APPROXIMATE TERMINATION ANALYSIS BY ABSTRACT INTERPRETATION

Two uses of abstract interpretation

- The semantics on which termination can be observed
- The approximation which makes the analysis feasible

Motivations I

Notions of termination

A goal G terminates in the program P if the execution of G in P terminates in a finite time.

Two different notions of termination for logic programs:

- Existential Termination: at least one answer for G is obtained in a finite time.
- Universal Termination: all the answers for G are obtained in a finite time.

There are basically two approaches to (Universal) Termination of logic programs:

- Correct and complete methods providing manually verifiable criteria that ensure termination.
- Techniques providing sufficient automatically checkable conditions.

Motivations II

Most of the termination analyses proposed so far prove a strict decrease of some measure (over a well founded domain) on consecutive procedure calls.

Several systems exist for automatic termination analysis, such as TermiWeb, TermiLog, cTI, Mercury's Termination analyzer.

- These systems are very powerful:
 - they ensure termination of non-trivial queries.
 - they prove termination of large classes of goals.
- These systems are not able to analyze *all* programs: some problems arise when termination depends on the structure of terms.
- The techniques proposed in this paper can be used to improve the existing methods.

Motivations III

Examples

```
P_1: at(telaviv, mary).
at(jerusalem, mary).
at(X, fido) \leftarrow at(X, mary), near(X).
near(jerusalem).
```

Using TermiLog and cTI, we can not prove that the goal at(X, Y) in P_1 terminates for any X and Y.

Let

$$P_2: p(\mathbf{a}, b)$$

$$p(\mathbf{a}, f(Y)) \leftarrow p(\mathbf{a}, Y)$$

$$q(f(X), Y) \leftarrow p(X, Y)$$

p(a, Y) terminates if Y is bound $\Rightarrow q(f(a), Y)$ terminates if Y is bound,

p(b, Y) terminates for any $Y \Rightarrow q(f(b), Y)$ terminates for any Y.

Using TermiLog and cTI, we can prove that q(f(b), Y) terminates in P_2 if Y is bound,

while q(f(b), Y) terminates for any Y.

The proposed approach

We propose abstract interpretation in order to

- 1. systematically derive a suitable semantics to model termination,
- 2. systematically derive new effective abstraction useful for termination analysis,
- 3. reconstruct as abstract interpretations of the "termination semantics" most of the existing automatic methods,
- 4. systematically combine all the different analyses in a more powerful automatic system.

A semantics for reasoning on termination

- Termination is closely related to the existence of infinite derivations.
- To reason about termination in semantic terms we need a fixpoint semantics modelling the infinite behavior.
- To model the infinite behavior in an And-compositional way, we have to model the substitutions computed by infinite and successful derivations (exact answers).
 - in fact, A_1, \ldots, A_n has an infinite derivation via a fair selection rule iff
 - 1. at least one A_i has an infinite derivation,
 - 2. each A_i has a successful or an infinite derivation,
 - 3. all the chosen derivations for A_1, \ldots, A_n compute compatible substitutions.
- None of the fixpoint semantics defined in literature models exact answers and is based on a co-continuous operator.

A semantics modelling exact answers I

The semantic domain:

- to represent *possibly infinite* answers of infinite and successful derivations, we use sequences of substitutions.
 - Finite sequences represent answers of successful derivations.

$$:: \vartheta_1 :: \vartheta_2 :: \ldots :: \vartheta_n$$

- Infinite sequences represent *p*ossibly infinite answers of infinite derivations.

$$:: \vartheta_1 :: \vartheta_2 :: \ldots :: \vartheta_n :: \ldots$$

- to model exact answers and not their instances, we have to keep information on the number of rewriting steps.
- To obtain And-compositionality we consider only fixed rewriting steps

$$::_{n_1} \vartheta_1 ::_{n_2} \vartheta_2 :: \ldots ::_{n_n} \vartheta_n :: \ldots$$

A semantics modelling exact answers II

The fixpoint semantics modelling exact answers is:

- correct and fully abstract,
- based on a co-continuos operator,
- And-compositional and compositional wrt instantiation.

```
P_{3}: p(a).
p(f(X)) \leftarrow p(X).
q(a) \leftarrow p(X).
gfp(\mathcal{P}(P_{3}))p(X) = \{<::_{1} X/a > 
<::_{1} X/f(X_{1})::_{1} X/f(a) > 
<::_{1} X/f(X_{1})::_{1} X/f(f(X_{2}))::_{1} X/f(f(a)) > 
::_{1} X/f(X_{1})::_{1} X/f(f(X_{2}))::_{1} ... :_{1} X/f^{n}(X_{n})::... > \}
gfp(\mathcal{P}(P_{3}))q(X) = \{<::_{1} X/a ::_{1} X/a ::_{1} X/a ::_{1} ... > \}
::_{1} X/a ::_{1} ... ::_{1} X/a ::_{1} ... > \}
```

This semantics is systematically obtained by abstract interpretation techniques from a semantics modelling (possibly infinite) SLD-trees.

The approximate semantics

The idea is to use depth-k substitutions, i.e. substitutions whose terms are cut at depth-k,

Example For
$$k = 2$$
,
 $X/f(g(a), g(Y)) \Rightarrow X/f(V, W)$

The abstraction:

- we lose information on the number of steps,
- we approximate a finite sequence

$$:: \vartheta_1 :: \vartheta_2 :: \ldots :: \vartheta_n \text{ with } < \vartheta, \square >$$
where $\vartheta = \alpha_k(\vartheta_i) = \alpha_k(\vartheta_j)$ for all $j > i$,

• we approximate an infinite sequence

$$:: \vartheta_1 :: \vartheta_2 :: \ldots :: \vartheta_n :: \ldots \text{ with } < \vartheta, \diamondsuit >$$
where $\vartheta = \alpha_k(\vartheta_i) = \alpha_k(\vartheta_i)$ for all $j > i$.

$$P_{3}: p(a).$$

$$p(f(X)) \leftarrow p(X).$$

$$q(a) \leftarrow p(X).$$

$$gfp(\mathcal{P}^{k}(P_{3})(p(X))) = \{\langle X/a, \square \rangle, \langle X/f(a), \square \rangle, \langle X/f(f(\tilde{V})), \square \rangle, \langle X/f(f(\tilde{V})), \square \rangle, \langle X/f(f(\tilde{V})), \square \rangle\}$$

$$gfp(\mathcal{P}^{k}(P_{3})(q(X))) = \{\langle X/a, \square \rangle, \langle X/a, \lozenge \rangle\}$$

Toward a termination analysis

With our abstract semantics, we can determine a superset of the goals having at least an infinite derivation.

$$Inf_{P}^{k} = \{G \mid G = (A_{1}, \dots, A_{n})\theta$$

$$\exists \text{ an } mgu(G, (A_{1}\sigma_{1}, \dots, A_{n}\sigma_{n})) \text{ such that}$$

$$\exists \overline{i} \in \{1, \dots, n\}, \langle \sigma_{\overline{i}}, \diamond \rangle \in gfp(\mathcal{P}^{k}(P))(A_{\overline{i}})$$
for $i = \{1, \dots, n\}, \langle \sigma_{i}, - \rangle \in gfp(\mathcal{P}^{k}(P))(A_{i})\}$

For our approximation the following properties hold:

- 1. If G has an infinite derivation in $P \Rightarrow \forall k, G \in Inf_P^k$.
- 2. If G does not have an infinite derivation in $P \Rightarrow \exists l, \text{ s.t. } \forall k > l, G \not\in Inf_P^k$.

We can use Inf_P^k for:

- universal termination analysis,
- define an analysis which allows us to ensure that replacing the breadth-first with depth-first search rule is "safe".

Universal Termination

Definition[Ruggieri 1999]

A goal G in P \exists -universally terminates if there exists a selection rule s such that every derivation of G (via s) is finite.

Result[Ruggieri 1999]

A goal G in P \exists -universally iff it universally terminates wrt the set of fair selection rules.

Our result:

G in P \exists -universally terminates iff there exists a k such that $G \not\in Inf_P^k$.

Examples I

Let us go back to the first two examples:

```
P_1: at(telaviv, mary).

at(jerusalem, mary).

at(X, fido) \leftarrow at(X, mary), near(X).

near(jerusalem).
```

Our analysis for k = 2:

$$gfp(\mathcal{P}^{2}(P_{1}))(at(X,Y)) = \{ \langle \{X/telaviv, Y/fido\}, \square \rangle, \\ \langle \{X/jerusalem, Y/fido\}, \square \rangle \}$$
$$gfp(\mathcal{P}^{2}(P_{1}))(near(X)) = \{ \langle \{X/jerusalem\}, \square \rangle \}$$

$$at(X,Y)$$
 terminates for any X and Y , $at(X,Y) \not\in Inf_{P_1}^2$, since $Inf_{P_1}^2 = \emptyset$.

Examples II

Let

$$P_2: p(a,b)$$

$$p(a,f(Y)) \leftarrow p(a,Y)$$

$$q(f(X),Y) \leftarrow p(X,Y)$$

Our analysis for k = 4: $gfp(\mathcal{P}^4(P_2))(p(X,Y)) = \{ \langle \{X/a,Y/f(f(f(W)))\}, \diamond \rangle, \langle \neg, \Box \rangle \}$ $gfp(\mathcal{P}^4(P_2))(q(X,Y)) = \{ \langle \{X/f(a),Y/f(f(W))\}, \diamond \rangle, \langle \neg, \Box \rangle \}$ $q(X,Y) \in Inf_{P_2}^4$ iff it unifies with q(f(a),f(f(W))).

This allow us to prove that

- 1. q(f(b), Y) terminates for any Y,
- 2. q(f(a), Y) terminates only if Y is a ground depth-4 term.

Note:

- 1. our analysis allows us to prove that q(f(b), Y) terminates for any Y,
- 2. anyway, using TermiLog or cTI, we can prove that q(f(a), Y) terminates for a larger set of Y instances.

Safely replacing the breadth-first search

The search rules:

- breadth-first is complete but inefficient.
- depth-first is efficient but incomplete.

Using Inf_k^P , we define an analysis which allows us to safely replace the breadth-first with the depth-first rule.

Conclusions and Future Work

We have:

- introduced a semantic foundation for an abstract interpretation approach to termination,
- developed a new abstract domain useful for termination analysis.

We think that:

- most of the existing automatic methods can be reconstructed in this framework as abstractions of the "exact answers" semantics on suitable abstract domains,
- using the framework different abstractions can be combined together obtaining more precise results,
- abstract interpretation theory provides a rigorous theoretical background for combining domains and, therefore, analyses,
- the resulting method can be viewed as a theoretical basis for the design of a refined system able to analyze termination of real Prolog programs.