Abduction in Classification Tasks AI*IA 2003

M. Atzori, P. Mancarella, F. Turini {atzori,paolo,turini}@di.unipi.it

> Dipartimento di Informatica Università di Pisa, Italy

In *Data Mining* we want to get more information from raw data:

In *Data Mining* we want to get more information from raw data:

• generalizing data

In *Data Mining* we want to get more information from raw data:

- generalizing data
- using aggregated data

In *Data Mining* we want to get more information from raw data:

- generalizing data
- using aggregated data

The framework we are going to present is a *postprocessing* step useful to:

In *Data Mining* we want to get more information from raw data:

- generalizing data
- using aggregated data

The framework we are going to present is a *postprocessing* step useful to:

• obtain new information from aggregated data

In *Data Mining* we want to get more information from raw data:

- generalizing data
- using aggregated data

The framework we are going to present is a *postprocessing* step useful to:

- obtain new information from aggregated data
- query aggregated data

In *Data Mining* we want to get more information from raw data:

- generalizing data
- using aggregated data

The framework we are going to present is a *postprocessing* step useful to:

- obtain new information from aggregated data
- query aggregated data
- explain aggregated data

• Abduction in Logic Programming

- Abduction in Logic Programming
- Abductive Interpretation of Decision Trees

- Abduction in Logic Programming
- Abductive Interpretation of Decision Trees
 - Definition

- Abduction in Logic Programming
- Abductive Interpretation of Decision Trees
 - Definition
 - Examples of Applications

- Abduction in Logic Programming
- Abductive Interpretation of Decision Trees
 - Definition
 - Examples of Applications
 - Theoretical Results

- Abduction in Logic Programming
- Abductive Interpretation of Decision Trees
 - Definition
 - Examples of Applications
 - Theoretical Results
- Implementation

- Abduction in Logic Programming
- Abductive Interpretation of Decision Trees
 - Definition
 - Examples of Applications
 - Theoretical Results
- Implementation
- Conclusions

Abduction is a form of synthetic reasoning which infers the case from a rule and a result, i.e.

$$\frac{B, A \Rightarrow B}{A}$$

Abduction is a form of synthetic reasoning which infers the case from a rule and a result, i.e.

$$\frac{B, A \Rightarrow B}{A}$$

In Logic Programming:

Let $\langle P, A, Ic \rangle$ be an abductive framework and let G be a goal. Then an *abductive explanation* for G is a set $\Delta \subseteq A$ of ground abducible atoms such that:

Abduction is a form of synthetic reasoning which infers the case from a rule and a result, i.e.

$$\frac{B, A \Rightarrow B}{A}$$

In Logic Programming:

Let $\langle P, A, Ic \rangle$ be an abductive framework and let G be a goal. Then an *abductive explanation* for G is a set $\Delta \subseteq A$ of ground abducible atoms such that:

• $P \cup \Delta \models G$

Abduction is a form of synthetic reasoning which infers the case from a rule and a result, i.e.

$$\frac{B, A \Rightarrow B}{A}$$

In Logic Programming:

Let $\langle P, A, Ic \rangle$ be an abductive framework and let G be a goal. Then an *abductive explanation* for G is a set $\Delta \subseteq A$ of ground abducible atoms such that:

- $P \cup \Delta \models G$
- $P \cup \Delta \cup Ic$ is consistent.

- Knowledge Base
- Observations
- Integrity Constraints

- Knowledge Base
 - Set of rules corresponding to all tree paths
- Observations
- Integrity Constraints

- Knowledge Base
 - Set of rules corresponding to all tree paths
- Observations
 - One of the leaves
- Integrity Constraints

- Knowledge Base
 - Set of rules corresponding to all tree paths
- Observations
 - One of the leaves
- Integrity Constraints
 - Extra information about the domain

- Knowledge Base
 - Set of rules corresponding to all tree paths
- Observations
 - One of the leaves
- Integrity Constraints
 - Extra information about the domain

We obtain a framework able to answer *abductive queries* starting from the induced data

The Process

Induced Tree

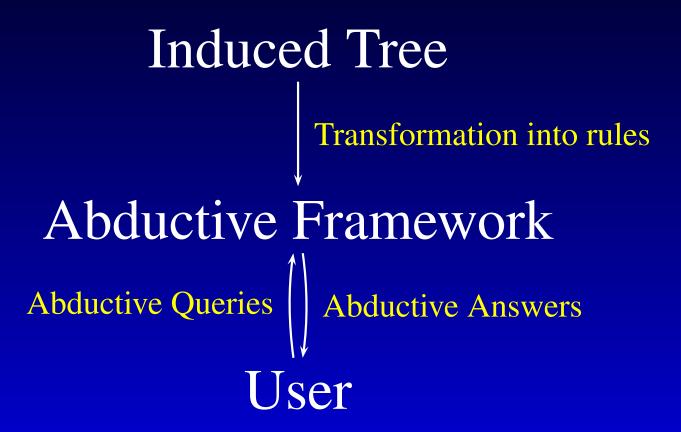
The Process

Induced Tree

Transformation into rules

Abductive Framework

The Process



Abductive Logic Programming frameworks can be profitably used in order to query induced decision trees (*representing generalized data*) in an abductive way, obtaining for example:

Abductive Logic Programming frameworks can be profitably used in order to query induced decision trees (*representing generalized data*) in an abductive way, obtaining for example:

• better classification (by adding domain specific knowledge as integrity constraints)

Abductive Logic Programming frameworks can be profitably used in order to query induced decision trees (*representing generalized data*) in an abductive way, obtaining for example:

- better classification (by adding domain specific knowledge as integrity constraints)
- the reason why an instance belongs to a particular class (by adding knowledge about the instance and then a simple abductive query)

Abductive Logic Programming frameworks can be profitably used in order to query induced decision trees (*representing generalized data*) in an abductive way, obtaining for example:

- better classification (by adding domain specific knowledge as integrity constraints)
- the reason why an instance belongs to a particular class (by adding knowledge about the instance and then a simple abductive query)
- a set of attributes whose values should be changed in order to obtain a different class (by finding differences between two similar results of different goals)

An Example: Training Set

Outlook	Temperature	Humidity	Wind	Class
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Low	Weak	Yes
Rainy	Cool	Low	Strong	No
Overcast	Cool	Low	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Low	Weak	Yes
Rainy	Mild	Low	Weak	Yes
Sunny	Mild	Low	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Low	Weak	Yes
Rainy	Mild	High	Strong	No

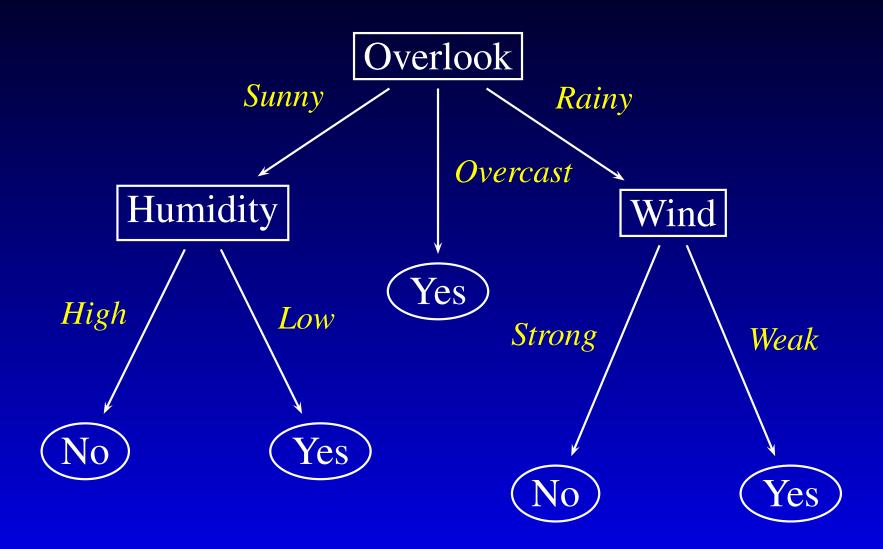
An Example: Training Set

Outlook	Temperature	Humidity	Wind	Class
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Low	Weak	Yes
Rainy	Cool	Low	Strong	No
Overcast	Cool	Low	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Low	Weak	Yes
Rainy	Mild	Low	Weak	Yes
Sunny	Mild	Low	StrongClassif	ication Yasks AI*IA 200

An Example: Training Set

Outlook	Temperature	Humidity	Wind	Class
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rainy	Mild	High	Weak	Yes
Rainy	Cool	Low	Weak	Yes
Rainy	Cool	Low	Strong	No
Overcast	Cool	Low	Strong	Yes
Sunny	Mild	High Ab	duction in Wasifauka Tasks	AI*IA 2008 Q.8

An Example: Tree



An Example: Extra Knowledge

Let's imagine that whenever there is strong wind the humidity is not high:

 $Ic = \neg(Humidity(High), Wind(Strong))$

An Example: Extra Knowledge

Let's imagine that whenever there is strong wind the humidity is not high:

 $Ic = \neg(Humidity(High), Wind(Strong))$

Possible reasons:

An Example: Extra Knowledge

Let's imagine that whenever there is strong wind the humidity is not high:

 $Ic = \neg(Humidity(High), Wind(Strong))$

Possible reasons:

• we are interested only in that kind of days

An Example: Extra Knowledge

Let's imagine that whenever there is strong wind the humidity is not high:

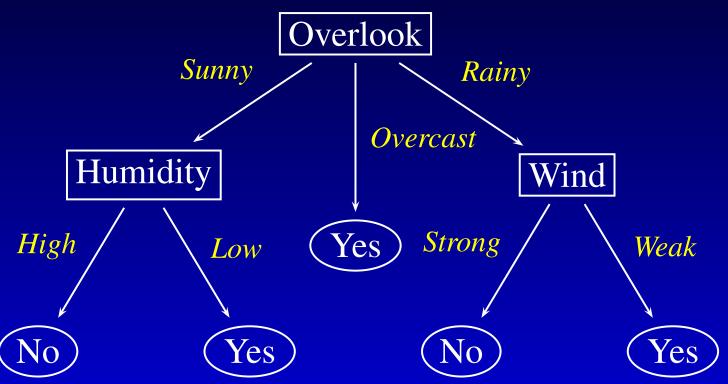
 $Ic = \neg(Humidity(High), Wind(Strong))$

Possible reasons:

- we are interested only in that kind of days
- our extra knowledge arises from knowledge sources different from the ones which provide the training set

We want to classify the instance $e = \{Overlook(Sunny), Wind(Strong)\}.$

We want to classify the instance $e = \{Overlook(Sunny), Wind(Strong)\}.$



We want to classify the instance $e = \{Overlook(Sunny), Wind(Strong)\}.$

We want to classify the instance $e = \{Overlook(Sunny), Wind(Strong)\}.$

In the corresponding abductive framework:

• $\Delta_e = \{Overlook(Sunny), Wind(Strong)\}$

We want to classify the instance $e = \{Overlook(Sunny), Wind(Strong)\}.$

- $\Delta_e = \{Overlook(Sunny), Wind(Strong)\}$
- $Ic = \neg(Humidity(High), Wind(Strong))$

We want to classify the instance $e = \{Overlook(Sunny), Wind(Strong)\}.$

- $\Delta_e = \{Overlook(Sunny), Wind(Strong)\}$
- $Ic = \neg(Humidity(High), Wind(Strong))$
- $\Delta_1 = \{Humidity(Low)\}$ for Yes

We want to classify the instance $e = \{Overlook(Sunny), Wind(Strong)\}.$

- $\Delta_e = \{Overlook(Sunny), Wind(Strong)\}$
- $Ic = \neg(Humidity(High), Wind(Strong))$
- $\Delta_1 = \{Humidity(Low)\}$ for Yes
- $\Delta_2 = \{Humidity(High)\}$ for No

We want to classify the instance $e = \{Overlook(Sunny), Wind(Strong)\}.$

In the corresponding abductive framework:

- $\Delta_e = \{Overlook(Sunny), Wind(Strong)\}$
- $Ic = \neg(Humidity(High), Wind(Strong))$
- $\Delta_1 = \{Humidity(Low)\}$ for Yes
- $\Delta_2 = \{Humidity(High)\}$ for No

 $\Delta_e \cup \Delta_2 =$

 $\{Overlook(Sunny), Wind(Strong), Humidity(High)\}\$ is inconsistent $\Rightarrow \Delta_2$ is ruled out.

We have an instance (even with missing attribute values) E with class C, and AB_T (the abductive framework obtained from the tree T)

We have an instance (even with missing attribute values) E with class C, and AB_T (the abductive framework obtained from the tree T)

• Soundness

• Completeness

We have an instance (even with missing attribute values) E with class C, and AB_T (the abductive framework obtained from the tree T)

- Soundness
 - If Δ is a minimal solution for AB_T then using T with $E \cup \Delta$ we reach a leaf C
- Completeness

We have an instance (even with missing attribute values) E with class C, and AB_T (the abductive framework obtained from the tree T)

- Soundness
 - If Δ is a minimal solution for AB_T then using T with $E \cup \Delta$ we reach a leaf C
- Completeness
 - If given Δ we can reach a leaf C in the tree then Δ is a minimal solution for AB_T

We have an instance (even with missing attribute values) E with class C, and AB_T (the abductive framework obtained from the tree T)

- Soundness
 - If Δ is a minimal solution for AB_T then using T with $E \cup \Delta$ we reach a leaf C
- Completeness
 - If given Δ we can reach a leaf C in the tree then Δ is a minimal solution for AB_T

 \Rightarrow The abductive framework is at least as powerful as decision trees

Implementation

We are testing the *Abduction framework* on decision trees obtained from *web log datasets*.

The abductive framework is automatically generated from the decision trees by a parser written in *Java*.

The abductive answers are obtained using *ACLP* (University of Cyprus) within the *Eclipse* Prolog.

http://www.di.unipi.it/~atzori/DTAbduction

Conclusions

- Abductive reasoning can be useful in the context of Classification, as a postprocessing step, for:
 - Improving effectiveness, when we deal with incomplete data and with external domain knowledge
 - Explaining results in order to get the reason of a classification
 - Answer abductive queries finding out how attribute values should be changed in order to get a different classification

Future Works

- We still need to insert abductive interpretation of decision trees into a *probabilistic* abductive framework, in order to get, for example, *support* and *confidence* of abductive answers
- Join together different data mining paradigms:
 - *Classification*, as already showed
 - *Association Rules*, as a way to automatically generate constraints from the training set
 - *Clustering*, finding similarities between rules and then, through abduction, showing the differences between rules in the same cluster