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meet most of the component specifications. In short, the primary appli(:fl-
tion of the theory of NP-completeness is to assist algorithm designers in
directing their problem-solving/£fforts toward those approaches that have
the greatest likelihood of leadiig to useful algorithms. .

In the first chapter of this “‘guide’ to NP-completeness, we mlrodl_lce
many of the underlying gdncepts, discuss their applicability (as well as give
some cautions), and outfine the remainder of the book.

4

1.2 Problems, Algorithms, and Complexity

In order to elaborate on what is meant by ‘‘inherently intractable™
problems and problems having ‘‘equivalent’ difficulty, it is important that
we first agree on the meaning of several more basic terms.

Let us begin with the notion of a problem. For our purposes, a problem
will be a general question to be answered, usually possessing several param-
efers, or free variables, whose values are left unspecified. A problem is
described by giving: (1) a general description of all its parameters, zmd_ (2)
a statement of what properties the answer, or solution, is required to salisfy.
An instance of a problem is obtained by specifying particular values for all
the problem paramelers. .

As an example, consider the classical “‘traveling salesman problem.

The parameters of this problem consist of a finite set C = {¢y,cy, - . . o Bl
of *‘cities” and, for each pair of cities ¢,¢; in C, the ‘‘distance d(c,-,cj)
between them. A solution is an ordering <c¢, 1),z - + - + Ca(m > Of the

given cities that minimizes

m—1 )
Y, dca@pCaien)| + d (¢ (msCrtt))

i=1

This expression gives the length of the “‘tour™ that slarls al cq(), VISILS
each city in sequence, and then returns directly 1o ¢, from the last city
Calm)- ] h )

One instance of the traveling salesman problem, illustrated in Figure
1.1, is given by C=I{cpencncs, dleye) =10,  dley,cy) = 5,
d(cy,eq) =9, dlcyes) =6, dlcyey =9, and d(escq) = 3. T_he ordering
< ¢y, C4,¢3> is a solution for this instance, as the corresponding tour has
the minimum possible tour length of 27.

Algorithms are general, step-by-step procedures for solving problems.
For concreteness, we can think of them simply as being computer programs,
written in some precise computer language. An algorithm is said to solve a
problem IT if that algorithm can be applied to any instance [ of 11 and_ is
guaranteed always to produce a solution for that instance I. We emphasize
that the term ‘‘solution” is intended here strictly in the sense introduged
above, so that, in particular, an algorithm does not “solve” the traveling
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Figure 1.1 An instance of the traveling salesman problem and a tour of length 27,
which is the minimum possible in this case.

salesman problem unless it always constructs an ordering that gives a
minimum length tour.

In general, we are interested in finding the most ‘‘efficient’ algorithm
for solving a problem. In its broadest sense, the notion of efficiency in-
volves all the various compuling resources needed for execuling an algo-
rithm. However, by the ‘*most efficient’ algorithm one normally means the
fastest. Since time requirements are often a dominant factor determining
whether or not a particular algorithm is efficient enough to be useful in
practice, we shall concentrate primarily on this single resource.

The time requirements of an algorithm are conveniently expressed in
terms of a single variable, the “‘size” of a problem instance, which is in-
tended to reflect the amount of input data needed to describe the instance.
This is convenient because we would expect the relative difficulty of prob-
lem instances to vary roughly with their size. Often the size of a problem
instance is measured in an informal way. For the traveling salesman prob-
lem, for example, the number of cities is commonly used for this purpose.
However, an m-cily problem instance includes, in addition to the labels of
the m cities, a collection of m(m—1)/2 numbers defining the inter-city dis-
tances, and the sizes of these numbers also contribute to the amount of in-
put data. If we are to deal with time requirements in a precise, mathemati-
cal manner, we must lake care to-define instance size in such a way that all
these factors are taken into account.

To do this, observe that the description of a problem instance that we
provide as inputl to the computer can be viewed as a single finite string of
symbols chosen from a finite input alphabet. Although there are many
different ways in which instances of a given problem might be described, let
us assume that one particular way has been chosen in advance and that each
problem has associated with it a fixed encoding scheme, which maps problem
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instances into the strings describing them. The input length for an instance
I of a problem I1 is defined to be the number of symbols in the description
of I obtained from the encoding scheme for I1. It is this number, the input
length, that is used as the formal measure of instance size.

For example, instances of the traveling salesman problem might be
described using the alphabet {c,[,1,/,0,1,2,3,4,5,6,7,8, 9}, with our pre-
vious example of a problem instance being encoded by the string
“el1el2)el31¢14)//10/5/9//6/9//3. More complicated instances would be
encoded in analogous fashion. If this were the encoding scheme associated
with the traveling salesman problem, then the input length for our example
would be 32.

The time complexity function for an algorithm expresses its lime require-
ments by giving, for each possible input length, the largest amount of time
needed by the algorithm to solve a problem instance of that size. Of
course, this function is not well-defined until one fixes the encoding scheme
to be used for determining input length and the computer or computer
model to be used for determining execution time. However, as we shall
see, the particular choices made for these will have little effect on the broad
distinctions made in the theory of NP-completeness. Hence, in what fol-
lows, the reader is advised merely to fix in mind a particular encoding
scheme for each problem and a particular computer or computer model, and
to think in terms of time complexity as determined from the corresponding
input lengths and execution times.

1.3 Polynomial Time Algorithms and Intractable Problems

Different algorithms possess a wide variety of different time complexity
functions, and the characterization of which of these are “efficient enough”’
and which are *‘too inefficient” will always depend on the situation at hand.
However, computer scientists recognize a simple distinction that offers con-
siderable insight into these matters. This is the distinction between polyno-
mial time algorithms and exponential time algorithms.

Let us say that a function f(n) is O(g(n)) whenever there exisis a
constant ¢ such that | £(n)| < ¢-|g(n)]| for all values of n=0. A polynomi-
al time algorithm is defined lo be one whose time complexity function is
0(p(n)) for some polynomial function p, where n is used to denote the in-
put length. Any algorithm whose time complexity function cannot be so
bounded is called an exponential time algorithm (although it should be noted
that this definition includes certain non-polynomial time complexity func-
tions, like n'°"_ which are not normally regarded as exponential functions).

The distinction between these two types of algorithms has particular
significance when considering the solution of large problem instances. Fig-
ure 1.2 illustrates the differences in growth rates among several typical com-
plexity functions of each type, where the functions express execution time
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Figure 1.3 Effect of improved technology on several polynomial and exponential
time algorithms.

nomial time algorithms with “‘good’’ algorithms and conjeclureg that fertam
integer programming problems might not be solvable .by such .good algo-
rithms. This reflects the viewpoint that exponential time algorllljms should
not be considered “‘good” algorithms, and indeed lhis'usually is the case.
Most exponential time algorithms are merely variations on exhaus!we
search, whereas polynomial time algorithms generally are made possible
only through the gain of some deeper insight into the strucllf‘re of a prob::
lem. There is wide agreement that a problem has not been ‘‘well-solved
until a polynomial time algorithm is known for it. Hence', we_-sha!l reﬁ_zr to
a problem as intractable if it is so hard that no polynomial time algorithm
can possibly solve it. _

Of course, this formal use of “intractable’ should be \_ncw.ed only as a
rough approximation to its dictionary meaning. Tl_m (}jsllnclton t_:elw_een
“efficient” polynomial time algorithms and “‘inefficient e:'xponennal time
algorithms admits of many exceptions when the problcr_n msllanccs of in-
terest have limited size. Even in Figure 1.2, the 27 algorithm is faster than
the n’ algorithm for n < 20. More extreme examples can be constructed

sily. .
i 5li;urtht:rmem, there are some exponential time algorllh_ms that have
been quite useful in practice. Time complexity as dcﬁm_:d lsla worst-case
measure, and the fact that an algorithm has time complexity 2’ means only
that at least one problem instance of size n rcquirf:s that much time. M_ost
problem instances might actually require far less time than that, a situation
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that appears to hold for several well-known algorithms. The simplex algo-
rithm for linear programming has been shown to have exponential time
complexity [Klee and Minty, 1972], [Zadeh, 1973], but it has an impressive
record of running quickly in practice. Likewise, branch-and-bound algo-
rithms for the knapsack problem have been so successful that many consid-
er it to be a “‘well-solved” problem, even though these algorithms, too,
have exponential time complexity.

Unfortunately, examples like these are quite rare. Although exponen-
tial time algorithms are known for many problems, few of them are regard-
ed as being very useful in practice. Even the successful exponential time al-
gorithms mentioned above have not stopped researchers from continuing to
search for polynomial time algorithms for solving those problems. In fact,
the very success of these algorithms has led to the suspicion that they
somehow capture a crucial property of the problems whose refinement could
lead to still better methods. So far, little progress has been made toward
explaining this success, and no methods are known for predicting in ad-
vance that a given exponential time algorithm will run quickly in practice.

On the other hand, the much more stringent bounds on execution time
satisfied by polynomial time algorithms often permit such predictions to be
made. Even though an algorithm having time complexity n'% or 10942
might not be considered likely to run quickly in practice, the polynomially
solvable problems that arise naturally tend to be solvable within polynomial
time bounds that have degree 2 or 3 at worst and that do not involve ex-
tremely large coefficients. Algorithms satisfying such bounds can be con-
sidered to be “provably efficient,’” and it is this much-desired property that
makes polynomial time algorithms the preferred way (o solve problems.

Our definition of “‘intractable’” also provides a theoretical framework of
considerable generality and power. The intractability of a problem turns out
to be essentially independent of the particular encoding scheme and com-
puter model used for determining time complexity.

Let us first consider encoding schemes. Suppose for example that we
are dealing with a problem in which each instance is a graph G = (V,E),
where V is the set of vertices and F is the set of edges, each edge being an
unordered pair of vertices. Such an instance might be described (see Figure
1.4) by simply listing all the vertices and edges, or by listing the rows of the
adjacency matrix for the graph, or by listing for each vertex all the other
vertices sharing a common edge with it (a “neighbor™ list). Each of these
encodings can give a different input length for the same graph. However, it
is casy to verify (see Figure 1.5) that the input lengths they determine
differ at most polynomially from one another, so that any algorithm having
polynomial time complexity under one of these encoding schemes also will
have polynomial time complexity under all the others. In fact, the standard
encoding schemes used in practice for any particular problem always seem
to differ at most polynomially from one another. It would be difficull to
imagine a ‘‘reasonable’” encoding scheme for a problem that differs more
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than polynomially from the standard ones. Although what we mean here by
“‘reasonable’” cannot be formalized, the following two conditions capture

much of the notion:

(1) the encoding of an instance I should be concise and not *‘pad-
ded” with unnecessary information or symbols, and

(2) numbers occurring in / should be represented in binary (or de-
cimal, or octal, or in any fixed base other than 1).

If we restrict ourselves to encoding schemes satisfying these condiliqns\
then the particular encoding scheme used should not affect the determina-
tion of whether a given problem is intractable.

Encoding Scheme String Length

Vertex list, Edge list vINvRIVEBIVd(vIv2D (VI2]VI3]) 36

Neighbor list viRDOIVIEBDVERDO) 24

Adjacency matrix rows | 0100/1010/0010/0000 19

Figure 1.4 Descriptions of the graph G = (V,E) where V = [V, V;, Vy, Vsl and
E = {[V,, V3] 1 V3, V3l], under three different encoding schemes.

Encoding Scheme Lower Bound Upper Bound

Vertex list, Edge list 4v + 10e 4y + 10e + (v+2e)-[logiov]

Neighbor list 2v + 8e 2v + 8¢ + 2¢-[logov]

Adjacency maltrix vidp —1 vitp =1

Figure 1.5 General bounds on input lengths for the three encoding _schcmes oIf
Figure 1.4 for graphs G = (V,E) with [V]|=v, |E|=e. Since e <v?,
these show that the input lengths differ at most polynomially from each
other. ([x] denotes the least integer not less than x.)

Similar comments can be made concerning the choice of computer
models. All the realistic models of computers studied so far, such as one-
tape Turing machines, multi-tape Turing machines, and random-access
machines (RAMSs), are equivalent with respect to polynomial time complex-
ity (for example, see Figure 1.6). One would expect any other “reaso_w
able”™ model to share in this equivalence. The notion of “‘reasonable’™ in-
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tended here is essentially that there is a polynomial bound on the amount of
work that can be done in a single unit of time. Thus, for example, a model
having the capability of performing arbitrarily many operations in parallel
would not be considered *‘reasonable,’ and indeed no existing (or planned)
computer has this capability. At any rate, so long as we restrict ourselves to
the standard models of realistic computers, the class of intractable problems
will be unaffected by the particular model used, and we can make our
choice on the basis of convenience without sacrificing the applicability of
our results.

Simulating machine A

Simulated machine B IT™M kTM RAM
1-Tape Turing Machine (1TM) — o(T(n) | O(T(mlog ()
k-Tape Turing Machine (kTM) O(T*(n)) - O(T{(mlogT(n))
Random Access Machine (RAM) | O(73(n)) | O(T%(n)) —

Figure 1.6 Time required by machine A to simulate the execution of an algorithm
of time complexity T(n) on Machine B (for example, see [Hopcroft
and Ullman, 1969] and [Aho, Hopcroft, and Ullman, 1974]).

1.4 Provably Intractable Problems

Now that we have discussed the formal meaning of “‘intractable prob-
lem,” it is appropriate that we briefly survey the current state of knowledge
about the existence of intractable problems.

It is useful to begin by distinguishing between two different causes of
intractability allowed by our definition. The first, which is the one we usu-
ally have in mind, is that the problem is so difficult that an exponential
amount of time is needed to discover a solution. The second is that the
solution jiself is required to be so extensive that it cannot be described with
an expression having length bounded by a polynomial function of the input
length.

This second cause occurs, for example, in the variant of the traveling
salesman problem that includes a number B as an additional parameter and
that asks for all tours having total length B or less. It is easy to construct
instances of this problem in which exponentially many tours are shorter
than the given bound, so that no polynomial time algorithm could possibly
list them all.

Intractability of this sort is by no means insignificant, and it is impor-
tant to recognize it when it occurs. However, in most cases its existence is
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apparent from the problem definition. In fact, this type of _int_raclabiiily can
be regarded as a signal that the problem is not defined realistically, because
we are asking for more information than we could ever hope to use. T_h}ls,
from now on we shall restrict our attention to the first type of intractability.
Accordingly, only problems for which the solution length is bounded by a
polynomial function of the input length will be considered. )

The earliest intractability results for such problems are the classical un-
decidability results of Alan Turing. Over 40 years ago, Turing demonstrated
that certain problems are so hard that they are “‘undecidable,” in the sense
that no algorithm at all can be given for solving them. He prt_)ved, for ex-
ample, that it is impossible to specify any algorithm which, given an ar‘bl-
trary computer program and an arbitrary input to that program, can dfemde
whether or not the program will eventually halt when applied to that mp_ul
[Turing, 1936]. A variety of other problems are now known Lo be unde(:fd-
able, including the triviality problem for finitely presented groups {Rab!n‘
1958], Hilbert’s tenth problem (solvability of polynomial equations In m‘:
tegers) [Matijasevic, 1970], and several problems of ‘‘tiling the plane
[Berger, 1966]. Since these undecidable problems cannot be solved _by any
algorithm, much less a polynomial time algorithm, they indeed are intract-
able in an especially strong sensc. _ _

The first examples of intractable “decidable’ problems were obtained
in the early 1960’s, as part of work on complexity “hierarchies” by_ H‘arl-
manis and Stearns [1965]. However, these results involved only *‘artificial™
problems, specifically constructed to have the appropriate properliles It was
not until the early 1970’s that Meyer and Stockmeyer (1972], Fischer and
Rabin [1974], and others finally succeeded in proving some “nalural_“ de-
cidable problems to be intractable. These include a variety of previously
studied problems from automata theory, formal language theory, and
mathematical logic. In fact, the proofs show that these problems cannot be
solved in polynomial time using even a “nondeterministic’> computer
model, which has the ability to pursue an unbounded number of indepen-
dent computational sequences in parallel. We shall see that this ‘‘unreason-
able” computer model plays an important role in the theory of NP-
completeness, and its capabilities will be specified more fully in Chapter 2z,

All the provably intractable problems known Lo date fall into the two
categories we have just mentioned. They are either undecidable_ or ‘‘non-
deterministically’’ intractable. However, most of the apparently mt_raclable
problems encountered in practice are decidable and can be solved In poly-
nomial time with the aid of a nondeterministic computer. Thus, none of
the proofl techniques developed so far is powerful enough to verify the ap-
parent intractability of these problems.
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1.5 NP-Complete Problems

As theoreticians continue to seek more powerful methods for proving
problems intractable, parallel efforts focus on learning more about the ways
in which various problems are interrelated with respect to their difficulty.
As we suggested earlier, the discovery of such relationships between prob-
lems often can provide information useful to algorithm designers.

The principal technique used for demonstrating that two problems are
related is that of “‘reducing” one to the other, by giving a constructive
transformation that maps any instance of the first problem into an
equivalent instance of the second. Such a transformation provides the
means for converting any algorithm that solves the second problem into a
corresponding algorithm for solving the first problem.

Many simple examples of such reductions have been known for some
time. For example, Dantzig [1960] reduced a number of combinatorial op-
timization problems to the general zero-one integer linear programming
problem. Edmonds [1962] reduced the graph theoretic problems of ‘“‘cover-
ing all edges with a minimum number of vertices™ and ‘‘finding a max-
imum independent set of vertices” to the general *‘set covering problem.”
Gimpel [1965] reduced the general set covering problem 1o the “‘prime im-
plicant covering problem’ of logic design. Dantzig, Blattner, and Rao
[1966] described a “‘well-known™ reduction from the traveling salesman
problem to the “‘shortest path problem” with negative edge lengths allowed.

These early reductions, although rather isolated and limited in scope,
foreshadow the kind of results proved in the theory of NP-completeness.

The foundations for the theory of NP-completeness were laid in a paper
of Stephen Cook, presented in 1971, entitled *‘The Complexity of Theorem
Proving Procedures” [Cook, 1971al. In this briel but elegant paper Cook
did several important things.

First, he emphasized the significance of *‘polynomial time reducibility,”
that is, reductions for which the required transformation can be executed by
a polynomial time algorithm. If we have a polynomial time reduction from
one problem to another, this ensures that any polynomial time algorithm for
the second problem can be converted into a corresponding polynomial time
algorithm for the first problem.

Second, he focused attention on the class NP of decision problems that
can be solved in polynomial time by a nondeterministic computer. (A deci-
sion problem is one whose solution is either “yes’* or “‘no™.) Most of the
apparently intractable problems encountered in practice, when phrased as
decision problems, belong to this class.

Third, he proved that one particular problem in NP, called the
“satisfiability”” problem, has the property that every other problem in NP
can be polynomially reduced to it. If the satisfiability problem can be solved
with a polynomial time algorithm, then so can every problem in NP, and if
any problem in NP is intractable, then the satisfiability problem also must
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be intractable. Thus, in a sense, the satisfiability problem is the “hardest”’
problem in NP.

Finally, Cook suggested that other problems in NP might share with
the satisfiability problem this property of being the “‘hardest’” member of
NP. He showed this to be the case for the problem “‘Does a given graph G
contain a complete subgraph on a given number k of vertices?”’

Subsequently, Richard Karp presented a collection of results [Karp,
1972] proving that indeed the decision problem versions of many well
known combinatorial problems, including the traveling salesman problem,
are just as ‘*hard’” as the satisfiability problem. Since then a wide variety of
other problems have been proved equivalent in difficulty to these problems,
and this equivalence class, consisting of the **hardest” problems in NP, has
been given a name: the class of NP-complete problems.

Cook’s original ideas have turned out to be remarkably powerful. They
have provided the means for combining many individual complexity ques-
tions into the single question: Are the NP-complete problems intractable?
The lists included in the Appendix of this book contain literally hundreds of
different problems now known to be NP-complete. As more and more
problems of independent interest arc shown to belong o this equivalence
class, its importance is continually reinforced.

The question of whether or not the NP-complete problems are intract-
able is now considered to be one of the foremost open questions of contem-
porary mathematics and computer science. Despite the willingness of most
researchers to conjecture that the NP-complete problems are all intractable,
little progress has yet been made toward establishing either a proof or a dis-
proof of this far-reaching conjecture. However, even without a proof that
NP-completeness implies intractability, the knowledge that a problem is
NP-complete suggests, al the very least, that a major breakthrough will be
needed to solve it with a polynomial time algorithm.




