Abstract Interpretation based
Verification of Logic Programs

Giorgio Levi

Dipartimento di Informatica
Universita di Pisa

levi@di.unipi.it

http://www.di.unipi.it/di/groups/Ip/

Abstract Interpretation

[Patrick and Radhia Cousot, late 70’s]

e a general theory for approximating the semantics of discrete
dynamic systems

— the abstract semantics is an approximation of the concrete
semantics

— concrete values are replaced by approximated properties,
modeled by an abstract domain

— hierarchies of semantics

— definition (and reconstruction) of static analyses (including
type systems)

— useful for
% proving the correctness of an analysis algorithm
% deriving optimal abstract semantics from the abstract

domain

— abstract domain design methodologies (e.g. domain refine-
ments) to systematically improve the precision of the do-
main

Abstract Interpretation and Verification

e abstract interpretation was originally intended as a method for
automatically generating program invariants

e we are interested in one specific approach to the generation of
abstract interpretation-based partial correctness conditions

e the idea

— the semantics [°] of P is the least fixpoint of a semantic
evaluation function T on the concrete domain (D, <)

— the class of properties is formalized as an abstract domain
(A, C), related to (D, <) by a Galois connection o :) —
Aandy: A —D

— the abstract semantic evaluation function 77 is systemati-
cally derived from 7'p, o and ~y

— the abstract semantics is a correct approximation of the
concrete semantics by construction and no additional cor-
rectness theorems need to be proved

—an clement S of the domain (A, L) is the specification of
the abstraction of the intended concrete semantics

— the partial correctness of P w.r.t. a specification S can be
expressed as

o[PDES

— a sufficient condition is
T (8) CS

x S 1s a pre-firpoint of the abstract semantic evaluation
function 7%

The inductive verification method based on

TYS)C S

e inherits the nice features of abstract interpretation

— we can define a verification framework, parametric with
respect to the (abstract) property we want to model

— given a specific property, the corresponding verification con-
ditions are systematically derived from the framework and
guaranteed to be indeed sufficient partial correctness con-
ditions

— the verification method is complete, if the abstraction is
precise (complete according to abstract interpretation the-

ory)

e the method does not require to compute fixpoints

Using abstract interpretation to make

T5(S)E S effective

e we need

— a concrete fixpoint semantics, where we can observe the
property to verify

— a finite representation of the intended abstract behaviour
(specification)

e abstract interpretation theory provides results and techniques
which can be used to tackle the problems below

— how to systematically design a semantics, which models
suitable observable behaviours and exhibits suitable prop-
erties related to precision and compositionality

— how to reconstruct the existing notions of partial correct-
ness and related verification methods (for logic programs)
simply in terms of different choices of the concrete seman-
tics

— how to choose the abstract domain to model the property,
so as to make effective the verification method (finite spec-
ification)

% abstract domains developed for static program analysis
(types, groundness, ctc.)

% assertions in a suitable specification language

Summary of the talk

e the issue of completeness

e designing semantics by abstract interpretation
e abstract diagnosis

e reconstruction of verification methods

e assertions and specification languages

e extensions and future developments

The issue of completeness

e (. Levi and P. Volpe. Derivation of Proof Methods by Abstract Interpretation. Proceedings of
PLILP’98

e given an inductive proof method, if a program is correct with
respect to a specification &, the sufficient verification condition

might not hold for &

e if the method is complete, then, when the program is correct
with respect to &, there exists a property R, stronger than S,
which verifies the condition

o the method derived from condition 77(S) C S is complete if
and only if the abstraction is precise with respect to /'p, that

is if a(lfp(Tp)) = Ifp(TH)
e an easier to prove sufficient condition for precision is full pre-
cision, that is coTp = Thow

— there exist methods to systematically enrich a domain of
properties so as to obtain an abstraction which is fully pre-
clse

Designing semantics by abstract
interpretation: the concrete semantics

e M. Comini and M.C. Meo. Compositionality properties of SLD-derivations. Theoretical Computer
Science, 1999.

e a framework based on abstract interpretation

e the concrete semantics models SLD-trees and is formalized
both denotationally and operationally

— B[G'in P’] is the operational semantics of goal GG in program
P (the set of its SLD-derivations)

— I'p 18 the (denotational) semantics evaluation function for
a set of definite clauses P

— [P} = lfp(Tp) is the denotational semantics of P

— Q|G in P] is the denotational derivation of the semantics
of the goal G from [P]

e properties of the concrete semantics

— equivalence between the operational semantics and the de-
notational semantics
VG, P.B|G in P] = Q|G in P]

— existence of an A ND-compositional goal-independent de-
notation | /]

* we can precisely derive, by means of O, the behaviour
of every (conjunctive) goal from []

The abstraction framework

e M. Comini, G. Levi and M.C. Meo. A Theory of Observables for Logic Programs. Information
and Computation, to appear

e an observable is a Galois insertion between the domain of SLD-
trees and an abstract domain describing the property to be
modeled

e the abstract denotational semantic functions 75 and O, to-
gether with the abstract denotational semantics [P]* = Ifp(T5),
are systematically derived from the concrete ones, by replac-
ing the concrete semantic operators by their optimal abstract
Versions

e the taxonomy of classes of observables

— an observable belongs to a class if it satisfies a set of con-
ditions relating the concrete semantic operators and the
Galois insertion

— for observables belonging to a given class, we know how
to automatically derive the “best” semantics and which
are the properties of such a semantics (precision, relation
between concrete operational semantics and abstract deno-
tational semantics, existence of a goal-independent denota-
tion, compositionality)

Denotational and semi-denotational
observables

e denotational observables

— the optimal abstract semantics can be defined denotation-
ally, by taking the optimal abstract version 75 of Tp

— precise abstract denotational semantics
[Pl = eA[P])

— AND-compositional abstract (goal-independent) denota-
tion
VG, P.a(B[G in P]) = Q°|G in P]

— includes correct answers substitutions, computed answer

substitutions, call patterns and resultants

— denotational observables are precise and lead to complete
verification methods

e semi-denotational observables

— intended to model the properties useful for static program
analysis

— we just loose precision to achieve termination
of[P]) E[P]°

— AND-compositionality guarantees that we can be as precise
as possible, when using denotational definitions

— the (abstract) semantics for any goal G computed denota-
tionally is as precise as the operational one, i.e.
VG, P.B°[G in P] = Q°[G in P]

— includes the domain depth(k), the domain POS for ground-
ness analysis and other optimal domains, designed by using
the refinement operators

10

Abstract diagnosis of logic programs

e M. Comini, G. Levi, M.C. Meo, and G. Vitiello. Abstract Diagnosis. Journal of Logic Programmang,
1999

o extends declarative debugging to a debugging framework para-
metric w.r.t. the abstraction

e uses the sufficient condition 73 (S) £ S to prove partial cor-
rectness (and to detect incorrectness bugs)

e the specification & handles properties which are abstractions
of computed answers

— § can be viewed as a postcondition

e a similar approach where different approximations (modeled
by abstract interpretation) can be used in the semantics and
in the specification

— F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynsky, and
G. Puebla. On the role of semantic approximations in validation and diagnosis of constraint
logic programs. Proceedings of AADEBUG’97

e from abstract diagnosis to verification

— more general specifications, including preconditions

11

A verification framework

e (. Levi and P. Volpe. Derivation of Proof Methods by Abstract Interpretation. Proceedings of
PLILP’98

e there exist a lot of verification methods for logic programs,
defined by using ad-hoc constructions

e they can be reconstructed as instances of the framework, by
simply choosing different observables (abstractions of the SLD-
derivations traces semantics)

e their reconstruction in terms of abstract interpretation allows
us to compare the different techniques and to show the essential
differences

e the approach can be explained in terms of two steps, both
modeled by abstractions

1. abstraction needed to derive the semantics which models
the proof method

2. abstraction needed to model a specific class of properties

— to get finite specifications

12

Reconstruction of some verification methods

® success-correctness

— post-conditions only
— the observable is computed answers (s-semantics)

% the method is complete, since the observable is precise

— if we take, in the second abstraction step, properties closed
under instantiation (as in Drabent’s (1997) method), the
verification condition boils down to the one of Clark’s (1979)
and Deransart’s (1993) methods

o [/O correctness

— specifications are pairs of pre- and post-conditions (the
post-condition holds whenever the pre-condition is satis-

fied)

— the observable is a simple modification of computed answers

% the method is complete, since the observable is precise

13

Stronger preconditions: call correctness

o I/ O and call correctness

— specifications are still pairs of pre- and post-conditions (the
pre-conditions are satisfied by all the procedure calls)

— the observable is call patterns
* the method is complete, since the observable is precise
— the verification condition, obtained by unfolding 73(S) C

S with the call patterns 7%, is a slight generalization of the
one defined by the Drabent-Maluszynski method (1988)

* by taking, in the second abstraction step, properties
closed under instantiation, we reconstruct the Bossi-
Cocco condition (1989)

* by further abstractions (modes, types, etc.), we recon-

struct the hierarchy of verification conditions defined by
Apt-Marchiori (1994)

14

Towards finite specifications: the second
abstraction step

e the second abstraction is concerned with the choice of an ab-
stract domain to model the property

e there exist two possibilities

1. abstract domains designed for static analysis (depth(k),
modes, types, groundness dependencies, etc.)

— we can reason on the domain of properties by efficient
abstract computation steps and prove the sufficient con-
dition by using the operations on the abstract cpo

— as in static analysis, in general we loose precision (and
therefore the completeness of the verification method)

— we succeed in getting finite specifications

— if we model the property by semi-denotational observ-
ables, even if the method is not complete, the abstract
1'%, used in condition 73(S) C S, introduces the same
amount of approximation of the “best” goal-dependent
abstract operational semantics

2. properties can be specified as assertions in a suitable spec-
ification language

15

Assertions and specification languages

e specifications are usually given by means of assertions, i.e. for-
mulas in a suitable formal specification language

— in our case a specification is (extensionally defined as) the
intended abstract semantics

e assertions can be viewed as an abstract domain, as shown by
the Cousot’s in the early papers on abstract interpretation

o we show the case of success-correctness only, where the concrete
domain consists of sets of atoms

— similar constructions can be given for the other notions of
correctness

16

Success correctness with assertions

e (. Levi and P. Volpe. Derivation of Proof Methods by Abstract Interpretation. Proceedings of
PLILP’98

o a first order language £ = (2,11, V)

— the signature of £ includes functions, constants and vari-
ables occurring in the program

e a term-interpretation Z = (Terms(2. V), Yz, ll7)

— the set of non-ground terms viewed as an L structure

o J is a set of formulas of £, which describe properties of pred-
icate arguments (assertions)

e an atom p(ty....,t,) satisfies the formula @ [zy, ... z,| of F,
iff for each o,

1 | Oz, 3y

xlj...jiﬂn\tlj...jtn

o the set of assertions {©,},cp,..; associates an assertion 0, to
each predicate p of P

o P is success-correct with respect to {0, },ecpeq iff Vp(t) €

Atoms, p(t) %0 implies that p(?)¢ satisfies O,

17

Assertions as abstract domains

e a partial order on 7 induced by implication under the inter-
pretation 7

O=70ifT=0=0

e a domain
Az = (Pred — F/=,,<)

whose elements can be represented as sets {0}, pes, Where
cach O, is a formula of F with free variables corresponding to
arguments of p

— the order is the pointwise extension of the order between
formulas of F

e a function from A7 to C:

v7(0) = A\p(x).{p(t) € Atoms | p(t) satisfies ©,}.

—if F is a complete lattice closed under conjunction, vz is
meet-additive

— by standard abstract interpretation results, it induces a Ga-
lois connection between C and A

18

A sufficient condition for success-correctness

e the optimal abstraction on A7

\//\{cbu#/\@ x\t] = @ x\t])

c=p(t) < pi(ty),....p.(t,)

o P is success-correct with respect to {O,},epred, iff

ar(Ifp(TF)) < ©
where a7 is the adjoint function of 7

o by unfolding condition 7'/(0) < ©, we obtain a sufficient con-
dition
P is success-correct with respect to {®,},cp.q if, for each
clause

p(t) < pi(ty),....pu(t0)

the following condition holds
TE /\CD xi\t;] = &, [x\t]

— Deransart’s verification method with assertions

19

Verification with assertions

o if the relation = is decidable, we have an effective way to prove
the sufficient condition

— examples of decidable specification languages for logic pro-
grams

* a language of properties by Marchiori (1996), which al-
lows us to express groundness, freeness and sharing of
terms

% a decidable extension, including polymorphic types, by
Volpe (1998)

e as in the case of extensional properties, the method is complete
if the abstraction is precise
e an interesting alternative specification language:

— logic programs as specifications

— the verification conditions can often be proved by standard
program transformation techniques

% folding, unfolding, goal replacement

20

Example 1: a decidable assertion language

the clause
sort(Xs,Ys) :- perm(Xs,Ys), ord(Ys).

the precondition
sort(X,Y) — list(X) A ground (X)
perm(X,Y) — list(X) A ground (X)
ord(X) — list(X) A ground (X)

the postcondition

sort(X,Y) — list(Y) A ground(Y)
perm(X.,Y) = list(Y) A ground(Y)

ord(X) — true

the verification condition (call correctness)

5t(X's) A ground(X's) = list(Xs) A ground (X s)
(Xs) (Xs) A list(Ys) A ground(Y's) =
list(Y's) A\ ground(Y's)
st(Xs)
5t(Ys)

21

cl:
c2:
c3:
c4:

ch:
c6:
cT:
c8:

c9:
cA:
cB:
cC:

cE:

Example 2: LP description of a reactive

e00(
e00(
e00(
e00(

e10(
e10(
el10(
e10(

e20(
e20(
e20(
e20(

r /e r /e

[O s I oy B |

system

(null,null) | X]) :- e00(X).
(10,null) | X]) :- e10(X).
(water,beep) | X]) :- e00(X).
(coffee,beep) | X]) :- e00(X).

(null,null) | X]) :- e10(X).
(10,null) | X]) :- e20(X).
(water,water) | X]) :- e00(X).
(coffee,beep) | X]) :- el0O(X).

(null,null) | X]) :- e20(X).
(water,water) | X]) :- e10(X).
(coffee,coffee) | X]) :- e00(X).
(coffee,null) | X]) :- warm(X).

warm([(null,coffee) | X]) :- e00(X).

a vending machine

22

Assertion language, specifications, verification
conditions

sublist(Xs,Ys) :- sublistX(Xs,Ys).
sublist(Xs, [Y|Ys]) :- sublist(Xs,Ys).

sublistX([],Xs).
sublistX([Y|Xs],[Y|Ys]) :- sublistX(Xs,Ys).

match(Xs,X,Ys) :- matchX(Xs,X,Ys).
match(Xs,X,[Y|Ys]) :- match(Xs,X,Ys).

matchX([],X, [X]|_]).
matchX([],X,[YIYs]) :- matchX([],X,Ys).
matchX([Y|Xs],X,[Y|Ys]) :- matchX(Xs,X,Ys).

e00(X) — sublist([(10,), (10,), (coffee,)], X)

)

(X)
e10(X) — matchX([(10,), (coffee)], (L, coffee), X)
e20(X) — matchX([(coffee,)], (, coffee), X)

(X)) — matchX([], (L, coffee), X)

[/O correctness verification conditions
sublist([(10,), (10,_), (coffee,)|, [(10,null)|X|)A
matchX([(10,), (coffee,)], (., coffee), X) =
match([(10,), (10,), (coffee,)], (., coffee), [(10,null)|X])

23

00(X) — match([(10,), (10,.), (coffee,)], (_, coffee), X)

Example 3: algorithm vs. specification

the insertion sort, is correct w.r.t. a specification given by the
declarative (inefficient) specification of sort

cl: idisort([],[]).
c2: isort([X|Xs],Ys) :- isort(Xs,Zs), insert(X,Zs,Ys).

c3: imsert(X,[],[X]).

cd: insert(X,[Y|Ys],[Y|Zs]) :- X > Y, insert(X,Ys,Zs).
cb: imnsert(X,[Y|Ys], [X,Y|Ys]) :- X =< V.

24

Assertion language, specifications, verification
conditions

isort(X,Y) — intlist(X)
insert(X,Y, Z) — int(X) A intlist(Y) A ord(Y)

isort(X,Y) — intlist(Y) A sort(X,Y)
insert(X,Y, Z) — intlist(Z) A sort([X|Y], Z)

a verification condition (call correctness)

intlist([X|Xs]) A intlist(Zs) A sort(Xs, Zs) A intlist(Y's)A
sort([X|Zs|,Ys) = intlist(Ys) A sort([X|Xs|,YVs)

which can be proved by first proving a property of perm, i.e.,
perm(Xs, Zs) A perm([X|Zs],Y's) <= perm([X|Xs],Ys)

25

Discussion on verification with assertions

e some open problems related to assertion abstract domains

— how to define more expressive (decidable) specification lan-
guages
— the precision issue (specification language and assertions)

— how to compare (from the viewpoint of precision) standard
“static analysis” abstract domains to assertions

— how to define refinement operators for domains defined by
assertions

— how to effectively derive, for a given assertion language,
the abstraction function a7, which is needed to design the
optimal semantic operators

* this would lead to a notion of abstract execution on the
domain of assertions

26

Extension to other logic languages and
observables

e the semantic framework for definite logic programs based on

abstract interpretation has been extended to other languages

— Prolog (selection and search rule, cut, a large set of primi-
tives)

¥ F. Spoto. Operational and Goal-Independent Denotational Semantics for Prolog with
Cut. Journal of Logic Programming, to appear

% F. Spoto and G. Levi. Abstract Interpretation of Prolog Programs. Proc. AMAST’98
— Concurrent Constraint Programming

* R. Moreno.

LPAR’9Y

Abstracting Properties in Concurrent Constraint Programming. Proc.

— Hereditary Harrop Formulas (first-order subset of A-Prolog)

e it is staightforward to adapt the verification techniques to the
above languages

e both the semantic framework and an interesting extension of

the verification techniques have been defined to model finite
failure and infinite derivations in definite logic programs

— R. Gor1 and G. Levi. On the verification of fimite failure. Proc. PPDP’99

27

Future developments

e our approach to verification can be applied to any language
once we have a fixpoint semantics adequate for the proof method

o there exist several useful semantic frameworks for various lan-
guages, developed as a foundation for static program analysis

e an interesting arca we have just started to look at is the veri-
fication of security related properties for mobile systems

28

