistent with both the dynamic semantics for variable references, and with the
definition of soundness. More precisely, the value of $x is the same in two stores
η0 and η′0 independently of any equivalence among them, hence the accessed path
can safely be left empty. This rule also implicitly specifies that variable access
commutes with any other expression. For example, “$x, delete $x” is equivalent to
“delete $x, $x”.

The (Step) rule has already been presented, and specifies that a step depends
on r/st, which means that it depends on r, and it also relies on the semantics of
JstKnapply(η), for each n in JrKmerge(η).

In the (For) rule, the variable is bound and then the body is analysed once.
Observe that the rule is effectively identical to the subsequent (Let) rule, since
our analysis ignores the order and multiplicity of nodes.

Element construction (Elt) returns the code-location cl of the constructor, which
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pEnv ` ex Z⇒ r; 〈a, u〉
pEnv ` do delete ex Z⇒ (); 〈a, u|(r|r//∗)〉

(Delete)

pEnv ` ex1 Z⇒ r1; 〈a1, u1〉 pEnv ` ex2 Z⇒ r2; 〈a2, u2〉
pEnv ` do insert ex1 into ex2 Z⇒ (); 〈a1|a2|(r1//∗), u1|u2|(r2//∗)〉

(Insert)

pEnv ` ex1 Z⇒ r1; 〈a1, u1〉 pEnv ` ex2 Z⇒ r2; 〈a2, u2〉
pEnv ` (ex1, ex2) Z⇒ r1|r2; 〈a1|a2, u1|u2〉

(Comma)

pEnv ` () Z⇒ (); 〈(), ()〉
(Empty)

pEnv ` lit Z⇒ (); 〈(), ()〉
(Literal)

($x 7K r) ∈ pEnv

pEnv ` $x Z⇒ r; 〈(), ()〉
(Var)

pEnv ` ex Z⇒ r; 〈a, u〉
pEnv ` ex/st Z⇒ r/st; 〈r/st|a, u〉

(Step)

pEnv ` ex1 Z⇒ r1; 〈a1, u1〉 (pEnv + $x 7K r1) ` ex2 Z⇒ r2; 〈a2, u2〉
pEnv ` for $x in ex1 return ex2 Z⇒ r2; 〈a1|a2, u1|u2〉

(For)

pEnv ` ex1 Z⇒ r1; 〈a1, u1〉 (pEnv + $x 7K r1) ` ex2 Z⇒ r2; 〈a2, u2〉
pEnv ` let $x := ex1 return ex2 Z⇒ r2; 〈a1|a2, u1|u2〉

(Let)

pEnv ` elementcl q { } Z⇒ cl; 〈(), cl〉
(Elt)

pEnv ` ex Z⇒ r; 〈a, u〉
pEnv ` textcl { ex } Z⇒ cl; 〈a, u|cl〉

(Text)

pEnv ` ex Z⇒ r0; 〈a1, u1〉 pEnv ` ex1 Z⇒ r1; 〈a2, u2〉 pEnv ` ex2 Z⇒ r2; 〈a3, u3〉
pEnv ` if (ex) then ex1 else ex2 Z⇒ r1|r2; 〈a1|a2|a3, u1|u2|u3〉

(If)

∀i ∈ 1..k : pEnv ` exi Z⇒ ri; 〈ai, ui〉 f(r1, . . . , rk) = r

pEnv ` f(ex1, . . . , exk) Z⇒ r; 〈a1| . . . |ak, u1| . . . |uk〉
(Func)

pEnv ` ex Z⇒ r; 〈a, u〉
pEnv ` data(ex) Z⇒ (); 〈a|r, u〉

(Data)

pEnv ` doc(uri) Z⇒ uri; 〈uri, ()〉
(Doc)

Fig. 2. Path analysis rules.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



24 · Giorgio Ghelli et al.

is a unique tag inserted by the compiler. It is used as a root for paths starting from
the new element, as in the following example.

let $a1 := elementcl1 a { }
let $a2 := elementcl2 a { }
return ( $a1/b, insert <b> into $a2 )

In this case, cl1 is associated to $a1, and cl2 is associated to $a2. Paths rooted
in cli are used by the analysis to infer, for example, that $a1/b accesses cl1/b
while insert <b> into $a2 updates (cl2|cl2//∗), hence the two commute. Note that
the analysis does not keep track of the actual element name being inserted, for
simplicity, and because that would add no precision here: every path starting from
cl has q as the name of its root element. We discuss possible extensions in Section 7.

(Text) construction is similar but allows for a subexpression to compute the
text value.

The conditional (If) rule approximates the result path by merging the result
paths of the two branches.

Built-in functions are assumed in the (Func) rule to not directly have side effects,
so they only accumulate the effects of their arguments. For each function f , an
associated path-function f specifies how the returned path of the results depends
on the returned paths of the arguments. For example, for the binary equality
function, written ex1 = ex2, the associated function is r1=r2 7K ().

Remark 36 (functions with access to the store). The approach could be easily ex-
tended to built-in functions that access the store. In this case, each function would
have an associated path-function f that specifies the paths that are returned, ac-
cessed, and updated by the function body. For example, a do-insert($x, $y) function
that copies $y below $x, would be associated to a path function do-insert(r1, r2) 7K
((); 〈(r1//∗), (r2//∗)〉), specifying that it returns nothing, updates (r1//∗), and ac-
cesses (r2//∗). The paths that are updated and accessed by the function body
would then be added to the paths that are updated and accessed by the function
invocation.

Extracting the contents of a text node with (Data) will access that node.
Finally, the (Doc) rule specifies that doc(uri) does not update anything, since

documents are considered “preloaded” in XQuery. However, it accesses the path
uri, since its result depends on Rσ(uri).

5. SOUNDNESS

In this section, we provide detailed proof of soundness for the path analysis in
Section 4.4. The proof is done by induction over the analysis rules. We focus on
proving the most representative or difficult rules, specifically, (Comma), (Step),
(Element), (Insert), and (Delete), given in the previous section.

5.1 The structure of the proof

Inductive framework. Soundness specifies that

pEnv ` ex Z⇒ r; 〈a, u〉

dEnv ` η0; ex Z⇒ (η0, ~δ);~v
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pEnv ⊇η0 dEnv

imply some properties, that we call approximation, equal results, and immutability.
The soundness of the analysis judgment, pEnv ` ex Z⇒ r; 〈a, u〉, is proved by

induction over the structure of the expression ex, taking the operational semantics
into account. In order to use induction, we apply the following inversion property
to the dEnv ` η0; ex Z⇒ (η0, ~δ);~v hypothesis.

Inversion is a standard property that specifies that, since any judgement dEnv `
η0; ex Z⇒ η1;~n can only be proved by the specific rule that matches ex, then,
when dEnv ` η0; ex Z⇒ η1;~n holds, the premises of that specific rule hold as well.
We have a special case when ex = if (ex0) then ex1 else ex2, since we have two
applicable rules. In this case, either the premises of (IfT) or those of (IfF) hold.
Formally, this is specified by cases, as follows.

Proposition 37 (inversion of dynamic semantics).

dEnv ` η0; do delete ex Z⇒ η2; ()
⇒ ∃~n, η1 dEnv ` η0; ex Z⇒ η1;~n

η2 = η1, delete(~n)

dEnv ` η0; do insert ex1 into ex2 Z⇒ η3; ()
⇒ ∃~m, η1, η2, n, ~mc,Fc

dEnv ` η0; ex1 Z⇒ η1; ~m
dEnv ` η1; ex2 Z⇒ η2;n
(~mc,Fcopy) ∈ prepare-deep-copy(apply(η2), n, ~m)
η3 = η2, insert(~mc,Fc)

. . .
dEnv ` η0; if (ex) then ex1 else ex2 Z⇒ η2;~v
⇒ (∃η1, ~v0 6= () dEnv ` η0; ex Z⇒ η1;~v0, dEnv ` η1; ex1 Z⇒ η2;~v)
∨(∃η1 dEnv ` η0; ex Z⇒ η1; (), dEnv ` η1; ex2 Z⇒ η2;~v)

Inversion of dynamic semantics allows us to match the premises of the rule used
to prove pEnv ` ex Z⇒ r; 〈a, u〉 with those of rule used to prove dEnv ` η0; ex Z⇒
(η0, ~δ);~v, and to apply induction to each matched pair. This is the starting point
of all the different cases.

Expressions with two or more subexpressions. We now sketch how the proof
works, using the comma rule as an example. Consider again the comma analy-
sis rule as follows.

pEnv ` ex1 Z⇒ r1; 〈a1, u1〉 pEnv ` ex2 Z⇒ r2; 〈a2, u2〉
pEnv ` (ex1,ex2) Z⇒ r1|r2; 〈a1|a2, u1|u2〉

(Comma)

All the rules in Figure 2 with two or more premises combine the effects of the
premises in similar ways. For such an expression, which does not access or mod-
ify the store, the soundness proof does not make direct use of the definition of
equivalence, but only makes use of the framework properties (Lemma 35): the ap-
proximation property follows by ( ⊇ |) and ( ⊇ Stability); immutability follows by
(#∪ |) and (∼ Equivalence); equal results follows by (∼ |) and (∼ Stability) (details
in Section 5.3). This is an important aspect of our approach, which allows some
flexibility in how path equivalence is defined.
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Operators that access or modify the store. If the operator accesses the store then
the a component of the analysis result contains a specific path, besides those that
come from the premises, such as r/st in the (Step) rule. In this case, besides the
framework properties, the equal results property also depends on a specific lemma
that says that, if two stores coincide on the new path, then the operator gets the
same result in the two stores, such as Lemmas 38 and Lemma 41 below.

If the operator modifies the store, then a new piece u′ appears in the u component,
like r|r//∗ in the (Delete) rule. In this case, in order to prove immutability, we also
need a lemma that specifies that u′ #∪ c implies η ∼c (η, ~δ), such as Lemmas 39,
40, and 42 below. These lemmas depend on the precise definition of the equivalence
relation, not just on its framework properties. This is not surprising: the gist of the
definition of our equivalence is deciding what is observed by ∼p. If ∼p observes a
lot of information, i.e., if it is fine grained, then the proof of equal results becomes
much easier, but immutability is harder, or may even require a bigger path to be
inserted into u. If ∼p observes little information, i.e., if it is coarse, then the proof
of immutability becomes much easier, but equal results is harder, or requires a
bigger path to be inserted into a.

To sum up, for every rule, the corresponding case in the soundness proof is
constituted by a framework that invokes inversion, uses induction, and combines
the results using the framework properties, along the lines of the (Comma) case
(Section 5.3). Moreover, for each action on the store, a specific path is added to the
a or the u component, and we have a lemma to prove that this path corresponds to
the actual action on the store. These lemmas are the kernel of the proof, and they
are collected in the next subsection.

5.2 The Lemmas That Tell The Story

We first present the lemma used for the step operator. The Step Lemma 38 specifies
that the semantics of a step st starting from a node in r is equal in two stores that
are equivalent with respect to r/st, hence justifying the insertion of r/st into the
accessed paths inferred by the (Step) rule. Actually, the lemma is stronger than
this, because it holds not just for the nodes in JrKapply(η), but also for the bigger
set JrKmerge(η). This is necessary because of the stability problem: when we deduce
r ⊇η n, this only means that n ∈ JrKmerge(η), but we are not sure that n is still in
JrKapply(η).

Lemma 38 (step lemma).

η ∼r/st η
′ ∧ n ∈JrKmerge(η) ⇒ JstKnapply(η) =JstKnapply(η′)

Proof. η ∼r/st η′ implies η ∼∅r/st η′, which implies that n ∈ JrKmerge(η) ⇒
JstKnapply(η) =JstKnapply(η′).

The next lemma specifies that, if r ⊇η ~v, then delete(~v) does not affect the nodes
that are disjoint from (r|r//∗), and is the kernel of the immutability proof for delete.

Lemma 39 (delete lemma).

r ⊇η ~v, (r|r//∗) #∪ c ⇒ η ∼c (η, delete(~v))
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Proof. We must prove the following fact:

r ⊇η ~v ∧ (r|r//∗) #∪ c ⇒ ∀~δ. (η, ~δ) ∼∅c (η, delete(~v), ~δ)

We reason by induction on the size of c and by cases on its shape. All cases
are trivial, with the exception of c = c′/st. In this case we have to prove that
∀n ∈Jc′Kmerge(η,~δ),

(JstKnapply(η,~δ) =JstKnapply(η,delete(~v),~δ) and JstKnmerge(η,~δ) =JstKnmerge(η,delete(~v),~δ))

The second equality follows from merge(η, ~δ) = merge(η, delete(~v), ~δ), and the inclu-
sion JstKnapply(η,~δ) ⊇ JstKnapply(η,delete(~v),~δ) is also trivial, hence we have just to prove
that m ∈JstKnapply(η,~δ) ⇒ m ∈JstKnapply(η,delete(~v),~δ).

Recall that, by Property 10, apply(η, delete(~v), ~δ) = apply(η, ~δ, delete(~v)).
We use the hypotheses

r ⊇η ~v (a)
(r|r//∗) #∪ c′/st (b)
n ∈Jc′Kmerge(η,~δ) (c)

m ∈JstKnapply(η,~δ) (d)

and want to prove that m ∈JstKnapply(η,~δ,delete(~v)).
We first observe that Eapply(η) ⊆ Emerge(η) and (d) imply

m ∈JstKnmerge(η,~δ) (e)

hence, by (c),

m ∈Jc′/stKmerge(η,~δ) (f)

We also observe that, for any m′ such that m′ ∈ Jc′/stK∪merge(η,~δ), (b) implies that
m′ 6∈ Jr|r//∗Kmerge(η,~δ), i.e., there is no m′′ ∈ JrKmerge(η,~δ) such that (m′′,m′) ∈
E∗

merge(η,~δ)
hence, by Emerge(η) ⊆ Emerge(η,~δ), there is no m′′ ∈JrKmerge(η) such that

(m′′,m′) ∈ E∗
merge(η,~δ)

; by (a), ~v ⊆JrKmerge(η), hence, (g1) m′ ∈Jc′/stK∪merge(η,~δ) ⇒
6 ∃m′′ ∈ ~v : (m′′,m′) ∈ E∗

merge(η,~δ)
, (g2) by (g1), (f): 6 ∃m′′ ∈ ~v : (m′′,m) ∈ E∗

merge(η,~δ)
,

and (g3) by (g1) and n ∈Jc′/stK∪merge(η,~δ): 6 ∃m
′′ ∈ ~v : (m′′, n) ∈ E∗

merge(η,~δ)
.

We consider the different cases:

—st = child::nt: by (d), (n,m) ∈ Eapply(η,~δ); by (g2) and (m,m) ∈ E∗
merge(η,~δ)

,
m 6∈ ~v, hence (n,m) is also in Eapply(η,~δ,delete(~v)).

—st = descendant::nt: by (d), (n,m) ∈ E+

apply(η,~δ)
; by (g2), 6 ∃m′′ ∈ ~v : (m′′,m) ∈

E∗
merge(η,~δ)

, hence 6 ∃m′′ ∈ ~v : (m′′,m) ∈ E∗
apply(η,~δ)

, hence (n,m) is also in

E+

apply(η,~δ,delete(~v))
.

—st = parent::nt: by (d), (m,n) ∈ Eapply(η,~δ); by (g3) and (n, n) ∈ E∗
merge(η,~δ)

,
n 6∈ ~v, hence (m,n) ∈ Eapply(η,~δ,delete(~v)).
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—st = ancestor::nt: by (d), (m,n) ∈ E+

apply(η,~δ)
, by (g3), 6 ∃m′′ ∈ ~v : (m′′, n) ∈

E∗
merge(η,~δ)

, hence 6 ∃m′′ ∈ ~v : (m′′, n) ∈ E∗
apply(η,~δ)

, hence (m,n) is also in E+

apply(η,~δ,delete(~v))
.

The next lemma specifies that, if r ⊇η np, then insertion below np does not affect
the nodes that are disjoint from r//∗, and is the kernel of immutability for insert.

Lemma 40 (insert lemma). Let σ = merge(η, insert(~mc,Fc));

~mc ⊆ desc(σ, np) ∧ r ⊇η np ∧ (r//∗) #∪ c
⇒ η ∼c (η, insert(~mc,Fc))

Proof. The thesis can be rewritten as follows, where insert() abbreviates insert(~mc,Fc):

∀~δ. ~mc ⊆ desc(merge(η, insert()), np) ∧ r ⊇η np ∧ (r//∗) #∪ c

⇒ (η, ~δ) ∼∅c (η, insert(), ~δ)

We reason by induction on the size of c and by cases on its shape. All cases are
trivial, with the exception of c = c′/st. In this case we have to prove the following
fact.
∀~δ, ∀n ∈Jc′Kmerge(η,~δ) :
(JstKnapply(η,~δ) =JstKnapply(η,insert(),~δ) and JstKnmerge(η,~δ) =JstKnmerge(η,insert(),~δ))

We will just prove that m ∈JstKnapply(η,insert(),~δ) ⇒ m ∈JstKnapply(η,~δ) and
m ∈JstKnmerge(η,insert(),~δ) ⇒ m ∈JstKnmerge(η,~δ), since the other direction is immedi-
ate; we will actually prove the first, since the proof for the second is equal.

Observe that, by Property 8, apply(η, insert(~mc,Fc), ~δ) = apply(η, ~δ, insert(~mc,F′)),
for some F′; we are not interested in the F component here, hence we will also ab-
breviate insert(~mc,F′) as insert().

We have the following hypotheses:

m ∈ ~mc ⇒ (np,m) ∈ E+
merge(η,insert()) (a)

r ⊇η np (b)
(r//∗) #∪ c′/st (c)
n ∈Jc′Kmerge(η,~δ) (d)

m ∈JstKnapply(η,~δ,insert()) (e)

and want to prove that m ∈JstKnapply(η,~δ).
We first observe that (d) implies

n ∈Jc′Kmerge(η,~δ,insert()) (f)

hence

m ∈Jc′/stKmerge(η,~δ,insert()) (g)

We also observe that (b) means np ∈JrKmerge(η), hence np ∈JrKmerge(η,~δ), hence, by
(a) and Emerge(η,insert()) ⊆ Emerge(η,~δ,insert()) we have (h) ~mc ⊆Jr//∗Kmerge(η,~δ,insert())
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Let us define ~mdd = {m′ | ∃m ∈ ~mc. (m,m′) ∈ E∗merge(η,insert()) }; from (a) we

deduce (i) ~mdd ⊆Jr//∗Kmerge(η,~δ,insert()). (Observe that, if η, ~δ, insert() were produced
by the evaluation of any expression, ~mdd would coincide with ~mc, but, in general,
we can only know that ~mc ⊆ ~mdd).

We now observe that, for any n′ such that n′ ∈Jc′/stK∪merge(η,~δ,insert()), (c) implies
that n′ 6∈ Jr//∗Kmerge(η,~δ,insert()), hence, by (i), (l1) n′ ∈ Jc′/stK∪merge(η,~δ,insert()) ⇒
n′ 6∈ ~mdd. Further, (l2) by (l1), (f): n 6∈ ~mdd, and (l3) by (l1), (g): m 6∈ ~mdd.

Recall that ~mdd are the descendants of ~mc in merge(η, ~δ, insert()), hence include
all the descendant of ~mc in apply(η, ~δ, insert()). We consider the different cases:

—st = child::nt: by (e), (n,m) ∈ Eapply(η,~δ,insert()), hence, by (l3), (n,m) is also in
Eapply(η,~δ).

—st = descendant::nt: by (e), (n,m) ∈ E+

apply(η,~δ,insert())
, hence, by (l3), (n,m) is

also in E+

apply(η,~δ)
.

—st = parent::nt: by (e), (m,n) ∈ Eapply(η,~δ,insert()), hence, by (l2), (m,n) is also
in Eapply(η,~δ).

—st = ancestor::nt: by (e), (m,n) ∈ E+

apply(η,~δ,insert())
, hence, by (l2), (m,n) is

also in E+

apply(η,~δ)
.

The next lemma is used to prove that the subtrees rooted in ~m, copied by the
insert operation, are equal in two histories that are r//∗-equivalent, provided that
r ⊇η ~m.

Lemma 41 (identical trees). If r ⊇η ~m and η ∼
r//∗ η

′, then, for each m ∈ ~m,
m is in Nη′ and the subtrees rooted in m in apply(η) and in apply(η′) are identical,
meaning that they are formed by the same nodes, with the same parent-child relation,
and the same value for Fη and Fη′ .

Proof. η ∼
r//∗ η

′ implies η ∼∅r η′ and η ∼∅
r//∗ η

′. By Lemma 24, η ∼∅r η′ and

r ⊇η ~m imply ~m ⊆ JrKapply(η′) ⊆ Nmerge(η′). From η ∼∅
r//∗ η

′, we deduce that,

for any m ∈ JrKη, Jdescendant::∗Kmapply(η) = Jdescendant::∗Kmapply(η′), hence, for any
m ∈ ~m, it has the same descendants in apply(η) and apply(η′). For each node m′ in⋃
m∈~mJdescendant::∗Kmapply(η), Lemma 24 states that Fapply(η)(m) = Fapply(η′)(m).

Lemma 42 (element lemma).

R(n) = ` ∧ ` #∪ c ⇒ η ∼c (η, insert(n,F))

Proof. We must prove the following fact:

R(n) = ` ∧ ` #∪ c ⇒ ∀~δ. (η, ~δ) ∼∅c (η, insert(n,F), ~δ)

In a nutshell, this is obvious since equivalence with respect to c is not affected
by the addition of a node which is not traversed by c. Formally, we prove it by
induction and by cases on c. Case c = () is immediate. Case c = `′ is also
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immediate because ` #∪ c implies that ` 6= `′, hence J`′Kη,~δ = J`′Kη,insert(n,F),~δ.
Case c = p|p′ is immediate by induction. In case c = p/st we have to prove
∀n′ ∈ (JpKmerge(η1)

∩JpKmerge(η2)
) : (JstKn

′

apply(η1)
= JstKn

′

apply(η2)
∧ JstKn

′

merge(η1)
=

JstKn
′

merge(η2)
, where η1 and η2 are (η, ~δ) and (η, insert(n,F), ~δ). From ` #∪ p/st

and n′ ∈ JpKmerge(η1)
, we deduce that n′ is not a descendant of n, and this implies

JstKn
′

apply(η1)
=JstKn

′

apply(η2)
∧ JstKn

′

merge(η1)
=JstKn

′

merge(η2)
, since the only difference

between η1 and η2 is the addition of n to N .

We are now ready to prove the soundness of each rule (using the comma rule as
the template for all the simple combination rules).

5.3 Comma Rule

In what follows, we always use the framework properties of Lemma 35 without
explicit reference to the Lemma.

The comma rule deduces

pEnv ` ex1,ex2 Z⇒ r1|r2; 〈a1|a2, u1|u2〉

from

pEnv ` ex1 Z⇒ r1; 〈a1, u1〉 (1)
pEnv ` ex2 Z⇒ r2; 〈a2, u2〉 (2)

We have to prove that the following assumptions,

η2 = η0, ~δ12 (3)
dEnv ` η0; ex1,ex2 Z⇒ η2;~v1, ~v2 (4)

pEnv ⊇η0 dEnv (5)

imply the following facts:

Approximation. r1|r2 ⊇η2 ~v1, ~v2
Immutability. (u1|u2) #∪ c⇒ η0 ∼c η2

Equal results.

η′0 ∼r1|r2 η0 ∧Nη′
0

# inserted(~δ12)⇒ dEnv ` η′0; ex1,ex2 Z⇒ η′0,
~δ12;~v1, ~v2

By the inversion property of the dynamic semantics, (4) implies that ~δ12 can be
split into ~δ1 and ~δ2 such that:

dEnv ` η0; ex1 Z⇒ η0, ~δ1;~v1 (6)

dEnv ` η0, ~δ1; ex2 Z⇒ η0, ~δ1, ~δ2;~v2 (7)

By ( ⊇ Stability), (5) implies:

pEnv ⊇η0,~δ1 dEnv (8)

By induction, (1), (6), (5) and (2), (7), (8) imply the following properties, where
η1 = η0, ~δ1:

Approximation induction. r1 ⊇η1 ~v1, r2 ⊇η2 ~v2.
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Immutability induction. u1 #∪ c⇒ η0 ∼c η0, ~δ1, u2 #∪ c⇒ η0, ~δ1 ∼c η0, ~δ1, ~δ2.
Equal Results induction.

η′0 ∼a1 η0 ∧Nη′
0

# inserted(~δ1)⇒ (dEnv ` η′0; ex1 Z⇒ η′0,
~δ1;~v1)

η′0,
~δ1 ∼a2 η0,

~δ1 ∧Nη0,~δ1 # inserted(~δ2)⇒ (dEnv ` η′0, ~δ1; ex2 Z⇒ η′0,
~δ1, ~δ2;~v2)

Now we can prove the three properties.

Comma: Approximation. By induction, r1 ⊇η1 ~v1 and r2 ⊇η2 ~v2. By ( ⊇
Stability), r1 ⊇η2 ~v1. By ( ⊇ |), r1|r2 ⊇η2 ~v1|~v2.

Comma: Immutability. We want to prove that (u1|u2) #∪ c ⇒ η0 ∼c η2.
(u1|u2) #∪ c, by (#∪ |), implies u1 #∪ c, hence by induction η0 ∼c η0, ~δ1. Simi-
larly, (u1|u2) #∪ c, implies u2 #∪ c, hence, by induction, η0, ~δ1 ∼c η0, ~δ1, ~δ2. By
(∼ Equivalence): η0 ∼c η0, ~δ1, ~δ2.

Comma: Equal Results. Assume η′0 ∼a1|a2 η0. By (|∼), we have that η′0 ∼a1 η0

and η′0 ∼a2 η0. The hypothesis Nη′
0

# inserted(~δ1, ~δ2) implies Nη′
0

# inserted(~δ1)
and Nη′

0
# inserted(~δ2); by property 15, ~δ1, ~δ2 is non-rewriting, hence Nη′

0,
~δ1

#

inserted(~δ2). Hence, we can apply the induction hypothesis to prove that dEnv `
η′0; ex1 Z⇒ η′0,

~δ1;~v1. By (∼ stability), η′0 ∼a2 η0 implies η′0, ~δ1 ∼a2 η0,
~δ1.

Hence, by induction, dEnv ` η′0, ~δ1; ex2 Z⇒ η′0,
~δ1, ~δ2;~v2 and, from this,

dEnv ` η′0; ex1,ex2 Z⇒ η′0,
~δ1, ~δ2;~v1, ~v2

5.4 Step rule

The rule deduces:

pEnv ` ex/st Z⇒ r/st; 〈(r/st)|a, u〉

from:

pEnv ` ex Z⇒ r; 〈a, u〉 (1)

We have to prove that the following assumptions:

η1 = η0, ~δ1 (2)
dEnv ` η0; ex/st Z⇒ η1;~n2 (3)

pEnv ⊇η0 dEnv (4)

imply the following facts:

Approximation. r/st ⊇η1 ~n2.
Immutability. u #∪ c⇒ η0 ∼c η1.
Equal results.

η′0 ∼(r/st)|a η0 ∧Nη′
0

# inserted(~δ1)⇒ dEnv ` η′0; ex/st Z⇒ (η′0, ~δ1);~n2

By the inversion property of the dynamic semantics, (3) implies that, for some ~n1:

dEnv ` η0; ex Z⇒ η1;~n1 (5)
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



32 · Giorgio Ghelli et al.

~n2 =
⋃
n∈~n1

JstKnapply(η1) (6)

By stability, (4) implies:

pEnv ⊇η0,~δ1 dEnv (7)

By induction, (1), (5), and (4):

Approximation induction. r ⊇η1 ~n1.
Immutability induction. u #∪ c⇒ η0 ∼c η1.
Equal results induction.

η′0 ∼a1 η0 ∧Nη′
0

# inserted(~δ1)⇒ (dEnv ` η′0; ex Z⇒ ~n1; (η0, ~δ1))

Step: Approximation. We must prove that r/st ⊇η1 ~n2, i.e.,
⋃
n∈~n1

JstKnapply(η1) ⊆
Jr/stKmerge(η1)

. The result holds by induction, because the semantics of a step in
merge(η) always includes that of the same step in apply(η). Specifically, by induc-
tion, r ⊇η1 ~n1, i.e., ~n1 ⊆ JrKmerge(η1)

. Let m ∈
⋃
n∈~n1

JstKnapply(η1), hence, exists

n′ ∈ ~n1 such that m ∈JstKn
′

apply(η1)
; from this we deduce m ∈JstKn

′

merge(η1)
; by ~n1 ⊆

JrKmerge(η1)
, we have that n′ ∈ JrKmerge(η1)

, hence m ∈
⋃
n∈JrKmerge(η1)

JstKnmerge(η1)
,

i.e. m ∈Jr/stKmerge(η1)
.

Step: Immutability. We want to prove: u #∪ c ⇒ η0 ∼c η1, which holds by
induction.

Step: Equal Results. We want to prove that, for any store history η′0,
if η′0 ∼(r/st)|a η0 and Nη′

0
# inserted(~δ), then dEnv ` η′0; ex/st Z⇒ (η′0, ~δ);~n2.

By induction, η′0 ∼a η0 and Nη′
0

# inserted(~δ), then dEnv ` η′0; ex Z⇒ (η′0, ~δ);~n1.
We want now to prove that⋃

n∈~n1

JstKnapply(η1) =
⋃
n∈~n1

JstKnapply(η′
1)

(*)

where η′1 = (η′0, ~δ). By (∼Stability), η1 ∼r/st η′1. By Lemma 38, for all n ∈
JrKmerge(η1)

, JstKnapply(η1) = JstKnapply(η′
1)

. By induction, r ⊇η1 ~n1, i.e. ~n1 ⊆
JrKmerge(η1)

, hence ∀n ∈ ~n1 JstKnapply(η1) =JstKnapply(η′
1)

, hence (*) holds.

5.5 Delete Rule

The rule deduces:

pEnv ` do delete ex Z⇒ (); 〈a, u|(r|r//∗)〉

from

pEnv ` ex Z⇒ r; 〈a, u〉 (1)

we have to prove that the following assumptions:

η2 = η0, ~δ1, delete(~v) (2)

dEnv ` η0; do delete ex Z⇒ η0, ~δ1, delete(~v); () (3)
pEnv ⊇η0 dEnv (4)
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imply the following facts:

Approximation:. () ⊇η2 ().
Immutability. (u|(r|r//∗)) #∪ c⇒ η0 ∼c η2.
Equal Results. η′0 ∼a η0 ∧ Nη′

0
# inserted(~δ1, delete(~v))

⇒ dEnv ` η′0; do delete ex Z⇒ η′0,
~δ1, delete(~v); ().

By the inversion property of the dynamic semantics, (3) implies:

dEnv ` η0; ex Z⇒ η0, ~δ1;~v (5)

By induction, (1), (5), and (4) imply the following properties, where η1 = η0, ~δ1:

Approximation induction. r ⊇η1 ~v.

Immutability induction. u #∪ c⇒ η0 ∼c η0, ~δ1.
Equal Results induction. η′0 ∼a η0 ∧ Nη′

0
# inserted(~δ1) ⇒ dEnv ` η′0; ex Z⇒

η′0,
~δ1;~v.

Now we can prove the three properties. Approximation is trivial. Immutability and
equal results are less trivial.

Delete: Immutability. By induction, using Lemma 39: assume (u|(r|r//∗)) #∪ c.
This implies u #∪ c and (r|r//∗) #∪ c, hence η0 ∼c η0, ~δ1 follows by induction
and η0, ~δ1 ∼c η0, ~δ1, delete(~v) follows by Lemma 39. Finally, η0 ∼c η0, ~δ1, delete(~v)
follows by transitivity.

Delete: Equal Results. We must prove that η′0 ∼a η0 andNη′
0

# inserted(~δ1, delete(~v))
imply dEnv ` η′0; do delete ex Z⇒ η′0,

~δ1, delete(~v); (). By induction, dEnv `
η′0; ex Z⇒ η′0,

~δ1;~v; the thesis follows immediately from the semantics of delete.

5.6 Element Rule

The rule deduces:

pEnv ` elementcl q { } Z⇒ cl; 〈(), cl〉

We have to prove that the following assumptions,

dEnv ` η0; elementcl q { } Z⇒ η0, ~δ1;n (1)
pEnv ⊇η0 dEnv (2)

imply the following facts, where η1 = η0, ~δ1:

Approximation. cl ⊇η1 n.
Immutability. cl #∪ c⇒ η0 ∼c η1.
Equal Results.

η′0 ∼() η0 ∧Nη′
0

# inserted(~δ1)⇒ dEnv ` η′0; elementcl q { } Z⇒ η′0,
~δ1;n

By the inversion property of the dynamic semantics, (1) implies what follows, where
all the new variables are existentially quantified:

n ∈ choose(Napply(η0), cl) (3)
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~δ1 = insert(n, (n 7K [kind : element, name : q, value : ⊥])) (4)

Now we can prove the three properties.
Approximation follows from n ∈ choose(Napply(η0), cl).

Immutability follows by Lemma 42.
For equal results, we must prove that

η′0 ∼() η0 ∧Nη′
0

# inserted(~δ1)⇒ dEnv ` η′0; elementcl q { } Z⇒ η′0,
~δ′1;m′

with ~δ′1 = ~δ1 and m′ = n. From Nη′
0

# inserted(~δ1) we deduce that n is fresh for
η′0, hence we can choose ~δ′1 = ~δ1, which in turn implies m′ = n.

5.7 Insert Rule

The rule deduces:

pEnv ` do insert ex1 into ex2 Z⇒ (); 〈a1|a2|(r1//∗), u1|u2|(r2//∗)〉

from:

pEnv ` ex1 Z⇒ r1; 〈a1, u1〉 (1)
pEnv ` ex2 Z⇒ r2; 〈a2, u2〉 (2)

We have to prove that the following assumptions,

dEnv ` η0; do insert ex1 into ex2 Z⇒ η3; () (3)
pEnv ⊇η0 dEnv (4)

imply the following facts:

Approximation. () ⊇η3 ().
Immutability. (u1|u2|(r2//∗)) #∪ c⇒ η0 ∼c η3.
Equal Results.

η′0 ∼a1|a2|(r1//∗) η0 ∧Nη′
0

# inserted(η3 \ η0)

⇒ dEnv ` η′0; do insert ex1 into ex2 Z⇒ η′0, (η3 \ η0); ()

By the inversion property of the dynamic semantics, (3) implies what follows, where
(~mc,Fc) ∈ prepare-deep-copy(apply(η2), n, ~m):

dEnv ` η0; ex1 Z⇒ η0, ~δ1; ~m (5)

dEnv ` η0, ~δ1; ex2 Z⇒ η0, ~δ1, ~δ2;n (6)
η3 = η2, insert(~mc,Fc) (7)

By stability, (4) implies pEnv ⊇η0,~δ1 dEnv. Hence, by induction, (1), (2), (5), and

(6) imply the following properties, where η1 = η0, ~δ1 and where η2 = η0, ~δ1, ~δ2:

Approximation induction. r1 ⊇η1 ~m, r2 ⊇η2 n.

Immutability induction. u1 #∪ c⇒ η0 ∼c η0, ~δ1, u2 #∪ c⇒ η0, ~δ1 ∼c η0, ~δ1, ~δ2.
Equal Results induction.

η′0 ∼a1 η0 ∧Nη′
0

# inserted(~δ1)⇒ dEnv ` η′0; ex1 Z⇒ η′0,
~δ1; ~m
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η′0,
~δ1 ∼a2 η0,

~δ1 ∧Nη0,~δ1 # inserted(~δ2)⇒ dEnv ` η′0, ~δ1; ex2 Z⇒ η′0,
~δ1, ~δ2;n

Now we can prove the three properties. Approximation is trivial. Immutability and
equal results are less trivial.

Insert: Immutability. Immutability follows by Lemma 40 and by induction. As-
sume (u1|u2|(r2//∗)) #∪ c. This implies u1 #∪ c and u2 #∪ c and (r2//∗) #∪ c,
hence η0 ∼c η0, ~δ1 and η0, ~δ1 ∼c η0, ~δ1, ~δ2 follow by induction and

(η0, ~δ1, ~δ2) ∼c (η0, ~δ1, ~δ2, insert(~mc,Fc))

follows by Lemma 40. Hence: η0 ∼c (η0, ~δ1, ~δ2, insert(~mc,Fc)) follows by transitiv-
ity.

Insert: equal results. We must prove that
η′0 ∼a1|a2|(r1//∗) η0 ∧ Nη′

0
# inserted(~δ1, ~δ2, ~δ3) where ~δ3 = insert(~mc,Fc) imply

dEnv ` η′0; do insert ex1 into ex2 Z⇒ η′0,
~δ′1,

~δ′2,
~δ′3; () with ~δ′1 = ~δ1, ~δ′2 = ~δ2, ~δ′3 = ~δ3.

By Property 15 Nη′
0

# inserted(~δ1, ~δ2, ~δ3) implies Nη′
0,
~δ1

# inserted(~δ2, ~δ3) and

Nη′
0,
~δ1,~δ2,

# inserted(~δ3).
The hypothesis η′0 ∼a1|a2|(r1//∗) η0 implies η′0 ∼a1 η0, hence, by induction, Nη′

0
#

inserted(~δ1, ~δ2, ~δ3) implies dEnv ` η′0; ex1 Z⇒ η′0,
~δ1; ~m, which gives us ~δ′1 = ~δ1.

Similarly, we have that η′0 ∼a2 η0, hence, by (∼ stability), η′0, ~δ1 ∼a2 η0,
~δ1, hence,

by induction, Nη′
0,
~δ1

# inserted(~δ2, ~δ3) implies dEnv ` η′0, ~δ1; ex2 Z⇒ η′0,
~δ1, ~δ2;n,

which gives us ~δ′2 = ~δ2.
Recall: ~δ′3 = insert(~mc,Fc), where (~mc,Fc) ∈ prepare-deep-copy(apply(η2), n, ~m)

and ~mc can be freely chosen from the infinite supply of nodes in N that have the
correct parent/child relationship and that are not in apply(η′0, ~δ1, ~δ2).

We know that Nη′
0,
~δ1,~δ2

# inserted(~δ3), hence we can choose in ~δ′3 the same ~mc

as in ~δ3. Apart from the choice of the fresh nodes, prepare-deep-copy only depends
on the content of the subtrees rooted in ~m in the store. By Lemma 41, these trees
are identical in apply(η0, ~δ1, ~δ2) and in apply(η′0, ~δ1, ~δ2), thanks to the hypothesis
η′0 ∼r1//∗ η0, which implies η′0, ~δ1, ~δ2 ∼r1//∗ η0,

~δ1, ~δ2 by (∼ stability).

6. COMMUTATIVITY

Our analysis is meant as a tool to prove whether a pair of expressions can be
evaluated in any order or, put differently, whether they commute. In this section
we give a precise definition for that notion, and we show how our analysis provides
a sufficient condition for commutativity.

6.1 Main result

Commutativity means that the order of evaluation of expressions in a given envi-
ronment affects the order of the result, but not the returned items, nor the store.

Definition 43 (commutativity). Two expressions ex1 and ex2 commute in

pEnv, written ex1
pEnv←→ ex2, iff, for all η and dEnv such that pEnv ⊇η dEnv,
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the following holds:

dEnv ` η; ex1 Z⇒ η1;~v1
dEnv ` η1; ex2 Z⇒ η2;~v2

⇒ dEnv ` η; ex2 Z⇒ η′1;~v2
dEnv ` η′1; ex1 Z⇒ η′2;~v1
apply(η2) = apply(η′2)

The proof of the commutativity theorem is far easier than the proof of soundness,
and is essentially independent on the actual definition of the equivalence relation.
It only relies on soundness plus the “framework properties” collected in Lemma 35.

Theorem 44 (commutativity). Consider two expressions and their analyses in
pEnv:

pEnv ` ex1 Z⇒ r1; 〈a1, u1〉
pEnv ` ex2 Z⇒ r2; 〈a2, u2〉

If the updates and accesses obtained by the analysis are independent then the ex-
pressions commute, in any environment that respects pEnv; formally:

u1 #∪ a2, u2 #∪ a1 ⇒ ex1
pEnv←→ ex2

Proof. Here is the hypothesis:

Let
(h1-a) dEnv ` η; ex1 Z⇒ η, ~δ1;~v1
(h1-b) pEnv ` ex1 Z⇒ r1; 〈a1, u1〉
(h1-c) pEnv ⊇η dEnv
(h2-a) dEnv ` η, ~δ1; ex2 Z⇒ η, ~δ1, ~δ2;~v2
(h2-b) pEnv ` ex2 Z⇒ r2; 〈a2, u2〉
If
(h3) u1 #∪ a2, u2 #∪ a1,
then:
(t1) dEnv ` η; ex2 Z⇒ η, ~δ2;~v2
(t2) dEnv ` η, ~δ2; ex1 Z⇒ η, ~δ2, ~δ1;~v1
which implies

dEnv ` η; ex2,ex1 Z⇒ η, ~δ2, ~δ1;~v2, ~v1
and also, by Properties 10 and 15:

apply(η, ~δ1, ~δ2) = apply(η, ~δ2, ~δ1) and merge(η, ~δ1, ~δ2) = merge(η, ~δ2, ~δ1).

Throughout this proof we use Ni for the set of nodes of store history ηi.
By Property15:

(disj-1) inserted(~δ2) # Nη
(disj-2) inserted(~δ1) # (Nη, ~δ2)

By ( ⊇ Stability), (h1-c) implies:
(h2-c) pEnv ⊇η,~δ1 dEnv

By u1 #∪ a2, (h1-abc) and immutability for ex1 we have that
(h1-imm) η ∼a2 η,

~δ1
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From (h1-imm), (h2-abc), (disj-1), and equal results for ex2, we have:
(t1) dEnv ` η; ex2 Z⇒ η, ~δ2;~v2

Now, we can apply immutability for ex2 to (t1), (h2-b), (h1-c) and u2 #∪ a1,
and obtain:
(h2-imm) η ∼a1 η,

~δ2
From property (h2-imm), (h1-abc), and (disj-2), we can apply equal results for

ex1 in order to transfer the (h1-a) reduction (η to η, ~δ1) into a reduction from η, ~δ2
to a η, ~δ2, ~δ1, and finally obtain
(t2) dEnv ` η, ~δ2; ex1 Z⇒ η, ~δ2, ~δ1;~v1.

7. THE ANALYSIS IN PRACTICE

In this section we illustrate the use and limitations of the path analysis through
some examples. Our purpose here is not to provide a full treatment of optimization
but to illustrate the role of commutativity in various optimization scenarios.

7.1 Join reordering

Consider the following snippet.

declare function getnewprojects() {
for $n in /projects/project[new]
return (do delete $n/new, $n)
};
for $p in getnewprojects()
for $t in /tasks/task
where $p/id = $t/proj
return starttask($p,$t)

This query extracts all project elements marked new and then searches for all task
elements with an id that matches the project, and invokes the starttask external
function for each combination of a project and a matching task. As a side effect,
the function extracting the new projects deletes the marker flag.

We would like a compiler to generate a join plan for this query, in which the left
branch, accessing the projects, performs the deletions. In order for join reordering
rewritings to be sound, the optimizer must be able to check that the two branches of
a join commute. In our example, that means deciding that the access and updates
to the projects and to the tasks do not interfere.

To ascertain that this is safe we will apply the path analysis algorithm to the
first two for clauses of the query and show that they commute. We assume that the
query is first expanded to the core query language described in Section 3, expanding
the getnewprojects function body to

for $n in
(for $x in /projects/project return if ($x/new) then $x else ())
return
(do delete $n/new, $n)

Below we have anotated this core query with the result of applying the path anal-
ysis algorithm. The annotations are written as triples, 〈r; a;u〉, consisting of the
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returned path r, the accessed path a, and the updated path u, written right before
the annotated expression. Since our example assumes only one root (with no new
ones introduced by node constructors), and all paths are absolute, we omit the root
from the paths.

1 〈/projects/project;
2 /projects/project/new;
3 /projects/project/new|/projects/project/new//∗〉
4 (for $n in
5 (〈/projects/project;/projects/project/new;()〉
6 for $x in 〈/projects/project;/projects/project;()〉 /projects/project return
7 〈/projects/project;/projects/project/new;()〉
8 if (〈/projects/project/new;/projects/project/new;()〉 $x/new)
9 then 〈/projects/project;();()〉 $x

10 else 〈();();()〉 ())
11 return
12 〈/projects/project;
13 /projects/project/new;
14 /projects/project/new|/projects/project/new//∗〉
15 (〈();/projects/project/new;/projects/project/new|/projects/project/new//∗〉
16 do delete 〈/projects/project/new;/projects/project/new;()〉 $n/new,
17 〈/projects/project;();()〉 $n))

The algorithm operates in a bottom-up fashion, i.e., starting on the innermost path
expression /projects/project (line 6). Two consecutive applications of the (Step)
rule from Figure 2 yields the triple</projects/project;/projects|/projects/project;()>.
For better readability, we simplify redundant paths whenever possible, based on
Remark 31, hence we rewrite the a component as /projects/project, which is sound
because /projects belongs to the prefixes of /projects/project.

This produces the triple </projects/project;/projects/project;()> reported in line
6. The returned path /projects/project is associated to variable $x.

We then analyze the if..then..else. First the condition at line 8 is analyzed,
yielding the triple at line 8, through an application of the (Var) and (Step)
rules. Lines 9 and 10 are analyzed next using (Var) and (Empty) respectively.
The whole if expression is analyzed using the (Cond) rule, yielding the triple
at line 7. The for expression on lines 6–10 is analyzed using the (For) rule,
yielding the triple on line 5. Here we simplified again the a component, from
/projects/project|/projects/project/new to /projects/project/new. The return path
/projects/project is bound to variable $n.

We now jump to the next inner-most expression which is $n/new at line 16. We
then apply the (Delete) rule to the do delete expression at the same line, which
yields the triple at line 15. Note that this includes our first non-empty updated
path. Next comes the second argument of the sequence operator, which is the $n
variable on line 17. We can then compute the paths for the sequence operator on
lines 16–17, which yields the triple on lines 12–14. Finally we can compute the
paths for the whole expression, which yields the triple on lines 1–3.

The analysis for the other branch of the join is just
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〈/tasks/task;/tasks/task;()〉 /tasks/task

We can now check whether commutativity holds for the result of the analysis. We
need to check the following conditions:

(/projects/project/new|/projects/project/new//∗) #∪ (/tasks/task)
() #∪ (/projects/project/new)

Application of standard algorithms [Hammerschmidt et al. 2005] allows us to decide
that those paths do not interfere, hence the two expressions commute and the
optimizer may decide to reorder the join depending on, e.g., relative cardinality of
the resulting collections.

Clearly, this is only a simple example. However, many optimizations change the
evaluation order of subexpressions and so need to rely on some form of commuta-
tivity analysis.

7.2 Limitations of the analysis

Although the previous example shows that the analysis can be quite precise in
some cases, some specific limitations are worth pointing out. We believe one of the
main limitations at this point is that our definition is based purely on structural
distinctions but does not take value predicates into account. For example, let’s
assume that projects and tasks are distinguished through a value, as illustrated by
the following variant of our join query,

declare function getnewprojects() {
for $n in /objects[kind="project"][new]
return (do delete $n/new, $n)
};
for $p in getnewprojects()
for $t in /objects[kind="task"]
where $p/id = $t/proj
return starttask($p,$t)

which results in the commutativity conditions

(/object/new|/object/new//∗) #∪ (/objects/kind)
() #∪ (/object/kind|/object/new)

In this case we can, surprisingly, still decide commutativity since the deletion occurs
on different children than the one used to select the kind of object. However, if
we consider a different side effect, e.g., an insert inside the object, we run into
problems, as illustrated by the following query:

declare function getnewprojects() {
for $n in /objects[kind="project"][new]
return (do insert element1 started {} into $n, $n)
};
for $p in getnewprojects()
for $t in /objects[kind="task")]
where $p/id = $t/proj
return starttask($p,$t)
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Here, unfortunately, the analysis does not keep track of the kind of element being
inserted, and leads to the following path checks:

(/object//∗|1) #∪ (/objects/kind)
() #∪ (1// ∗ |/object/kind|/object/new)

Here the first two paths are not disjoint since the insert could very well add a new
kind element.

Remark 45. One could think of two ways in which the analysis could be extended
to cover such cases. The first approach would be to add support for predicates of
the form (Ex = Li). A completely different approach, which may have additional
benefits, would be to keep track of the ‘type’ of the inserted nodes (here the fact
that the inserted element has name ‘started’). This would result in the following
paths checks:

(/object/new|/object/started|/object/started//∗) #∪ (/objects/kind)
() #∪ (/object/kind|/object/new)

This would likely be a more complex, but interesting extension. Some design choices
would have to be made regarding how deeply we keep track of the type, as well as
how to support ‘computed elements’ in XQuery.

Finally, we would like to point out that we do not cover recursive functions, which
are important for some applications. These could be analysed through classical
fixed-point based techniques; however, this is beyond the scope of this paper.

Also, the analysis we propose limits itself to the child, descendant, parent and
ancestor axes. The other axes can be approximated by a combination of those axes,
as in Draper et al. [2006]. This is an intentional choice, which we believe strikes a
good compromise between complexity and usefulness.

7.3 Limitations related to path intersection

An important practical limitation arises from the heavy use of the descendant axis
in queries. Consider the following example in which we have replaced the child
based navigation with descendant based navigation.

declare function getnewprojects() {
for $n in //project[new]
return (do delete $n/new, $n)
};
for $p in getnewprojects()
for $t in //task
where $p/id = $t/proj
return starttask($p,$t)

We cannot statically decide whether the two expressions commute in this case,
because a task element may occur below a new element being deleted; this is con-
sistent with the results of our path analysis, which leads to the following intersection
check.

(//project/new|//project/new//∗) #∪ (//task)
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1 let $state := doc("S")/state return
2 for $request in $state/requests/request return
3 (

4 let $id := $request/id return
5 for $act in $request/act return
6 let $entry := element1 entry {} return
7 (

8 do insert ($id, $act/∗) into $entry,
9 do insert $entry into $state/log,

10 for $valve in $state/valves/valve return
11 if (data($valve/id) = data($id)) then
12 if (($entry/open and $valve/close) or ($entry/close and $valve/open)) then
13 (do delete $valve/∗, do insert $entry/∗ into $valve)
14 else ()

15 else ()

16 ),
17 do delete $request
18 )

Fig. 3. XQueryU script to open and close valves.

This issue could be solved if the shape of the XML in question is constrained, for
example by having schema information available. In this case, we could test for
path intersection under a schema. In this case, commutativity would be proved if
the schema ensures that tasks never occur below projects. Observe that the use
of schema information to test for path intersection is quite orthogonal to our core
issue, that is, the correct inference of accessed and updated paths.

7.4 A complex example

Let us look at a small but realistic example of how a language like XQueryU could
be used in practice. Figure 3 shows a script that processes requests for opening and
closing valves in some unspecified machine.

The idea of the script is to manipulate an XML document that represents the
state of the valve subsystem, including unprocessed requests. Each request is
equipped with an “id” (in the real applications presumably a timestamp or such),
and we want the application to keep track of these. The script expects the “state
document” to be available as doc("S") with data as exemplified in Figure 4, where
the document (a) corresponds to an initial state where there are three pending
requests of open and close actions, all four valves are currently closed, and the log
is empty.

When invoked, the script proceeds to create a reference to the state element of
the "S" document (line 1), iterate the rest of the script over all the requests (line
2), extract the id from the current request (line 4), iterate over each request action
in the request (line 5), create a new entry element (line 6); this is assigned location
1 for future reference, insert a copy of the request id and the content of the action
into the just created entry (line 8), insert a copy of the entire just created entry
into the log fragment of the state (line 9), walk through the current state of the
valves (line 10) and select the one of interest to the current action entry (line 11),
replace the state of the valve with the contents of the entry (line 14), and finally,
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<state>
<requests>

<request><id>x</id>

<act><open>1</open></act>
<act><open>3</open></act>

</request>
<request><id>y</id>

<act><close>1</close></act>
<act><close>2</close></act>

</request>
<request><id>z</id>

<act><open>3</open></act>
</request>

</requests>
<valves>

<valve><close>1</close></valve>
<valve><close>2</close></valve>
<valve><close>3</close></valve>
<valve><close>4</close></valve>

</valves>
<log/>

</state>

(a)

<state>
<requests/>
<valves>

<valve><id>y</id><close>1</close></valve>
<valve><id>y</id><close>2</close></valve>
<valve><id>x</id><open>3</open></valve>
<valve><close>4</close></valve>

</valves>
<log>

<entry><id>x</id><open>1</open></entry>
<entry><id>x</id><open>3</open></entry>
<entry><id>y</id><close>1</close></entry>
<entry><id>y</id><close>2</close></entry>
<entry><id>z</id><open>3</open></entry>

</log>

</state>

(b)

Fig. 4. Sample valve state documents.

delete each request when processed (line 19).
If the script is run on the data in Figure 4(a) then the result should be the updated

document shown in Figure 4(b), where all the requests have been processed, erased,
and recorded in the log, and the resulting state has valve number 3 open; in addition
each valve has recorded the value of the id of the request that last modified it.

We would like to optimize this script by caching the entries corresponding to the
requested actions and

—update the valves in a single pass, and
—produce the log fragment with a single update at the end.

(Without updates these would all be standard functional language operations.)
The result of analyzing the script is shown in Figure 5. We can use the result to

rewrite the program.
The optimization would go something like this: first a separate loop is created

that accumulates all the constructed entries (line 12), including the side effect to
populate them, into a common variable, say $entries. Such a transformation is safe
because the loop condition of the split loop (line 10 of Figure 5) does not overlap
with the updated paths of the creation (line 12) or insertion into it (line 15).

With the entry creation separated out we can rearrange the loop by observing
that the fragments of the analyzed code used to insert data into the log (lines
19–20) and update the valve list (lines 21–39) commute with each other and thus
can be further separated into individual loops because they only update parts that
are not observed elsewhere, and because individual iterations operate on disjoint 1
node instances. Finally, we can lift the deletion of the request elements up before
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1 〈equal to line 3〉
2 let 〈"S"〉$state := 〈"S"; "S"; ()〉doc(〈(); (); ()〉"S") return
3 〈equal to line 5〉
4 for 〈R〉$request in 〈R; R; ()〉($state/requests/request) return
5 〈(); R/id//∗|R/act/∗//∗|"S"/log|1//∗|V /∗|1/∗//∗; 1|1//∗|"S"/log//∗|V //∗|R|R//∗〉 (lines 7+41)
6 (

7 〈equal to line 9〉
8 let 〈R/id〉$id := 〈R/id; R/id; ()〉($request/id) return
9 〈equal to line 11〉

10 for 〈R/act〉$act in 〈R/act; R/act; ()〉($request/act) return
11 〈(); R/id//∗|R/act/∗//∗|"S"/log|1//∗|V /∗|1/∗//∗; 1|1//∗|"S"/log//∗|V //∗〉
12 let 〈1〉$entry := 〈1; (); 1〉(element1 entry {}) return
13 〈(); R/id//∗|R/act/∗//∗|"S"/log|1//∗|V /∗|1/∗//∗; 1//∗|"S"/log//∗|V //∗〉 (lines 15+19+21)
14 (

15 〈(); R/id//∗|R/act/∗//∗; 1//∗〉
16 do insert
17 〈R/id|R/act/∗; R/act/∗; ()〉(〈R/id; (); ()〉$id, 〈R/act/∗; R/act/∗; ()〉($act/∗))
18 into 〈1; (); ()〉$entry,

19 〈(); "S"/log|1//∗; "S"/log//∗〉
20 do insert 〈1; (); ()〉$entry into 〈"S"/log; "S"/log; ()〉($state/log),

21 〈(); V /∗|R/id|1/∗//∗; V //∗〉
22 for 〈V 〉$valve in 〈V ; V ; ()〉($state/valves/valve) return
23 〈(); V /∗|R/id|1/∗//∗ (note 1); V //∗〉
24 if 〈(); V /id|R/id; ()〉(
25 〈(); V /id; ()〉(data(〈V /id; V /id; ()〉($valve/id)))

26 = 〈(); R/id; ()〉(data(〈R/id; (); ()〉$id)))

27 then
28 〈(); V /∗|1/∗//∗ (note 2); V //∗〉
29 if 〈(); V /close|V /open|1/close|1/open; ()〉
30 (($entry/open and $valve/close) or ($entry/close and $valve/open))
31 then
32 〈(); V /∗|1/∗//∗; V //∗〉(
33 〈(); V /∗; V //∗ (note 3)〉
34 do delete 〈V /∗; V /∗; ()〉($valve/∗),
35 〈(); 1/∗//∗; V //∗〉
36 do insert 〈1/∗; 1/∗; ()〉($entry/∗) into 〈V ; () ()〉$valve
37 )

38 else ()
39 else ()

40 ),

41 〈(); (); R|R//∗〉
42 do delete $request
43 )

where R = "S"/requests/request, V = "S"/valves/valve, and we made the following non-trivial
simplifications:

(1) line 23, by Lemma 32: V/id|V/∗ ⇒ V/∗,
(2) line 28, by Lemma 32: V/∗|V/open|V/close ⇒ V/∗, and 1/∗//∗|1/open|1/close ⇒ 1/∗//∗;
(3) line 33, by JV/∗|V/∗//∗K =JV//∗K: V/∗|V/∗//∗ ⇒ V//∗

Fig. 5. Path analysis of valve script.
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let $state := doc("S") return
( let $entries :=

for $request in $state//request return
( let $id := $request/id return

for $act in $request/act return
let $entry := element1 entry {} return
( do insert ($id, $act/∗) into $entry,

$entry),
do delete $request),

return
( for $valve in $state/valves/valve return

for $entry in $entries return
if (data($valve/id) = data($entry/id)) then
if (($entry/open and $valve/close) or ($entry/close and $valve/open)) then
( do delete $valve/∗,

do insert $entry/∗ into $valve )
else ()

else (),

for $entry in $entries return do insert $entry into $state/log
)

)

Fig. 6. Valve script after optimizations.

the creation of valve entries, because the simplified loop does not access the request
nodes itself. The optimized script is shown in Figure 6, and has the nice property
that the output is produced in document order of the result document, which could
further improve its efficiency.

8. CONCLUSION

In this paper, we have proposed a conservative approach to detect whether two
expressions commute in XQueryU, an expressive XML update language with strict
evaluation order and immediate update application. The approach relies on a form
of path analysis which computes an upper bound for the nodes accessed or updated
by an expression. As there is a growing need to extend XML languages with
imperative features [Carey et al. 2006; Ghelli et al. 2006; Cooper et al. 2006],
we believe the kind of analysis we propose here will be crucial for the long-term
development of those languages. The development here is essentially formal, and
the proposed approach needs to be validated against practical usage scenarios. We
are currently working on an implementation of the approach in a popular XQuery
engine, and investigating the changes needed to real-life compilers to support the
kind of side-effects proposed in recent XQuery-based languages.
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