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APPROXIMATE TERMINATION ANALYSIS
BY ABSTRACT INTERPRETATION

Two uses of abstract interpretation

e The semantics on which termination can be observed

e The approximation which makes the analysis feasible




Motivations I

Notions of termination

A goal G in the program P if the execution
of G in P terminates in a finite time.

Two different notions of termination for logic programs:

° at least one answer for G
is obtained in a finite time.

. all the answers for G are
obtained in a finite time.

There are basically two approaches to (Universal) Ter-
mination of logic programs:

e Correct and complete methods providing manually
verifiable criteria that ensure termination.

e Techniques providing sufhicient automatically check-
able conditions.
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Most of the termination analyses proposed so far prove a
strict decrease of some measure (over a well founded
domain) on consecutive procedure calls.

Several systems exist for automatic termination anal-
ysis, such as TermiWeb, TermiLog, ¢TI, Mercury’s Ter-
mination analyzer.

e These systems are very powerful:

— they ensure termination of non-trivial queries.
— they prove termination of large classes of goals.

e These systems are not able to analyze all programs:
some problems arise when termination depends on

the

e The techniques proposed in this paper can be used
to improve the existing methods.




Motivations III

Examples

Py at(telaviv, mary).
at(jerusalem, mary).
at(X, fido) = at(X, mary), near(X).

near(jerusalem).

Using TermiLog and ¢TI, we can not prove that the goal
at(X,Y) in Py terminates for any X and Y.

Let

pla,Y) terminates if Y is bound = q(f(a),Y) terminates if Y
15 bound,

p(b,Y) terminates for any Y = q(f(b),Y) terminates for any
Y.

Using TermiLog and ¢TI, we can prove that ¢(f(b),Y)
terminates in P ,

while ¢(f(b),Y) terminates for any Y.




The proposed approach

We propose abstract interpretation in order to

1. systematically derive a suitable semantics to model
termination,

2. systematically derive new effective abstraction use-
ful for termination analysis,

3. reconstruct as abstract interpretations of the “ter-
mination semantics” most of the existing automatic
methods,

4. systematically combine all the different analyses in
a more powerful automatic system.




A semantics for reasoning on termination

— Termination is closely related to the existence of in-
finite derivations.

— To reason about termination in semantic terms we
need a fixpoint semantics modelling the infinite be-
havior.

— To model the infinite behavior in an And-compositional
way, we have to model the substitutions computed
by infinite and successful derivations (ezact an-
SWers).

e in fact, Ay,..., A, has an infinite derivation via
a fair selection rule iff
1. at least one A; has an infinite derwation,
2. each A; has a successful or an infinite derivation,

3. all the chosen derwations for Ay, ..., A, compute
compatible substitutions.

— None of the fixpoint semantics defined in literature
models exact answers and i1s based on a co-continuous
operator.




A semantics modelling exact answers I

The semantic domain:

e to represent answers of infinite and
successtul derivations, we use sequences of substitu-
tions.

— Finite sequences represent answers of successful
derivations.
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— Infinite sequences represent an-
swers of infinite derivations.
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e to model exact answers and not their instances, we
have to keep information on the number of rewriting
steps.

e To obtain And-compositionality we consider only
fixed rewriting steps
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A semantics modelling exact answers II

The fixpoint semantics modelling exact answers is:

e correct and fully abstract,
e based on a co-continuos operator,

o And-compositional and compositional wrt instan-
t1ation.

Ps: pla).
p(f(X)) < p(X).
q(a) < p(X).
gfp(P( P3))p(X) ={<: X/a >
<o X/ f(Xq) o X/ fla) >
<o XJF(Xq) o XTF(F(X) = X/ f(fa)) >

gfp(P(P3))(X) = { <2 Ko XJa>

}

This semantics is systematically obtained by abstract

interpretation techniques from a semantics modelling
(possibly infinite) SLD-trees.




The approximate semantics

The idea is to use depth-k substitutions, i.e. substitu-
tions whose terms are cut at depth-k,
Example Fork =2,

X/f(gla),g(Y)) = X/f(V. W)

The abstraction:

e we lose information on the number of steps,
e we approximate a finite sequence
s Py o g, with < 9,0 >
where ¥ = a;.(¥;) = ay(9;) for all § > 4,
® we approximate an
s sy n g, n L with < 9,0 >
where ¥ = a.(¥;) = o (d;) for all § > 1.

Py pla).
p(f(X)) < p(X).
q(a) < p(X).
gfp(PHP3)(p(X)) ={< X/a,0>,< X/ f(a).0 >,

< X/f(f(V)),8 >, ;
gfp(PH(B3)((X)) ={< X/a.0>, }
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Toward a termination analysis

With our abstract semantics, we can determine

Infb={G| G=(Ay,...,A)
3 an mgu(G, (A101, ..., Ay0y)) such that
Bie{l,...,n},< 0,0 >€ gfp(PHP))(4;)
fori={1,...,n},<0;,,_>€ QfP(Pk(P))(Ai)}

For our approximation the following properties hold:

1. If G has an infinite derivation in P

= Vk, G € Infk.

2. If G does not have an infinite derivation in P

= 3l,st. Vk > 1, G &€ Inf}.

We can use Infp for:

e universal termination analysis,

o define an analysis which allows us to ensure that
replacing the breadth-first with depth-first search
rule is “safe”.
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Universal Termination

Definition[Ruggieri 1999]

A goal G'in P if there exists
such that every derivation of G' (via s)

is finite.

Result[Ruggieri 1999]
A goal G in P J-universally iff it universally terminates
wrt selection rules.

Our result:
G in P d-universally terminates 1// there exists a k such

that G & Inf5.
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Examples I

Let us go back to the first two examples:

Py at(telaviv, mary).
at(jerusalem, mary).
at(X, fido) < at(X, mary), near(X).

near(jerusalem).

Our analysis for £ = 2:

gfp(?2(P1))(at(X,Y)) = {< {X/telaviv,Y/fido}, O >,
< A{X/jerusalem,Y/ fido}, 0 >}
gfp(P*(P))(near(X)) = {< {X/jerusalem},0 >}

at(X,Y) for any X and Y,
at(X,Y) & Infp, since Infp =0.
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Examples II

Let
Py pla,b)
pla, f(Y)) ¢ pla,Y)
q(f(X),Y) = p(X,Y)
Our analysis for £ = 4:
gfp(PHP))(p(X,Y)) ={ <{X/a.Y/f(f(f(W)))}. 0> < O>}
gfp(PHP)) (X Y)) ={ <{X/f(a).Y/F(F(FWV))} O >. < 0>}

q(X,Y) € Infj‘;2 iff it unifies with q(f(a), f(f(f(W)))).

This allow us to prove that

1. q(f(b),Y) terminates for any Y,

2. q(f(a),Y) terminates only if Y is a ground depth-4
term.

Note:

1. our analysis allows us to prove that q(f(b),Y)
for any Y,

2. anyway, using TermiLog or ¢TI, we can prove that

q(/(a),Y)
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Safely replacing the breadth-first search

The search rules:

e breadth-first 1s complete but inefficient.
o depth-first is efficient but incomplete.

Using Infl’) we define an analysis which allows us to
the breadth-first with the depth-first rule.
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Conclusions and Future Work

We have:

e introduced a semantic foundation for an abstract
interpretation approach to termination,

o developed a new abstract domain useful for termi-
nation analysis.

We think that:

e most of the existing automatic methods can be re-
constructed in this framework as abstractions of the
“exact answers” semantics on suitable abstract do-
mains,

e using the framework different abstractions can be
combined together obtaining more precise results,

e abstract interpretation theory provides a rigorous
theoretical background for combining domains and,
therefore, analyses,

e the resulting method can be viewed as a theoreti-
cal basis for the design of a refined system able to
analyze termination of real Prolog programs.




