

Hiding the Presence of Individuals from Shared Databases: δ-Presence

M. Ercan Nergiz *Maurizio Atzori*Chris Clifton

Outline

- Adversary Models
 - Existential Uncertainty Model
- δ-Presence
 - Checking for δ -Presence Property
 - Providing δ -Presence
- Future Work

Adversary Models

Original Dataset

Age	Sex	Address	Disease
17	М	W. Lafayette	Obesity
16	М	Lafayette	Obesity
23	F	Lafayette	Tetanus
25	F	Indianapolis	Flu

Adversary:
"I know that Chris is 'Male',
from 'W. Lafayette' and
17-year-old.
What is his disease?"

k-Anonymity

Age	Sex	Address	Disease
15-18	М	G. Lafayette	Obesity
15-18	М	G. Lafayette	Obesity
22-26	F	Indiana	Tetanus
22-26	F	Indiana	Flu

"Chris is definitely obese."

Adversary Models

I-Diversity, t-Closeness

Age	Sex	Address	Disease
15-26	*	Indiana	Obesity
15-26	*	Lafayette	Obesity
15-26	*	Lafayette	Tetanus
15-26	*	Indiana	Flu

Adversary:
"Chris is not necessarily obese."

Anatomization

Age	Sex	Address	Disease
17	М	W. Lafayette	{Ob,Flu}
16	М	Lafayette	{Ob,Te}
23	F	Lafayette	{Ob,Te}
25	F	Indianapolis	{Ob,Flu}

Adversary:
"Chris is *still* not necessarily obese."

Adversary Models and Possible Threats

- - Existential Certainty: Adversary knows that the individual is in the private dataset and tries to learn the sensitive information about the individual in the private dataset.
 - Linking Attacks: Linking Identities with sensitive attributes
 - Existential Uncertainty: Adversary doesn't know the individual is or is not in the private dataset.
 - Linking Attacks: Existential disclosure is not considered as a privacy violation given that sensitive information is protected according to given privacy constraints.
 - Presence Hiding: Disclosure of existence or absence of an individual in the private dataset is a privacy violation.

k-Anonymity

- Provides some protections for all of the adversary models.
 - Sensitive info protection
 - Identity protection by QI anonymizations
- **BUT** is not perfect for any of the models

k-Anonymity Extensions

δ-Presence

- The risk is simply from identifying that an individual is (or is not) in an anonymized dataset.
- Can be interpreted in terms of increased risk of disclosure.
- A meaningful bridge between humanunderstandable policy and mathematically sound standards for anonymity.
 - E.g., can we speak of privacy in terms of risk/cost/benefit?
 - Can convert \$ to δ (see paper).

δ-Presence

Given an external (public) background knowledge *P*, and a private table *T*;

 $\delta = (\delta_{min}, \delta_{max})$ -presence holds

for a generalization T* of T if

$$\delta_{min} \leq Pr(t \in T \mid T^*, P) \leq \delta_{max}$$

for every $t \in P$

Presence Challenge

P		
	_	
		•
		_

	Pu					
	Name	Name Zip Age Nationality				
a	Alice	47906	35	USA	0	
b	Bob	47903	59	Canada	1	
c	Christine	47906	42	USA	1	
d	Dirk	47630	18	Brazil	0	
e	Eunice	47630	22	Brazil	0	
f	Frank	47633	63	Peru	1	
g	Gail	48973	33	Spain	0	
h	Harry	48972	47	Bulgaria	1	
i	Iris	48970	52	France	1	

	Research Subset				
	Zip	Age	Nationality		
b	47903	59	Canada		
c	47906	42	USA		
f	47633	63	Peru		
h	48972	47	Bulgaria		
i	48970	52	France		

How to find δ -present generalization of T?

Checking for Presence Property: Non-overlapping Generalization

- A generalization T* of T is a nonoverlapping generalization w.r.t. P if
 - every tuple in P can be mapped onto at most one equivalence class in T^* .
- Checking presence property for nonoverlapping generalizations is easy

Checking for Presence Property: Non-overlapping Generalization Ex.

Checking for Presence Property: Non-overlapping Generalization Ex.

	—		P *	→		
		Public	Dataset	Sen.		
	Zip	Age	Nationality			
a	47*	*	America	0		
b	47*	*	America	1	1	
c	47*	*	America	1	*	
d	47*	*	America	0		
e	47*	*	America	0		
f	47*	*	America	1		
g	48*	*	Europe	0		
h	48*	*	Europe	1		
i	48*	*	Europe	1		

	←		*			
	F	Researc	h Subset			
	Zip	Zip Age Nationality				
b	47*	*	America			
c	47*	*	America			
f	47*	*	America			
h	48*	*	Europe			
i	48*	*	Europe			

Checking for Presence Property

 Let T* be a non-overlapping generalization of T w.r.t. P. Then T* is δ-present, if for each equivalence class ec of the corresponding P*:

$$\delta_{min} \le (\text{# of 1s in Sen.}) / |ec| \le \delta_{max}$$

(.5-.66)-Presence

			<i>P</i> "	
	-	Public	Dataset	Sen.
	Zip	Age	Nationality	
a	47*	*	America	0
b	47*	*	America	1
c	47*	*	America	1
d	47*	*	America	0
e	47*	*	America	0
f	47*	*	America	1
g	48*	*	Europe	0
h	48*	*	Europe	1
i	48*	*	Europe	1

D*

			*	
	F	Researc	ch Subset	
	Zip Age Nationality			
b	47*	*	America	
c	47*	*	America	
f	47*	*	America	
h	48*	*	Europe	
i	48*	*	Europe	

$$Pr(t_a \in T \mid T^*) = 0.5$$

$$Pr(t_g \in T \mid T^*) = 0.66$$

k-Anonymity Fails

			$\stackrel{P^*}{\longrightarrow}$	•
	P	ublicly	Released Data	set
	Zip	Age	Nationality	Sen.
a	4*	≤ 40	*	0
d	4*	≤ 40	*	0
e	4*	≤ 40	*	0
g	4*	≤ 40	*	0
b	4*	> 40	*	1
c	4*	> 40	*	1
f	4*	> 40	*	1
h	4*	> 40	*	1
i	4*	> 40	*	1

<u>5-anonymous T*</u>

			·
	Research Subset		
	Zip	Age	Nationality
b	4*	> 40	*
c	4*	> 40	*
f	4*	> 40	*
h	4*	> 40	*
i	4*	> 40	*

$$Pr(t_a \in T \mid T^*) = 0$$

$$Pr(t_b \in T \mid T^*) = 1$$

How to Provide Presence?: Anti-monotonicity

If T_2^* is not δ -present w.r.t. P and T then neither is T_1^* .

How to Provide Presence?: SPALM, MPALM

- - SPALM: Optimum Single Dim. Presence Alg.
 - Analogous to Incognito [LDR SIGMOD05]
 - Top down pruning approach
 - MPALM: Multi Dim. Presence Alg.
 - Analogous to Mondrian [LDR ICDE06]
 - With different attribute selection heuristics

Experiments

Experiments

Future Work

- Assume distribution of attributes instead of a public table.
- Apply randomization on private table T to satisfy presence.
- Design a clustering based presence algorithm with overlapping equivalence classes.
- Assume sensitive attributes exist in T
- Make risk analysis on the selection of δ parameters w.r.t. real world scenarios.
- Personalize privacy based on attributes of the individuals.

Hiding the Presence of Individuals from Shared Databases: δ-Presence

Thanks for listening

atzori@di.unipi.it

Questions?