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roals

e a semantic framework for definite logic programs to reason
about properties of SLD-derivations and their abstractions
(observables)

— relation between operational semantics and denotational
semantics

— existence of a (goal-independent) denotation

— properties of the denotation, such as precision, correctness,
minimality and compositionality

e a taxonomy of observables

— classes are characterized hyv sets of axioms

— for all the observables in a class we guarantee the validity
of some general theorems

— reconstruction of several “precise”

* A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: Theory
and applications. Journal of Logic Programming, 1994.

and “approximated” semantics (data-flow analysis)



Abstraction is handled by abstract
interpretation

o the kernel (collecting) semantics

— collects, for each goal, all the SLD-derivations
— 1s specified in two different stvles

* operational, transition svstem, top-down

* denotational, bottom-up

* the transition system and the denotational semantics
are given in terms of four semantic operators, which are
directly related to the syntactic structure of the language

e observables are Galois insertions

— M. Comini and G. Levi. An algebraic theory of observables. Procecdings of the 1994 Int’l
Symposium on Logic Programming.

— . Giacobazzi. On the Collecting Semantics of Logic Programs. Verification and Analysis of
Logic Languages, Proc. of the Post-Conference ICLP Workshop, 1994.
¢ abstract interpretation theorv to study the relation between
observables and to (automatically) derive the abstract transi-
tlon system and the abstract denotational semantics

e cach class in the taxonomy is characterized in terms of ax-
1oms relating the (concrete) semantic operators and the Galois
insertion



Concrete and abstract behaviors: precision
and approximation

e the concrete behaviors

— B[G in P] is the set of all the derivations for the goal G
in P
— Q[G in P] is the corresponding denotational definition
~ B[G in P] = Q|G in P]
e the observable is denoted by the abstraction function o
e the abstract behaviors
— B4[G in P] and Q,[G in P]
e an abstract behavior is precise if

— for all G and P,
a(B[G in P]) = B,[G in P]
e an abstract behavior is a(correct) approzimation if

— for all G and P,
a(B[G in P]) is more precise than B,[G in P]



Abstract (goal-independent) denotations and
their properties

e bottom-up denotation

— the abstract denotational semantics of the set of clauses
— a[P] = lfp 'J’a[P] = P.[P] T w
e top-down denotation

— the observables for most general atomic goals W bou
— Oa[P] = Z{ Ba[p(x) in Pll/é }P(X)GG()Q/S AP P f

o correctness of a denotation

— if Ou[P1] = O4[Py], then, for all G,
a(B[G in P]) = ofB[G in %))

— it P| and P have the same abstract denotation, then they
cannot be distinguished by looking at the abstractions of
their behaviors

o minimality (full abstraction) of a denotation

—if, for all G, a(B[G in P]) = a(B[G in P)), then
Ou[F1] = 0,4 P)]

e the observable « is condensing if the abstract behavior (for all

the goals) can be derived from the goal-independent abstract
denotation

e a denotation is AND-compositional if the semantics of a con-
junctive goal can be derived from the semantics of its conjuncts

e a denotation is OR-compositional if the semantics of a union
of programs can be derived from the semantics of the prograimns



Use of the semantic framework

¢ to reconstruct an existing semantics or to define a new seman-
tics

1. formalize the property you want to model as a Galois in-
sertion (c, v) between SLD-derivations and the property
domain

(\)

. verify some algebraic axioms relating (o, v) and the ba-
sic semantic operators on SLD-derivations, to assign the
observable to the right class

3. depending on the class, you get automatically the new

denotational semantics, transition system, top-down and

bottom-up denotations, together with several theorems (equiv-
alence, compositionality w.r.t. the various syntactic opera-
tors, correctness and minimality of the denotations)

o used for semantics-based programn analysis (abstract interpre-
tation, abstract diagnosis. etc.)
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Plan of the Talk

e the collecting semantics (SLD-derivations)
— transition system, denotational semantics, semantic prop-
erties
e observables as Galois insertions

e a taxonomy of (condensing) ohservables

— perfect observables
* precise and equivalent abstract transition system and
abstract denotational semantics

* correct, minimal, AND-compositional and OR-compositional
top-down and bottom-up denotations

- — denotational observables

* precise abstract denotational semantics
* correct, minimal and AND-compositional bottom-up de-
notation
— semi-perfect observables

* (correctly) approximated and equivalent abstract tran-
sition system and abstract denotational semantics

* AND-compositional and OR-compositional top-down and
bottom-up denotations

— semi-denotational observables

* the most precise (correctly) approximated abstract se-
mantics 1s the denotational one

* AND-compositional bottom-up denotation



The denotational colle :ting semantics

e the semantic domain (a complete lattice)

— equivalence classes (variance) of pairs composed of goals
and SLD-trees represented as sets of derivations (leftmost
selection rule)

— a preorder < on derivations (prefix)

e the denotational semantics (main definitions)

Q[GinP] = SIGis, 51 j‘%ﬁbﬁ SYwinchca dgyeck > (WS Ty
5[4, G, = A[A], x S[G], | propem

A[A}, = A.] | Somonli of

Pl{c}UP], = €[, +P[P] |

Clp(t) :— BIL = tree(lp(t) — 151;) X §[B] j “Rjet s u'»f-‘;—’

e the basic semantic operators

1. A- D is the instantiation of D with A

2. Dy X Dy is the product of Dy and D, (semantic version of
the syntactic conjunction)

3. D1 ™ Dy is the replacement of Dy in D, (semantic version
of the syntactic implication)

4. 3 { D; }ier is the sum of a set of elements { D; };e; (se-
mantic version of the svutactic disjunction)

o the usual denotational definitions (and T operators) are much
more abstract

— define computed answers (ground instances of computed
answers) rather than SLD-trees



The operational collecting semantics

s P :
e a transition system 7 = (D, —) defined using the same se-
mantic operators used in the denotational definition

e initial states of 7: all the collections of SLD-derivations of
length zero

o final states of 7: all the collections of all SLD-refutations and
finite failures

® D+ DM T{(A- tree(P)) x Id }ac atoms

e the behavior of P: all the SLD-derivations of a query G in P
-B[G in Pl = {D [ (G. {G}) > D}
N is the reflexive and transitive closure of ——

¢ B[G in P] and Q[G in P] are equivalent

¢ the usual operational semantics are more abstract

— states are frontiers of the SLD-tree rather than sets of
SL D-derivations

9



The goal-independent denotation

e the top-down denotation

— collecting only the behaviors for all most general atomic
goals (behaviors of the procedures with no constraints on
the inputs)

- O[P] = Z{ B[])(X) in P]]/E }])(x)e(}'oals
e the bottom-up denotation
— the semantics of the prograin as a set of definite clauses
(procedure declarations)

— P[P] is the “bottom-up” immediate consequences operator
in the case of derivations

—FIP]=1{pP[P] =P[P] T w
o F|P] and O[P] are equivalent

— SLD-derivations are condensing

* the (goal-independent) denotation is meaningful
— the denotations are

* correct

* minimal

* AND-compositional

* OR-compositional



Observables

e observable
— a property which can be extracted from SLD-derivations
together with an ordering relation (approximation)
— formalized according to abstract interpretation theory

* the concrete domain (D, C) (a complete lattice)
* the abstract domain (D, <) (a complete lattice)
* (a,7) : (D,C) = (D, <) is a Galois insertion

1. a and 7y are monotonic

2.Vz €D, zC(y o a)(x)

3.Vy €D, (aoy)(y) =y

e from the concrete semantics to the abstract semantics

— concrete semantics: the least fixpoint of a semantic function

F:D-D
— f:D" - D a “primitive” semantic operator
— f its abstract version
* fis (locally) correct wat. f if
Vzy,...,z, €D, flzy.. .., mn)gf)/(f(a(ml)a SO a(wn)))
— an abstract semantic function F : D — D is correct if
Vz €D, F(z)<y(F(a(z)))

— local correctness of all the primitive operators implies the
global correctness

— if we replace the concrete operators by locally correct ab-
stract versions, we obhtain a correct abstract semantics

11



4

Towards a systematic construction of the
optimal abstract semantics

¢ optimality and precision
— for each operator f, there exists an optimal (most precise)
locally correct abstract operator f defined as

Fyn, - ym) = a(f(v(w1)- - Y(wa)))

— the composition of optimal operators is not necessarily op-
timal

— f is precise if Vx,.... 2, €D,
a(f(zy,...,z,)) = f((x(a:],). o afzy))
* the optimal abstract operator f 1s precise 1f
a(f(zr,...,20)) = a(f((yoa)(z1),..., (voa)(z,)))
* the precision of the optimal abstract operators can be
formulated in terms of properties of v, v and the corre-
sponding concrete operators

e our approach

— take the optimal abstract versions of the concrete operators

— check under which conditions (on the observable) the re-
sulting abstract semantics is optimal



Perfect observables

e the abstract denotational and operational semantics are equiv-
alent and precise

e the axioms
l.a(A-D)=a(A-(yoa)D)
2. a(Dy x Dy) = af(yoa)Dy x (yoa)D
3. a(Dy M Dy) = a((yoa)D; X (yoa)D

N

)
)

o

— for any Galois insertion
a2 Di bier) = a(32{ (v 0 @)D; }ier)
e the properties
— B4|G in P] = Q,[G in P] = o(B[G in PJ])
— O P] = Fo[P] = a(O[P])
— perfect observables are condensing

— the denotation O,[P] = F.[P] is correct, minimal, AND-
compositional and OR-compositional

e examples of perfect observables

— computed resultants
— proof trees (Heyting semantics)

e computed answers and frontiers are not perfect

14



From the observable to the abstract
semantics

e the optimal abstract operators
24 Sitier = a(32{7(S)) }iet)
AS = alA-y(9)).
S1x 8y = afy(S1) X ¥(S2))
SISy = a(y(S1) M (S2))
e abstract denotational semantics
QG in P] = ga[Gllfp:Pa[[P]]
SalA, G]s = ‘Aa[A]S X galG]S
Aq[A]¢ A-S
Pal{c}UP]y = Cale]s + PulPls
Calp(t) :— B]lg = aftree(p(t) :— B)) ™ G,[B],

e abstract operational semantics
S Fora SRS { (A% a(tree(P))) X a(1d) } ac Atoms
e behavior and abstract denotations -
Bo[G in P] = 3{S[a((G. {G}))+>, S}
OulP] = 3 {Balp(x) in P]/é } o(x)€ Goals
FolP] = UpPu[P] = P.[P] T w
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Denotational observables

e in several interesting observables X is not precise

— we can obtain a more precise semantics by choosing the
optimal abstractions of higher level concrete operators

— in the denotational semantics M is only used inside the
semantic function €

— take the optimal abstraction C

o relax the third axiom (a non-precise )

e the new axioms
l.a(A-D)=«a(A-(yoa)D)
2. (D1 x D) = a((y o a)Dy x (7 0 a)Dy)
3. a(Dy M Dy) = (D M (v 0 a)Dy)

e if we replace €, by the optimal abstraction
Clc] = a0 €|c] o, we obtain a precise denotational semantics

e the properties
— Q|G in P] = o(B[G in P])
— FolP] = o(O[P])
— the denotation F,[P] is correct, minimal and AND-compositional

e examples of denotational observables

— ground instances of computed answers (least Herbrand model),
mstances of computed answers (c-semantics), computed an-
swers (s-semantics), partial answers, call patterns

15
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Introducing abstract computations with
approximation

e observables used in (static) program analysis lead to a loss of
precision to obtain finitely computable semantics

e the abstract semantics is required to be a correct approxima-
tion of the concrete one, yet it is not precise

— as a consequence, we have to give up correctness and min-
imality of the denotation

¢ semi-perfect observables

— the properties
* a(B[G in P])<B,[G in P] = Q,|G in P]
+ o(O[P])<0,[P] = F,[P]
* semi-perfect observables are condensing

* the denotation O,[P] = F,[P] is AND-compositional
and OR-compositional

— examples: SLD-derivations and computed resultants, with

concrete substitutions abstracted to elements of POS or to
types (op—down dola - ,f'/' W dualyfis

e semi-denotational observables
— the properties
* a(B[G in P])<Q,[G in P]<B,[G in P]
* o O[P])<Fo[P]<O.[P]
* the denotation F,[P] is AND-compositional

— examples: call patterns and computed answers, with con-
crete substitutions abstracted to elements of POS or to

types bollow - up Jols flow swalydil
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Open problems

e the axioms allow us to handle separately precision and the
various compositionality properties
— more classes of observables. with weaker properties
* for example, non-condensing

o the lattice of observables and the sublattices of perfect, deno-
tational, ... observables

— how to combine observables (glb and lub on specific classes
should have stronger properties)

— how to choose the most abstract among the observables
more concrete than a belonging to a suitable class
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