
Motivation
Our Results/Contribution

Summary

Computing Frequent k -Itemsets Directly in
Sparse Datasets

M. Atzori1,2 P. Mancarella1 F. Turini1

1Department of Computer Science
University of Pisa

2Information Science and Technology Institute
CNR, Pisa

Speaker: Maurizio Atzori
atzori@di.unipi.it

Fourth International Workshop on Knowledge Discovery
in Inductive Databases (KDID) 2005

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

Motivation
Our Results/Contribution

Summary

Outline

1 Motivation
The Problem of Mining Frequent Itemset
Some Known Solutions to Reduce Memory Requirements

2 Our Results/Contribution
The Basic Idea of Our Proposal
Results

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

Motivation
Our Results/Contribution

Summary

The Problem of Mining Frequent Itemset
Some Known Solutions to Reduce Memory Requirements

Frequent (k -)Itemset Mining is Useful
Notations

Frequent itemsets are used to compute
Association analysis
Rule based classification
Clustering

Equation (Not so difficult. . .)

Frequent itemsets = frequent k -large itemsets for every k

We will focus on σ-frequent k -itemset mining
(from a dataset D over the set of items I)

k -itemset – itemset of size k
σ-frequent – the itemset appears in at least σ% of D

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

Motivation
Our Results/Contribution

Summary

The Problem of Mining Frequent Itemset
Some Known Solutions to Reduce Memory Requirements

Frequent Itemset Mining is Memory Consuming
There is a trade-off memory usage and number of passes

(Very Usual) Assumptions

1 I can fit into main memory, I × I can’t.
2 D can’t, neither.

Using levelwise approaches
O(k) passes through the dataset (Good)
Candidate itemsets of level k can be

(|I|
k

)
∈ O(|I|k) (Bad!)

Using depth-first approaches
few (constant) passes through the dataset (Very Good)
data structures require O(|D|) space (Extremely bad!)

The output size and the memory requirements grow fast by
decreasing σ

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

Motivation
Our Results/Contribution

Summary

The Problem of Mining Frequent Itemset
Some Known Solutions to Reduce Memory Requirements

Possible Solutions to Fit into Memory

Hashing itemset counts (in a levelwise approach)
compute actual counts using an hashtable smaller than the
set of candidates, and then prune according to the counts
no guarantee to work, expecially if many candidates occur
in the dataset

Partitioning (in both approaches)
we can have a huge number of (hopefully small) sets of
candidates
if the small sets are not very similar (i.e., if the dataset is
not very uniform) it doesn’t work

A very simple one, effective (levelwise approach)
generate candidate itemsets of level k
compute the count of such candidates in several passes, by
fitting into memory only a small subset each time

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

Motivation
Our Results/Contribution

Summary

The Basic Idea of Our Proposal
Results

From Frequent Itemsets to Iceberg Queries.

Basic Idea: D can be transformed into a stream of k -itemsets

Example

D = {{a, b, d}, {a, c, e}, {a, d , f}, {b, c}, {b, d , e}, {c, d , f}}

s1 = 〈{a, b}, {a, d}, {b, d}〉
s2 = 〈{a, c}, {a, e}, {c, e}〉
s3 = 〈{a, d}, {a, f}, {d , f}〉
s4 = 〈{b, c}〉
s5 = 〈{b, d}, {b, e}, {d , e}〉
s6 = 〈{c, d}, {c, f}, {d , f}〉

sD = s1 :: s2 :: s3 :: s4 :: s5 :: s6

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

Motivation
Our Results/Contribution

Summary

The Basic Idea of Our Proposal
Results

Memory and Number of Passes Required.

We developed an algorithm for frequent k -itemset mining
by exploiting an existing Iceberg Queries Algorithm

Space complexity O
(

(mD
k)
σ

)
it does not depend on |D| (Good!)
it does not depend on |I| (Good!)
it depends on mD, the longest transaction in D
(Good, if D is sparse enough)

Only 2 passes through the dataset
(3, if we don’t know mD in advance)

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

Motivation
Our Results/Contribution

Summary

The Basic Idea of Our Proposal
Results

Experiments.

By replicating (with slight changes in each transaction)
RETAIL we obtained a dataset with 12 millions of
transactions and 16470 different items.

We truncated such D at 1, 2, 3, . . . millions of transactions
and computed frequent 2-itemset (σ = 0.01 = 1%):

Relim computed frequent itemset up to 3 millions, then
crashed
Apriori , FP-Growth and Eclat worked up to 4 millions
Crashes were due to insufficient memory
(512Mb Ram used)
Our algorithm used a constant amount of memory and
scaled up linearly (in time)
Our algorithm never crashed

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

Motivation
Our Results/Contribution

Summary

Summary

Frequent (k -)itemset mining can be very memory
consuming, unless performing several passes through the
dataset.

For sparse datasets, the algorithm we developed is
extremely memory saving for computing frequent
k -itemsets;

Memory requirement depends only on σ and k , and the
number of passes is constant (2 or 3).

Future Work
Optimized implementation.
a hybrid version with a second level-wise step.

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

Appendix For Further Reading

For Further Reading

B. Goethals.
Memory Issues In Frequent Itemset Mining.
Proceedings of the 2004 ACM Symposium on Applied
Computing (SAC), Nicosia, Cyprus, March 14-17, 2004

G. Grahne and J. Zhu.
Mining Frequent Itemsets from Secondary Memory.
Proceedings of the 4th IEEE International Conference on
Data Mining (ICDM 2004), 1-4 November 2004, Brighton,
UK

M. Atzori, P. Mancarella, F. Turini Computing Frequent k -Itemsets Directly in Sparse Datasets

	Motivation
	The Problem of Mining Frequent Itemset
	Some Known Solutions to Reduce Memory Requirements

	Our Results/Contribution
	The Basic Idea of Our Proposal
	Results

	Summary
	Appendix
	For Further Reading

