k-Anonymous Patterns

M. Atzori^{1,2} F. Bonchi² F. Giannotti² D. Pedreschi¹

¹Department of Computer Science University of P*i*sa

²Information Science and Technology Institute CNR, Pisa

Speaker: Maurizio Atzori

9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), 2005

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のQ@

Outline

Motivation

- Data Mining and Privacy of Individuals
- An Example of the Problem Addressed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Motivation

- Data Mining and Privacy of Individuals
- An Example of the Problem Addressed
- k-Anonymous Patterns
 - Definitions and Properties
 - First Results on Inference Channels

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ■ ■ ● ● ●

Outline

Motivation

- Data Mining and Privacy of Individuals
- An Example of the Problem Addressed
- 2 k-Anonymous Patterns
 - Definitions and Properties
 - First Results on Inference Channels
- Condensed Representation
 - Definitions and Properties
 - Benefits of the Condensed Representation

< 同 ▶

Data Mining and Privacy of Individuals An Example of the Problem Addressed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

A Taxonomy of Privacy Preserving Data Mining

Intesional Knowledge Hiding

- Bertino's approach, based on DB Sanitization
- Extensional Knowledge Hiding
 - Agrawal's approach, based on DB Randomization
 - Sweeney's approach, based on DB Anonymization
- Distributed Extensional Knowledge Hiding
 - Clifton's approach based on Secure Multiparty Computation
- Secure Intesional Knowledge Sharing
 - Clifton's Public/Private/Unknown Attribute Framework
 - Zaïane's Association Rule Sanitization (but also IKH)
 - k-Anonymous Patterns Our approach

Data Mining and Privacy of Individuals An Example of the Problem Addressed

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のQ@

The Purpose

- We want to publish datamining results (like Secure Intesional Knowledge Sharing)
- We DON'T want to release information related to few people, that can help to trace single individuals
- We don't want to specify any other information

Data Mining and Privacy of Individuals An Example of the Problem Addressed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

A Motivating Example in the Medical Domain

Example

 Suppose Dr. Gregory House conduces both usual hospital activities and research

Data Mining and Privacy of Individuals An Example of the Problem Addressed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

A Motivating Example in the Medical Domain

Example

- Suppose Dr. Gregory House conduces both usual hospital activities and research
- He has a big database with all sensitive information about his patients

Data Mining and Privacy of Individuals An Example of the Problem Addressed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

A Motivating Example in the Medical Domain

Example

- Suppose Dr. Gregory House conduces both usual hospital activities and research
- He has a big database with all sensitive information about his patients
- Playing with Data Mining, he discovered interesting trends about patologies in his patient data

Data Mining and Privacy of Individuals An Example of the Problem Addressed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

A Motivating Example in the Medical Domain

Example

- Suppose Dr. Gregory House conduces both usual hospital activities and research
- He has a big database with all sensitive information about his patients
- Playing with Data Mining, he discovered interesting trends about patologies in his patient data

Question

Can Dr. House publish his discoveries to third persons without offending the privacy of his patients?

Data Mining and Privacy of Individuals An Example of the Problem Addressed

A Motivating Example in the Medical Domain

M. Atzori, F. Bonchi, F. Giannotti, D. Pedreschi k-Anonymous Patterns

Data Mining and Privacy of Individuals An Example of the Problem Addressed

▲冊▶▲■▶▲■▶ ■目 のQ@

A Motivating Example in the Medical Domain

Does this set of itemsets violate the anonymity of individuals in DB?

Data Mining and Privacy of Individuals An Example of the Problem Addressed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An Association Rule Can Be Used to Break Anonymity

Example

 $a_1 \wedge a_2 \wedge a_3 \Rightarrow a_4$ [sup = 80, conf = 98.7%]

M. Atzori, F. Bonchi, F. Giannotti, D. Pedreschi k-Anonymous Patterns

Data Mining and Privacy of Individuals An Example of the Problem Addressed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An Association Rule Can Be Used to Break Anonymity

Example

$$a_1 \wedge a_2 \wedge a_3 \Rightarrow a_4$$
 [sup = 80, conf = 98.7%]

$$sup(\{a_1, a_2, a_3\}) = \frac{sup(\{a_1, a_2, a_3, a_4\})}{conf} \approx \frac{80}{0.987} = 81.05$$

Data Mining and Privacy of Individuals An Example of the Problem Addressed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An Association Rule Can Be Used to Break Anonymity

Example

lr w

$$a_1 \wedge a_2 \wedge a_3 \Rightarrow a_4$$
 [sup = 80, conf = 98.7%]

$$sup(\{a_1, a_2, a_3\}) = \frac{sup(\{a_1, a_2, a_3, a_4\})}{conf} \approx \frac{80}{0.987} = 81.05$$

in other words, we know that there is just one individual for which the pattern $a_1 \land a_2 \land a_3 \land \neg a_4$ holds.

Data Mining and Privacy of Individuals An Example of the Problem Addressed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Now we know that...

Fact

 Even if we mine with a high support value, we can infer patterns holding in the original database which are not intentionally released

Data Mining and Privacy of Individuals An Example of the Problem Addressed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Now we know that...

Fact

- Even if we mine with a high support value, we can infer patterns holding in the original database which are not intentionally released
- They can regards very few individuals

Data Mining and Privacy of Individuals An Example of the Problem Addressed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Now we know that...

Fact

- Even if we mine with a high support value, we can infer patterns holding in the original database which are not intentionally released
- They can regards very few individuals
- The support value of such patterns can be inferred without accessing the database

Definitions and Properties First Results on Inference Channels

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

What do you mean with "k-Anonymous Pattern"?

Definition (Anonymous Pattern)

Given a database \mathcal{D} and an anonymity threshold k, a pattern p is said to be *k*-anonymous if $sup_{\mathcal{D}}(p) \ge k$ or $sup_{\mathcal{D}}(p) = 0$.

Definition (Inference Channel)

An Inference Channel is any set of itemsets from which it is possible to infer that a pattern *p* is not *k*-anonymous.

We are interested in inference channels that are made of frequent itemsets.

Definitions and Properties First Results on Inference Channels

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

т1	a	b	С	d	е	f	g	h	
т2	a	b	С	d	е		g		
тЗ	а	b	С	d	е				$\mathbf{p} = \mathbf{a} \wedge \mathbf{b} \wedge -\mathbf{c} \wedge -\mathbf{d} \wedge -\mathbf{e}$
т4	a	b	С	d	е	f	g		
т5	a	b	С	d	е				x 1
т6	a	b	С	d	е				1 = ab
т7	a	b		d	е				J = abcde
т8	a				е	f	g		
т9			С	d	е	f	g		
т10			С	d	е				
T11			С	d	е	f	g	h	
т12	a	b				f	g		

Definitions and Properties First Results on Inference Channels

・ロト・(型ト・(ヨト・(型ト・(ロト)))

Example

т1	a	b	С	d	е	f	g	h	
т2	a	b	С	d	е		g		
тЗ	a	b	С	d	е				$\mathbf{p} = \mathbf{a} \wedge \mathbf{b} \wedge -\mathbf{c} \wedge -\mathbf{d} \wedge -\mathbf{e}$
т4	a	b	С	d	е	f	g		
т5	a	b	С	d	е				
т6	a	b	С	d	е				I = ab
т7	a	b		d	е				J = abcde
т8	a				е	f	g		
т9			С	d	е	f	g		
т10			С	d	е				
T11			С	d	е	f	g	h	
T12	a	b				f	g		

Definitions and Properties First Results on Inference Channels

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Reducing the Number of Patterns to Check

Theorem

 $\forall p \in \mathcal{P}at(\mathcal{I}) : 0 < sup_{\mathcal{D}}(p) < k \ . \ \exists \ I \subseteq J \in 2^{\mathcal{I}} : \mathcal{C}_{I}^{J}.$

- Translation: we can prune the search space by looking for Inference Channels regarding only conjunctive patterns.
- This property makes possible to have a (Naïve) Inference Channel Detector Algorithm

Definitions and Properties Benefits of the Condensed Representation

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回目 のQ@

What do you mean with "Condensed Representation"?

Definition (Partial Order on Inference Channels)

 $\mathcal{C}_I^J \preceq \mathcal{C}_H^L$ when $I \subseteq H$ and $(J \setminus I) \subseteq (L \setminus H)$

M. Atzori, F. Bonchi, F. Giannotti, D. Pedreschi k-Anonymous Patterns

Definitions and Properties Benefits of the Condensed Representation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What do you mean with "Condensed Representation"?

Definition (Partial Order on Inference Channels)

 $\mathcal{C}_I^J \preceq \mathcal{C}_H^L$ when $I \subseteq H$ and $(J \setminus I) \subseteq (L \setminus H)$

Example

$$\mathcal{C}_{a}^{ac} \preceq \mathcal{C}_{ab}^{abcd}$$

Intuitively, $a \land \neg c$ is less specific than $a \land b \land \neg c \land \neg d$, since the transactions s.t. $a \land \neg c$ are a superset of the transactions s.t. $a \land b \land \neg c \land \neg d$

Definitions and Properties

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What do you mean with "Condensed Representation"?

Definition (Partial Order on Inference Channels)

 $\mathcal{C}_{I}^{J} \preceq \mathcal{C}_{H}^{L}$ when $I \subseteq H$ and $(J \setminus I) \subseteq (L \setminus H)$

Example

$$\mathcal{C}_{a}^{ac} \preceq \mathcal{C}_{ab}^{abcd}$$

Intuitively, $a \wedge \neg c$ is less specific than $a \wedge b \wedge \neg c \wedge \neg d$, since the transactions s.t. $a \land \neg c$ are a superset of the transactions s.t. $a \wedge b \wedge \neg c \wedge \neg d$

Definition (Maximal Inference Channel)

 \mathcal{C}_{I}^{J} is maximal w.r.t. \mathcal{D} and σ , if $\forall \mathcal{C}_{H}^{L} \succeq \mathcal{C}_{I}^{J}$ then $sup(\mathcal{C}_{H}^{L}) = f_{H}^{L} = 0$

Definitions and Properties Benefits of the Condensed Representation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Theoretical Results on Condensed Representation

Theorem (Form of Maximal Inference Channel)

An Inference Channel C_{I}^{J} is maximal iff

- I is closed and
- I is maximal

Theorem (Lossless Representation)

Every Inference Channel can be computed from the set of Maximal Inference Channels

Definitions and Properties Benefits of the Condensed Representation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○

Condensed Representation of Inference Channels

Smaller search space

- Memory saving (the number of non-maximal channels can be huge)
- Faster running times
- Less distortion if we try to sanitize the set of frequent itemset (but this point is not discussed in the paper)

Benefits of the Condensed Representation

Condensed Representation of Inference Channels

k-Anonymous Patterns

ELE OQO

Benefits of the Condensed Representation

Improvements Over the Time Performance

M. Atzori, F. Bonchi, F. Giannotti, D. Pedreschi

k-Anonymous Patterns

= = 900

Definitions and Properties Benefits of the Condensed Representation

Number of Inference Channels

= = 900

Summary

- We defined *k*-anonymous patterns and provide a general characterization of inference channels holding among patterns that may threat anonymity of source data
- We developed an effective and efficient algorithm to detect such potential threats, which yields a methodology to check whether the mining results may be disclosed without any risk of violating anonymity

◇ □ > ◇ □ > ◇ □ > ↓ □ > ◇ ○ ○

For Further Reading

- M. Atzori, F. Bonchi, F. Giannotti, D. Pedreschi.
 Blocking Anonymity Threats Raised by Frequent Itemset Mining.
 Fifth IEEE International Conference on Data Mining
 - (ICDM), Houston, Texas, USA, 2005.
- L. Sweeney.

k-Anonymity: A Model for Protecting Privacy. International Journal on Uncertainty Fuzziness and Knowledge-based Systems, 10(5), 2002.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ◆○