
Innovations Syst Softw Eng (2008) 4:125–141
DOI 10.1007/s11334-008-0049-0

ORIGINAL PAPER

Formal models for user interface design artefacts

Judy Bowen · Steve Reeves

Received: 1 October 2007 / Accepted: 28 February 2008 / Published online: 16 April 2008
© Springer-Verlag London Limited 2008

Abstract There are many different ways of building soft-
ware applications and of tackling the problems of under-
standing the system to be built, designing that system and
finally implementing the design. One approach is to use for-
mal methods, which we can generalise as meaning we follow
a process which uses some formal language to specify the
behaviour of the intended system, techniques such as theo-
rem proving or model-checking to ensure the specification
is valid (i.e., meets the requirements and has been shown,
perhaps by proof or other means of inspection, to have the
properties the client requires of it) and a refinement process
to transform the specification into an implementation. Con-
versely, the approach we take may be less structured and
rely on informal techniques. The design stage may involve
jotting down ideas on paper, brainstorming with users etc.
We may use prototyping to transform these ideas into work-
ing software and get users to test the implementation to find
problems. Formal methods have been shown to be beneficial
in describing the functionality of systems, what we may call
application logic, and underlying system behaviour. Informal
techniques, however, have also been shown to be useful in
the design of the user interface to systems. Given that both
styles of development are beneficial to different parts of the
system we would like to be able to use both approaches in
one integrated software development process. Their differ-
ences, however, make this a challenging objective. In this
paper we describe models and techniques which allow us to
incorporate informal design artefacts into a formal software
development process.

J. Bowen (B) · S. Reeves
Department of Computer Science,
University of Waikato, Hamilton, New Zealand
e-mail: jab34@cs.waikato.ac.nz

Keywords Formal methods · User-centred design ·
Refinement · User interfaces

1 Introduction

Software development is an increasingly complex task, with
many different, and often conflicting, requirements which
must be satisfied (such as the requirement to produce the
software as quickly as possible and as cheaply as possible
but with high end-user expectations). We want the software
that we build to be both correct and robust, that is we want
to be sure that it not only does the right thing, but that it does
so under all circumstances. Sometimes, with safety-critical
software for example, it is not enough to feel certain that our
system designs are correct, we require proof of this before we
implement them. These are just some of the reasons we rely
on formal methods when we develop software. When using
such methods we follow procedures which ensure we cor-
rectly understand what the requirements of the software are,
that we design it in such a way that these requirements will
always be met, and we transform our designs into implemen-
tations in a way which preserves these guarantees. While we
may believe that developing software in this way is enough
to ensure we meet our intended aims, there is another equally
important concern, that of the user. If a user is unable to sat-
isfactorily use the software we have built, then despite the
correctness of the underlying application we have failed to
meet our objectives.

A different approach to software development, which
takes these concerns regarding the user on board, is that of
user-centred design (UCD). UCD techniques make the users
central to the development process and keep them involved
at all stages of design and development to ensure that the

123

126 J. Bowen, S. Reeves

systems we build meet their expectations and are usable by
the people who will use the system. While we refer to UCD
techniques as informal, this is not to suggest that they are
unstructured or ad hoc, but rather that the artefacts they pro-
duce are themselves informal. Such artefacts may include
the results of ethnographic studies, brain-storming sessions
using white-boards and post-it notes, paper and pencil
sketches, etc. and are intended to convey information quickly
and easily to non-technical people, i.e., real users rather than
software developers. They are intended to be discussed and
used as a starting point for design decisions, and as such they
may be ambiguous or unclear if examined in isolation from
the rest of the design process.

As a reflection of the different types of approaches, it is
not unusual for software design to be tackled in a modular
fashion. Different parts of the system will be worked on at
different times, perhaps by different groups of software engi-
neers, designers and programmers. Separation of the design
and implementation of a user interface (UI) of a system from
what we will refer to as the underlying system behaviour is a
common and pragmatic approach for many applications. The
development of user interface management systems (UIMS)
based on the logical separation of system functionality and
user interface is exemplified by the Seeheim model [30]. The
separation allows us to not only focus on the different con-
cerns which different parts of the system development pres-
ent but, more importantly, allows for different approaches
and design techniques. However, there are also some prob-
lems associated with separating our software and developing
parts of it using different methods. If our aim is to use a
formal process to develop provably correct software (which
it is), then we must ensure that all parts of the system have
been designed in a way which satisfies this. Separating parts
of the system out and designing them using informal tech-
niques means that when we integrate everything into one final
implementation, any guarantees we may have had regarding
correctness (from our formal process) will be lost as we will
have no such guarantees about the other parts of the system.
In fact we cannot even be sure that the different parts of the
system have been designed with the same end goal in mind
as there is no common blueprint to both parts of the design
perhaps due to the difference between the “languages” of the
designers and the techniques they use.

With this in mind a need to somehow bring these two
types of process closer together has been identified. The gap
between the formal and informal has been discussed many
times, notably in 1990 by Thimbleby [36]. Many different
approaches have been taken over recent years by different
groups of researchers to try and bridge this gap. Such work
may fall into one of the following categories:

– Development of new formal methods for UI design. e.g.,
Modelling UIs using new formalisms [9];

– Development of hybrid methods from existing formal
methods and/or informal design methods. e.g., using tem-
poral logic in conjunction with interactors [29];

– Use of existing formal methods to describe UIs and UI
behaviour. e.g., matrix algebra for UI design [37];

– Replacing existing human-centred techniques with for-
mal model-based methods. e.g., using UI descriptions in
Object-Z [34] to assess usability [21].

Such work is demonstrably a step forward in bringing
together formal methods and UI design. However, the meth-
ods and techniques which have been developed have failed,
in the most part, to become mainstream. Those which have
become mainstream (such as task analysis methods) are gen-
erally focussed on one small part of the design stage rather
than the complete process.

One of the reasons for this seeming reluctance for either
group (those involved in user interface design and formal
methods practitioners) to adopt the new methods proposed
is, of course, the reluctance of any group to change working
practices which are meeting their individual needs. Persuad-
ing users of formal methods to adopt less formal or new
hybrid methods has proved as unsuccessful as encourag-
ing UI designers to abandon their human-centred approach
in favour of more formal approaches. While we take the
stance that formal methods are important, and necessary,
when building software, we appreciate that UI designers may
be graphic designers or usability experts who are comfortable
with the methods they currently use rather than with using
notations based on mathematics and logic.

The approach we are taking then is that rather than trying
to change the methods used by different groups of software
developers, we will instead consider the existing, diverse,
methods being used and develop ways of formally linking
them together. We do not assume that any one particular for-
mal approach is being used (i.e., we do not restrict ourselves
to trying to work with just one particular formal notation or
process), just that there is some formal approach. Similarly
we recognise the diversity of methods and techniques used to
design UIs and take a general approach to the artefacts pro-
duced. Our only requirement is that, again, a UCD approach
is being taken rather than just the random generation of the
UI (by, for example, just hacking code). So, we intend to find
ways of interpreting the sorts of informal design artefacts
produced in a UCD process within a formal framework.

In [5], we provided an introduction to two models, pre-
sentation models and presentation interaction models (PIMs)
which are designed to formally describe informal design arte-
facts. In this paper we give an expanded description of these
models, including a more detailed description of the context
of the research behind them. We will further show that in
addition to the benefits we outlined in [5] in ensuring con-
sistency and correctness between the formal and informal

123

Formal models for user interface design artefacts 127

processes, we can also use these models to guide the design
of the UI and consider properties of the design relating to
usability.

2 User-centred design artefacts

The purpose of user-centred design is to ensure that the soft-
ware we build, and in particular the interface to that software,
meets the expectations of the intended users. To this end the
processes used are designed to involve users from an early
stage. They aim to find out about the tasks the users need
to perform with the software, as well as understanding the
background to those requirements, such as current working
practices of the users, their experience with similar software,
internal company working processes that will be affected by
this new software, etc. In this way the designer is able to
build up a picture of how the software will fit into the work
environment, who the people are who will use the software
and how they envisage using it.

When we talk about following a UCD process we do not
mean that there is a set of defined methods which must be
followed in a particular order, but rather that we adopt any
number of techniques (from those considered to be UCD
techniques) which allow us to gather the sort of informa-
tion we have described above. These may include things like
ethnographic studies, which are used very early on in the
process to find out about the users and their work environ-
ment. Ethnographic studies are recognised as a useful way to
gather comprehensive background information, but it is also
recognised that the volume and nature of the data gathered
can make it hard to know how to apply it within the design
process [14].

Subsequently we may use task analysis methods to exam-
ine the users’ requirements of the system. Task analysis has
received a lot of attention from formal practitioners over the
years, and a number of models exist for this, as well as meth-
ods for developing UIs from such models, e.g., [8,27]. The
benefits of such models are that they allow us to use task
information in a structured manner within the design process
and also consider the effects of our design choices in terms
of sub-tasks and complexity. However, such methods focus
on just one small part of the overall UI design rather than the
whole process.

UCD practitioners may also use scenarios and personas to
enhance the task analysis process and give details of specia-
lised requirements and user behaviours. These expand on task
analysis by examining “what if” cases, e.g., “What if a per-
son like X wants to do Y?”. Again the information gathered
in this way is often in the form of a narrative or a summary
of points and so must be interpreted by designers in order to
make use of it.

The actual design of the UI may involve brainstorming
sessions between designers and users which will lead to
the development of prototypes. These prototypes are then
tested by both users and design specialists and updated in
an iterative process before a final design is reached. Even
this final design is subject to amendment once the system
has been implemented and subsequently undergone usability
testing.

The key to UCD, therefore, is to ensure that the actual
users of the system are involved at all stages of the design
process. The sorts of artefacts that are generated during such
processes reflect this collaborative way of working and will
include things like white-board design sessions with post-it
notes used to represent interface elements, textual narrative
descriptions of things like domain information and scenarios,
task analysis models, user descriptions and paper-based pro-
totypes. While we may describe such artefacts as informal
and simple, they are intentionally so. They are easy points
of reference for communicating with users (in that they do
not rely on specialist knowledge or design skills) and their
informality encourages users to feel a part of the process and
able to make changes or suggestions. Lo-fidelity artefacts,
such as paper prototypes for example, have been shown to
be very successful for this purpose.

Several methods and tools have been developed which
support prototyping or to enable the use of tablet PCs [23],
collaborative whiteboards [31] or desktop computers to gen-
erate prototypes in a manner similar to paper prototyping [10]
but which generate a computer-based design. It may be that
some, or all, of these tools could be adapted or extended to
support the sort of work we are currently doing. However, as
our focus is on existing commonly used design techniques
and artefacts, we have deliberately chosen not to consider
such tools here. Just as the way in which a UCD practi-
tioner’s approach to their task may be different from some-
one else engaged in a similar process, so the prototypes or
design artefacts, and the way we produce them, may vary.
The point is, however, that the underlying structure of such
artefacts is not formally defined whichever set of techniques
is used.

So, given that we have diverse and informal artefacts we
are faced with the challenge of how to use them within a for-
mal process. In the next section we describe what we mean
by a formal software development process and then move on
to show how our research allows us to begin integrating the
formal and informal.

3 Formal methods and refinement

When we state that we wish to use formal methods as the
basis for our system derivation we mean that we want to
build models, at whatever level of abstractness/concreteness

123

128 J. Bowen, S. Reeves

is most natural and useful to the developers of the system,
which we can investigate with “mathematical” precision. So,
typically, we want to build our models (write our specifica-
tions) in a language which has well-defined properties: syn-
tax, semantics and logic. Without the first two properties we
cannot (without a well-defined syntax) separate the specifi-
cations from all the other artefacts, or (without a well-defined
semantics) know what a specification means even if we know,
syntactically, that we have one.

The third requirement, that we have a logic, is also clearly
necessary: being able to build a well-defined specification is
a good start, but we also need to be able to precisely inves-
tigate that specification, see what its assumptions are, see
what properties it has, see what implications for the system
arise and so on. For all these necessary things we must have
a logic.

So, our requirements are broad, not very onerous and leave
developers open to choose whichever language they like to
use (making decisions on grounds of familiarity, suitable for
the task, etc.) as long as it has our three properties.

The idea behind refinement is very simple: it is a structured
progression from some abstract version of a system towards
a more concrete version. It is based on the desire to be able to
move between different descriptions and/or implementations
of a system (perhaps because underlying software changes,
or hardware changes, or better versions become available or
are developed, and so on) without having any negative impact
on a user’s view or feel of the system in terms of its function-
ality or usability (though they might, as might be intended,
see that it runs faster, for example). This original idea has
been generalised so that we can think about not just differ-
ing implementations but differing levels of abstraction from
specification to implementation.

The basic intuition behind refinement is [11]:
Principle of substitutivity: it is acceptable to replace one

program by another, provided it is impossible for a user
of the programs to observe that the substitution has taken
place. If a program can be acceptably substituted by another,
then the second program is said to be a refinement of the
first.

So, if a user is used to using a certain sequence of actions
〈a0, a1, . . . , an〉 (i.e., using the facilities provided by a cer-
tain program P0 which implements the actions ai) then if
we change the program to P1 and the user carries out their
sequence of actions again and gets the same behaviour from
P1 as they got from P0, then we would say that P1 is a refine-
ment of P0.

Note that this story allows P1 to provide more facilities
than P0—but the point is that the user, when carrying out
their sequence of actions, cannot tell. The change in under-
lying program has in no way degraded the system as far as
our user is concerned. It may have improved the system, by
supplying more facilities, but our user will not be able to tell

(though of course we are likely to let them know of the new
facilities—and probably extract some money for them!).

Another way a refinement can acceptably change a pro-
gram is by reducing any nondeterministic behaviour that it
might have. So, if due to invoking action a program Q0 some-
times exhibits behaviour b0 and sometimes behaviour b1 and
the user does not care which of these behaviours a causes,
then replacing program Q0 with program Q1 which always
exhibits behaviour b0 when action a is invoked will not matter
to the user (and will not be detectable by them—to be sure we
had removed the nondeterminism the user would have to run
an infinite number of experiments to check that b1 was never
exhibited, which of course they could never complete and so
they could never be completely sure—having a suspicion is
not enough!). So, Q1 would be a refinement of Q0.

This sort of refinement is a useful idea when we are build-
ing prototypes and then using them as a basis for moving to
a final implementation. If some aspects of the prototype “do
not matter”, e.g., what happens when action a is invoked is of
no interest to the user, then the prototype can do anything (so
probably something simple and easy to code) due to action
a. Later, we can refine away (probably in several steps) this
lack of interest so that action a, which now might “matter”,
does what we require.

Another informal view of refinement (which turns out to
be formally equivalent to the view given above) is to think of a
system as a kind of contract between provider and consumer
[24], with the emphasis on what works for the consumer,
so, for example, if contract P1 is no worse than contract P0

for the consumer then P1 refines P0. Morgan gives exam-
ples like: a 220/110 V outlet refines a 220 V outlet; a watch
water-resistant to 50 m refines a splash-proof one; a program
that needs at least 2 Mb refines one that needs at least 4 Mb.

These ideas grew out of a desire to completely, precisely
and unambiguously describe one of the first general methods
for dealing with the construction of complex software, i.e.,
stepwise refinement (Wirth [40] is a classic reference here,
but see our further discussion below too).

The reason for studying refinement is to understand it as
fully as possible (i.e., all its implications, pitfalls, features).
The reason for formalising it is, as ever with formalisation,
to allow it to be precisely and unambiguously described, and
hence to allow it to form the basis of a precise, unambiguous
method (i.e., a formal method) for moving from a descrip-
tion at some level of abstraction towards an implementation
(i.e., a less abstract description). One other reason for form-
alising is, of course, to allow ourselves to develop tools (i.e.,
pieces of software) which will support us in the process of
refinement, and since any piece of software is itself a formal
artefact, having a formalisation of a process gets us a good
way towards having some software to support the process.

So far, we have talked about moving from one program to
another in one “move” or, as we shall say, step of refinement.

123

Formal models for user interface design artefacts 129

A requirement on such steps is that each should be, in some
sense, understandable: ideally, we would look at a step and
have a story to tell about it in the vocabulary of the appli-
cation area or, if we are close to implementation, in terms a
programmer could understand and appreciate. This will tend
to mean, so as to be intellectually manageable, that each step
is modest in size and ambition. In any real, large piece of soft-
ware development, then, the journey from initial description
(probably a specification) to implementation is likely to be
made of many refinement steps—again our ideal would be
that the sequence of steps tells an understandable story about
moving from specification to implementation. This sequence
is what gives rise to the term stepwise refinement when we
talk about this mode of software development.

Of course, this term can refer (and historically this was the
primary notion with the work of Dijkstra [12]) to a more-or-
less informal process, as well as to the more formal notion we
have presented above. However, wherever on the spectrum
of formality our process appears, the central requirement is
that development proceeds by a sequence of steps and each
step should move us towards implementation in a way that
is clear and understandable.

Once a notion of refinement is in place we would want to
check that it has certain properties. For example, the most
important property is transitivity. This allows us to move
stepwise towards an implementation with each subsequent
refinement preserving earlier refinements. Another important
property that would probably be required is that of monoto-
nicity. That is, if we have a complex system specified by
joining together (in some way) several partial systems (as
we usually do via a divide-and-conquer strategy for dealing
with large systems) we want to be sure that if one of the
parts of the system is refined then the version of the system
formed using the same constructions as the original system
for joining together the original parts together with the new
refinement of one of the parts is also a refinement of the
original system. That is, by refining a part of the system we
want to be sure we have then refined the whole.

This guarantees, amongst other things, that the refinement
of part of the system has not interfered with or otherwise com-
promised the rest of the system, which has not been changed.
If this property holds then we say the refinement relation is
monotonic. Clearly, monotonicity is important if we want to
gradually refine the system (by refining it in parts) into an
implementation. Otherwise, we would have to deal with the
whole system at each refinement step, increasing the like-
lihood of error and that we succumb to the complexity of
having to reason about a large and complex system. This is,
of course, the usual argument for modular construction of
software for dealing with complexity.

There is much more to say about refinement (it has a long
and influential history even if we restrict our attention to
the more formal approaches) but we shall now move our

attention to the application of refinement to our particular
problem and leave the interested reader to consult the texts
we have referred to above.

4 Integration of techniques

Integration of different languages and models within formal
methods is not unusual (indeed this activity has at least one
whole conference devoted to it, namely IFM [22]). The cen-
tral idea is to use the differing features and strengths of the
different methods as appropriate. Sometimes it is enough to
just use different formalisms to specify different parts or dif-
ferent properties of the system, but the best effect is seen
when methods are fully integrated so there are formal links
between them allowing for a fully rigorous development.

Our aim is to formally link the formal and informal pro-
cesses used within modular software development so that we
get all of the benefits of rigorous specifications and refine-
ment, namely the ability to prove properties of a system
and ensure formally that we meet requirements and trans-
form these into a correct implementation, while at the same
time benefiting from the informal design methods of a UCD
process which ensures we satisfy the user requirements and
develop a usable interface.

Using formal methods in UI design is not a new idea, and
many different approaches to this have been taken. These
may be along the lines of formalising particular parts of the
design process, such as task analysis [28], or describing UIs
in a formal manner [15], or deriving implementations from
formal models [9,16].

One important difference between our work and previous
research into formal methods and UI design is that we are not
trying to formalise the process of UI design itself, but rather
we want to find ways of formally capturing the information
produced by an informal UI design process. As we will show
in the next sections, using the models we have derived we
are able to do things like specify UI behaviour, but this is not
driven by the formal process, it is another way of viewing
the information generated informally and we use the two in
conjunction with each other.

5 Presentation model

The first model we describe is called the presentation model.
It is used to formally capture the meaning of an informal
design artefact such as a scenario, storyboard or prototype.
It is a deliberately very simple model, because the infor-
mal artefacts it describes are themselves simple and easy to
understand. This is important as it makes it easier to encour-
age others to adopt and use the model.

123

130 J. Bowen, S. Reeves

When we talk about the meaning of a design artefact we
are talking about what the UI described by the informal arte-
fact is supposed to do, i.e., if it were transformed into an
implementation we say what its behaviour would be. If we
consider a paper-based prototype in isolation its meaning
may be ambiguous; it requires some supporting information
or context to make clear what is intended.

When a designer shows a prototype to a user, there is a
discussion about what the prototype will do when the parts
shown are interacted with. This forms what we call the nar-
rative of the prototype, the accompanying story which allows
the user to understand how it will work and what the vari-
ous parts do. This allows a simulated interaction to take place
which enables the user and designer to evaluate the suitability
of the proposed design.

The presentation model is a formal model which descri-
bes an informal design artefact in terms of the interactive
components of the design (which we will refer to as
widgets) and captures their meaning. That is, it formally
describes the narrative of the design artefact. It is deliber-
ately abstract and high-level and is not intended to replace
the informal design artefact, rather it acts as a bridge
between the meaning captured by the design and the for-
mal design process. By describing the intended behaviour of
the design artefact it removes the ambiguity that may exist
when the design is considered by itself. The formal struc-
ture of the presentation model gives us a different view of
the design and enables us to consider it within our formal
framework.

5.1 Syntax

We start by giving the syntax of presentation models.

〈pmodel〉 ::= 〈declaration〉〈de f ini tion〉
〈declaration〉 ::= P Model{〈ident〉}+,

Widget Name{〈ident〉}+,
Category{〈ident〉}+,
Behaviour{〈ident〉}∗

〈de f ini tion〉 ::= {〈pname 〉is 〈pexpr〉}+
〈pexpr〉 ::=

{〈widgetdescr〉}+|〈pname〉 : 〈pexpr〉|〈pname〉
〈pname〉 ::= 〈ident〉
〈widgetdescr〉 ::=

(〈widgetname〉, 〈category〉 , ({〈behaviour〉}∗))
〈widgetname〉 ::= 〈ident〉
〈category〉 ::= 〈ident〉
〈behaviour〉 ::= 〈ident〉

{Q}+ indicates one or more Qs

{R}∗ indicates zero or more Rs

Fig. 1 Example UI design

Each presentation model begins with a set of declarations
which introduces the identifiers for all parts of the model.
Then we describe the design in terms of a set of widget
descriptions which are given in a tuple consisting of an identi-
fier, a category and a set of behaviours. The widget categories
used are taken from the work described in [4] which provides
hierarchies of widgets based on their high-level behaviour
(for example, do they cause actions to occur when a user
interacts with them, or do they provide information back
to the user?) Where a widget has more than one behaviour
associated with it the meaning intended is that the widget
does more than one thing, it does not indicate choice. We
assume that the designs we are modelling are deterministic
on the basis that nondeterminism in a UI design either indi-
cates that there are parts of the design not yet complete, and
which can therefore be omitted from the model, or that there
is confusion about what a particular widget will do, which
we expect to resolve either prior to, or during, the building
of the presentation model.

An example of a syntactically correct presentation model
is then:

P Model p q r
Widgetname aCtrl bCtrl cSel
Category ActionControl SV alSelector
Behaviour d Action eAction f Action

p is (aCtrl, ActionControl, (eAction f Action))
(bCtrl, ActionControl, (d Action))

q is (cSel, SV alSelector, (eAction f Action))
r is p : q

This model describes a UI such as that given in Fig. 1. It
has two components, p and q (where these may be different
windows, or different states of the UI). The entire UI (i.e., the
combination of p and q) is described by r and the : operator
acts as a composition. p has two widgets, aCtrl and bCtrl,
which are both ActionControls. The behaviours associated
with aCtrl are eAction and f Action and for widget bCtrl
the associated behaviour is d Action. q has one widget, cSel,
which is a SV alSelector with the behaviours eAction and
f Action. Presentation model r , therefore, is the combination

123

Formal models for user interface design artefacts 131

of all of the widgets of p and q and indicates the total possible
behaviours of the UI.

5.2 Semantics

We can now give the semantics of the model. Firstly, we can
describe the complete model of a design as an environment
E N V .

The environment is a mapping from the name (from the
set I de of identifiers) of some presentation model and its
parts to their respective values:

E N V = I de → V alue
V alue = Const + P(Const × Const × P Const)
Const = {v|v is an identi f ier}

We use semantic functions to build up the contents of the
environment and to describe its structure based on the given
syntax.

[[]] : 〈pmodel〉 → E N V
Dc : 〈declaration〉 → E N V
D f : 〈de f ini tion〉 → E N V → E N V
Expr : 〈pexpr〉 → E N V → E N V

[[Decl De f]] = D f [[Def]](Dc[[Decl]])

Dc[[P Model π1 . . πn1 Widget Name α1 . . αn2

Category ε1 . . εn3 Behaviourβ1 . . βn4]] =
{πi �→ πi }n1

1 ∪ {αi �→ αi }n2
1 ∪ {εi �→ εi }n3

1 ∪
{βi �→ βi }n4

1

where {ei }k
1 is shorthand for the set {e1, e2, . ., ek}

D f [[D Ds]]ρ = D f [[Ds]](D f [[D]]ρ)
D f [[P is ψ]]ρ = ρ ⊕ {P �→ Expr [[ψ]]ρ}

where ρ represents the current environment.

Expr [[E Es]]ρ = Expr [[E]]ρ ∪ Expr [[Es]]ρ
Expr [[ψ : φ]]ρ = Expr [[ψ]]ρ ∪ Expr [[φ]]ρ
Expr [[(N C (b1 . . bn))]]ρ =

{(ρ(N) ρ(C) {ρ(b1) . . ρ(bn)})}
Expr [[I]]ρ = ρ(I)

We can also define semantic functions which allow us to
extract information from the model, for example we define
the following which allows us to obtain the set of all behav-
iours of a presentation model:

B[P]

where

B[P] =̂ {[[P]]b|b ∈ Behaviours(P)}

and Behaviours(P) gives us the identifiers to all behaviours
of P (i.e., it is a syntactic operation), and similarly for the
other syntactic clauses.

Our presentation models consist of widgets together with
names, categories and behaviours. The semantics show how
the syntax of the model creates mappings from identifiers to
constants in the environment (which represents the design
that the model is derived from). The presentation model
semantics is a conservative extension of set theory, that is,
everything which is provable about presentation models from
the semantics is already provable in set theory using the def-
initions given in the semantic equations. This then allows us
to rely on the existing sound logic of set theory to derive a
necessarily sound logic for our presentation models.

We now give an example where we use the denotational
semantics to instantiate the following presentation model:

P Model p q r s
Widgetname w v y
Category c d e
Behaviour b1 b2 b3

p is (w, d, (b2 b3))
(v, e, (b1))

q is (y, d, (b2 b3))
r is p : q
s is r

As an abbreviation, we call the declarations (the first four
lines above) Dec and the definitions (the last five lines) D f s
in what follows.

[[Dec D f s]]
=
D f [[D f s]](Dc[[P Model p q r s W Name w v y

Category c d e Behaviour b1 b2 b3]])
=
D f [[D f s]]({p �→ p, q �→ q, r �→ r , s �→ s} ∪ {w �→ w,

v �→ v, y �→ y} ∪ {c �→ c, d �→ d, e �→ e}) ∪ {b1 �→ b1,
b2 �→ b2, b3 �→ b3}

=
D f [[D f s]]({p �→ p, q �→q, r �→r , s �→s, w �→w, v �→v,

y �→ y, c �→ c, d �→ d, e �→ e,
b1 �→ b1, b2 �→ b2, b3 �→ b3})

Now we use ε in what follows to refer to the populated envi-
ronment we have given in the last line above. Also, D will

123

132 J. Bowen, S. Reeves

abbreviate the definition on the fifth and sixth lines above
and Ds the remainder of those definitions.

D f [[D Ds]]ε
=
D f [[Ds]](D f [[p is (w, d, (b2 b3)), (v, e, (b1))]]ε)
=
D f [[Ds]](ε ⊕ {p �→ Expr [[(w, d, (b2 b3)),

(v, e, (b1))]]ε})
=
D f [[Ds]](ε ⊕ {p �→ Expr [[(w, d, (b2 b3))]]ε ∪

Expr [[Es]]ε})
=
D f [[Ds]](ε ⊕ {p �→ {((w) (d) {(b2) (b3)})} ∪

Expr [[Es]]ε})
=
D f [[Ds]](ε ⊕ {p �→ {((w) (d) {(b2) (b3)})} ∪

Expr [[(v, e, (b1))]]ε})
=
D f [[Ds]](ε ⊕ {p �→ {((w) (d) {(b2) (b3)})} ∪

{((v) (e) {(b1)})})
=
D f [[Ds]](ε ⊕ {p �→ {((w) (d) {(b2) (b3)}),

((v) (e) {(b1)})})
=
(let ting ε′ = ε ⊕ {p �→ ((w) (d) {(b2) (b3)}),

((v) (e) {(b1)})}
and now having Ds abbreviating the eighth and

ninth lines)

D f [[Ds]](D f [[q is (y, d, (b2 b3))]]ε′)
=
D f [[Ds]](ε′ ⊕ {q �→ Expr [[(y, d, (b2 b3)]]ε′})
=
D f [[Ds]](ε′ ⊕ {q �→ {((y) (d) {(b2) (b3)})})
=
(let ting ε′′ = ε′ ⊕ {q �→ {((y) (d) {(b2) (b3)})})

D f [[s is r]](D f [[r is p : q]]ε′′)
=
D f [[s is r]](ε′′ ⊕ {r �→ Expr [[p : q]]ε′′})
=
D f [[s is r]](ε′′ ⊕ {r �→ Expr [[p]]ε′′ ∪Expr [[q]]ε′′})
=
D f [[s is r]](ε′′ ⊕ {r �→ {((w) (d) {(b2) (b3)}),

((v) (e) {(b1)})} ∪ {((y) (d) {(b2) (b3)})})
=
D f [[s is r]](ε′′ ⊕ {r �→ {((w) (d) {(b2) (b3)}),

((v) (e) {(b1)}), ((y) (d) {(b2) (b3)})}})
=
(let ting ε′′′ = ε′′ ⊕ {r �→ {((w) (d) {(b2) (b3)}),

((v) (e) {(b1)}), ((y) (d) {(b2) (b3))}}})

D f [[s is r]]ε′′′
=
ε′′′ ⊕ {s �→ Expr [[r]]ε′′′}
=
ε′′′ ⊕ {s �→ {((w) (d) {(b2) (b3)}), ((v) (e) {(b1)}),

((y) (d) {(b2) (b3))}}}
Expansion of ε, ε′, ε′′ and ε′′′ gives the final environment
as:

{w �→ w, v �→ v, y �→ y, c �→ c, d �→ d, e �→ e,
b1 �→ b1, b2 �→ b2, b3 �→ b3,

p �→ {((w) (d) {(b2) (b3)}), ((v) (e) {(b1)})},
q �→ {((y) (d) {(b2) (b3})},
r �→ {((w) (d) {(b2) (b3)}), ((v) (e) {(b1)}), ((y) (d)

{(b2) (b3)})},
s �→ {((w) (d) {(b2) (b3)}), ((v) (e) {(b1)}), ((y) (d)

{(b2) (b3)})}}
Next we provide an example of a UI design and presen-

tation model of that design which we will use to illustrate
some of the uses for presentation models.

6 Example

The example we present here is based on a case study which
was undertaken to see how the use of our formal models
influence a UI design process. It is somewhat self-referential
in that the software application being designed is intended
to help users create and edit presentation models (and PIMs,
which we describe later).

The UI design consists of 26 different screens and dialogue
windows which were developed following user requirements
analysis. In Fig. 2 we show the prototype for the opening
screen of the application. This provides the user with a view
of any existing models already stored in the application as
well as enabling them to navigate to different parts of the
application where they can view or edit these models or add
new models.

The presentation model for the prototype given in Fig. 2
is:

P Model
MainWin Widgetname
FileMenu Quit MenuI tem Edit Menu Add P M MenuI tem
Add P I M MenuI tem MaxWin MinWin Add P M Butt
Add P I M Butt P M List P I M List

Category
Container ActCtrl SV alSel

Behaviour
Quit App U I Open Add P M Decs U I Open Add P I M
U I MaxWindow U I MinWindow U I OpenV iewP M

123

Formal models for user interface design artefacts 133

Fig. 2 Prototype for opening
screen of PIMed application

U I Open Add P M Decs U I Open Add P I M
U I OpenV iewP M

MainWin is
(FileMenu,Container, ())
(Quit MenuI tem, ActCtrl, (Quit App))
(Edit Menu,Container, ())
(Add P M MenuI tem, ActCtrl, (U I Open Add P M Decs))
(Add P I M MenuI tem, ActCtrl, (U I Open Add P I M))
(MaxWin, ActCtrl, (U I MaxWindow))
(MinWin, ActCtrl, (U I MinWindow))
(Add P M Butt, ActCtrl, (U I Open Add P M Decs))
(Add P I M Butt, ActCtrl, (U I Open Add P I M))
(P M List, SV alSel, (U I OpenV iewP M))
(P I M List, SV alSel, (U I OpenV iewP I M))

Each of the widgets in the prototype has been described in
terms of its name, category and behaviour. There are two
different types of behaviour which a widget can be associ-
ated with. An interaction behaviour (indicated by a name
prefixed with U I) is any behaviour which affects the UI
in some way, either by navigating to a different part of the
system (and so presenting a different UI to the user), or
by changing some aspect of the current UI (for example
by resizing a window). A system behaviour is any behav-
iour which affects the underlying system. We can think of
this in terms of a low-level implementation, i.e., as some-
thing which causes an event which changes the system state
(for example by changing a stored value). We will refer to
these as I Behaviours and S Behaviours. (Differentiating
between these two types of behaviour proves to be particu-
larly useful when using the models to consider refinement
issues of UIs but is not an important distinction within this
paper. We will, however, use the distinction for some of the
uses we discuss.)

The presentation model does not replace the prototype
(i.e., we do not require that our UI designers produce these
models instead of prototypes) but rather they act as a bridge

between the informal and the formal software development
artefacts. We will discuss this further in the following
sections.

7 Using the presentation model

7.1 A common design language

One of the problems we identified with separating the UI
and system design is that of being sure that all parties have
the same end product in mind. It is hard to compare informal
design artefacts with a formal specification, for example, and
be certain that they mean the same thing (as opposed to hav-
ing a belief that they do). The presentation model gives us a
stepping-stone towards a common language which enables
us to gain this certainty. Because the model has a formal
structure and a semantics we can be sure of what it means
and use this as the basis to start integrating the UI design
with the formal process.

As we have already stated, there are a number of differ-
ent formal methods, languages and notations that exist, all
of which can be satisfactorily used to describe systems and
prove properties about that description prior to implementa-
tion. We intend that the models we develop of the informal
artefacts can be used with as many of these different for-
malisms as possible rather than just tailoring them to one
specific style. For the purposes of this paper we will focus on
the approach of formally specifying a system in the language
Z [1] and then refining that specification (once we have sat-
isfied ourselves it is itself correct and the system it describes
is correct also) into an implementation using some stepwise
refinement method. We will also make use of the µCharts
language [32] which has its semantics given in Z. However,
we make this choice from convenience (they are languages
we are familiar with) rather than from any intention to tie the
use of models to these particular languages and methods.

123

134 J. Bowen, S. Reeves

Fig. 3 Prototype for Edit State Window

The first thing we can do with our presentation model is
ensure that the behaviour of the UI it describes is the same
as that described by the system specification. In Z, the sys-
tem specification describes an overall state for the system,
as well as operations upon that state. If we identify which
of those operations relate to actions which a user is required
to perform (which can be ascertained from the user require-
ments) then we can check to see if there are related behaviours
in the presentation model. That is, we can create a relation
between the operations of the system specification and the
behaviours of the UI model. At the very least we expect
that every S Behaviour in the presentation model is related
to some operation of the system specification and that any
operations identified as user requirements are related to a
behaviour in the presentation model.

Returning to our case study example again, we now show
a prototype for one of the dialogues, given in Fig. 3. This has
the following presentation model (we omit the declarations
for brevity):

Edit StateWin is
(StateList, Status Display, ())
(Add StateButt, ActCtrl, (Add NewState))
(DeleteStateButt, ActCtrl, (U I OpenDelSCheck))
(CloseButt, ActCtrl, (U I CloseEd SWin))

One of the behaviours in this model is an S Behaviour,
namely Add NewState. We can relate this behaviour to a
corresponding operation in the system specification. In this
example our system specification includes the following
operation schema:

Add StateT oP I M Op
∆P I M
newstate? : P I M ST AT E

states′ = states � < newstate? >

and so we can relate these two. We do the same for each
of the S Behaviours in the model. Once this is complete we
expect that every S Behaviour is related to some operation in
the specification, so that they form a subset of the specified
operations.

There are usually fewer S Behaviours than there are spec-
ified operations (although this is not necessary) as there will
be operations relating to the system which are not directly
available to the user (and which we would not want to be
available to the user). For example they may be operations
relating to security aspects within the system. It is necessary,
however, that there are not more S Behaviours in the pre-
sentation model than there are in the specification. If this is
the case, it suggests that the UI designer believes that some
functionality will be available in the system which is not actu-
ally part of the design, i.e., the UI designer has a different
understanding of the application being built than the person
responsible for the specification.

While we have shown here a simple example where there
is a direct correspondence between a single UI behaviour and
a single specified operation, frequently behaviours within the
UI are more complex and may trigger other behaviours. This
requires more work in order to satisfy ourselves that over-
all behaviour remains correct. We give details of this, and
show how we can use a form of data refinement with the
presentation model of a UI, in [6].

7.2 Presentation models and design equivalence

Another way in which we can use presentation models is to
compare different designs. We do this using different types
of design equivalence which are based on properties of the
presentation model. The intention here is to be able to take
different UI designs (for the same system) and using the pre-
sentation models of these designs determine if they can be
considered in some way equivalent.

It is not unusual for software to be designed to run on a
number of different platforms, some of which may have very
different UIs, for example mobile phones or PDAs, where
screen size, as well as requirements, affects the design of the
UI. Despite the differences in the UIs we want to be sure that
they provide the user with the same possibilities to interact,
that is we want to be sure that functionally they are the same
(even though the way in which the user interacts may be dif-
ferent). We determine the functionality of a design from the
set of behaviours of the presentation model of that design.
So, if we wish to compare two different UI designs to deter-
mine whether or not they have the same functionality, then
we can simply compare the corresponding behaviour sets of
their presentation models. Formally we state:

Definition 1 If DOne and DTwo are UI designs and P M
One and P MTwo are their corresponding presentation

123

Formal models for user interface design artefacts 135

models then:

DOne ≡ f unc DTwo =d f B[P M One] = B[P MTwo]

As well as functional equivalence we have considered
other types of equivalence which exist between designs,
namely component equivalence and isomorphism. These are
primarily useful when we are updating an existing applica-
tion and want to ensure that the UI to the new version of the
system is still familiar to the user, as well as correct func-
tionally. We will not go into the details of these types of
equivalence here as they are beyond the scope of this paper.

7.3 Presentation models and design properties

The third use of presentation models we present here is their
use in ensuring our designs have “desirable properties”. Such
properties may be defined in a number of different ways. For
example they may relate to guidelines describing UI prop-
erties or design rules, such as [17] or [35], or they may
be based on more general research such as Shneiderman’s
“Eight golden rules for interface design” [33] or Nielsen’s
“Top 10 Mistakes in Web Design” [38].

One such property is that of consistency. Shneiderman
states [33]:

Strive for consistency;
Consistent sequences of actions should be required in
similar situations;
identical terminology should be used in prompts,
menus, and help screens;
and consistent commands should be employed through-
out.

An application may consist of a large number of different
screens and dialogues, so maintaining consistency through-
out is not a trivial task, indeed much research has been under-
taken in precisely this area. Researchers such as Thimbleby,
for example, have examined this problem from a number
of different perspectives including the relationship between
modes and consistency [18], use of matrix algebra within UI
design [37], etc. Whilst we do not hope to solve the problem
of addressing this issue exhaustively using our models, we
are able to tackle at least one part of the problem. One of the
things we can ensure, using the presentation model, is that
controls which have the same behaviour have the same name
(so the user does not have to remember that in one part of the
interface they use Quit to exit the interface and in another
they use Close). Conversely we can also check, again using
the model, that controls with the same name have the same
behaviour and this ensures that the user always knows what
to expect when they encounter such a control.

Another desirable property we can consider using the pre-
sentation model is the reactivity of the interface. The split

between I Behaviours and S Behaviours within the presen-
tation model, and the categories of the widgets used, give us
an indication of how much of the UI is responsive to user
interaction, and how much is informative. From this we can
determine whether the UI is primarily active or passive.

8 Presentation interaction models

We have provided some examples of how we can use pre-
sentation models of informal designs to help with our aim of
integration of informal design artefacts into a formal process
(via the relation between specification and model), and also
in dealing with design concerns such as consistency.

As a first step in considering correctness of the UI design
with respect to the specification we can show that the nec-
essary behaviours exist in the UI design. However, it is also
necessary to show that the user can actually access all of
the functionality described. For example, in our previous
example we showed that the specified operation to add a new
state had a corresponding behaviour in the dialogue window
shown in Fig. 3, but suppose there is no function within the
UI which causes this dialogue to be displayed? If that is the
case then the user can never access this functionality and our
UI design has failed to really satisfy the specified system. We
must therefore be sure that not only does all of the relevant
functionality exist, but also that it is reachable by the user.
To show this we must consider which parts of the UI a user
can get to from any other part of the UI.

Proving the reachability properties of a UI is a common
concern in much of the early work on using formal methods
with UIs. In their early work on PIE models, Dix and Runci-
man [13] describe strong reachability for a UI which states
that “not only can you get anywhere but you can get anywhere
from anywhere”. This is the property we require for our
designs and models also. It requires that we understand how
the UI changes dynamically from screen to screen as the user
interacts. The behaviours which cause these changes are the
I Behaviours of the presentation model. However this does
not give us quite enough information to prove reachability.

The problem with trying to capture the idea of dynamic
change of the UI via the presentation model is that the model
gives us a static view of the design. It shows a complete
environment which describes all of the possibilities of that
design, but the (deliberately) simple use of a triple for each
widget does not hold enough information to extend its use
to dynamic behaviour. One possible solution to this would
be to change the model by extending it to include additional
information. However, the presentation model does contain
enough information for many of the things we wish to use
it for and we want to avoid making it so complex that it
becomes a burden upon designers or formal practitioners to
learn and use. Rather than change it then, we decided to use it

123

136 J. Bowen, S. Reeves

in conjunction with another common formalism which would
allow us to prove these more dynamic properties. The for-
malism that we have chosen is that of finite state machines
(FSM).

FSM have been used previously for UI modelling in both
design (as early as the late 1960’s [26]) and as a way of
evaluating interfaces [25]. One of the drawbacks with using
FSM in this way is the known problem of “state explosion”,
where the number of states of the machine becomes intrac-
tably large. Given the complexity of modern UIs this is cer-
tainly a concern and potential problem whenever we try and
use FSM to model UIs or UI behaviour. However, because
we already have an abstraction of the UI (the presentation
model) we can use this in conjunction with a FSM and in
most cases we produce a FSM which requires only a small
number of states. We produce a FSM which is at a high level
of abstraction and decorate it with presentation models which
provide the lower-level meaning.

Our FSM consists of the following:

– A finite set of states, Q
– A finite set of input labels,

∑

– A transition function, δ, which takes a state and an input
label and returns a state

– A start state, q0, one of the states in Q
– A set of accepting states, F , which is a subset of Q
– A relation, R, which relates states to PModels

The FSM is then a six-tuple (Q,
∑

, δ, q0, F, R).
The relation, R, between presentation model and state of

the FSM is used to indicate that when the FSM is in a particu-
lar state then the presentation model associated with that state
is the currently active one, i.e., the part of the UI described
in that model is visible to the user and available for inter-
action. The input labels in

∑

are themselves the names of
behaviours taken from the behaviour sets of the presentation
models. In this way we can associate the functionality of
parts of the design with the dynamic behaviour which makes
available different parts of the interface to the user. We call
the combination of presentation model and FSM in this way
a presentation and interaction model (PIM).

We give a definition of well-formedness for our PIM as
follows:

A PIM of a presentation model is well-formed iff the
labels on transitions out of any state are the names of
behaviours which exist in the behaviour set of the pre-
sentation model which is associated with that state.

Using the notation for our FSM,(Q,
∑

, δ, q0, F, R), we can
give this more formally as:

∀(q, t, q ′) : δ • ∃b ∈ Behaviour(qP Model) • t = b

where qP Model is the presentation model associated with state
q, i.e., (qP Model �→ q) ∈ R

Returning again to our case study example, we stated that
there were 26 different screens and dialogues which made
up the UI. This indicates that there is, therefore, a consider-
able amount of behaviour within the UI which manages the
movement between these different parts. Rather than trying
to capture the whole PIM in one view we prefer a modular
approach which makes it easier to view and understand, and
so we use the µCharts language [32] as a way of visualising
PIMs. This allows us to provide both an abstract view of the
PIM, such as the top level view we show in Fig. 4, as well as
increasingly detailed views, as in the PIM for an individual
dialogue which we give in Fig. 5. States represented by ovals
are individual states of the PIM, whereas the rectangles indi-
cate a higher level view and can be decomposed into further
states (we can consider them as states with a chart embedded
within them).

In order to show that a particular behaviour is reachable
we first need to show that the part of the UI it is in (i.e., the
component presentation model which includes this behav-
iour in its set of behaviours) is itself reachable in the FSM.
For example, suppose we want to prove that the behaviour we
were considering earlier, Add NewState, is reachable. We
know from the presentation model that this behaviour is in
the state of the PIM called Edit StateWin. In Fig. 5 we can
see that this state can be reached from the MainV iewP I M
state via the behaviour U I OpenEd StateWin, and in Fig. 4
we see that this state is in turn reachable from the start
state, MainWindow. We can, therefore, be satisfied that this
behaviour is reachable. Once we have determined that all of
the behaviours are both related to specified operations and are
reachable, then we can prove the strong reachability property
of the UI by ensuring that the PIM itself has this property.
In fact we can prove that the PIM has the strong reachability
property first if we choose, but this does not guarantee that
all related behaviours are themselves reachable as parts of
the presentation model may be missing from the PIM. We
cannot discover this without checking individual behaviour.

In addition to properties of the behaviour of the UI, we can
also use PIMs to consider desirable properties of the design
itself (in the same way that we used the presentation mod-
els to examine such properties). The complexity of the PIM
gives us some indication as to the complexity of the interface
we are describing. For example, if we consider a desirable
property of our UI design to be that of ensuring minimum
memory load on users (i.e., we want to avoid the need for
users to have to remember long sequences of actions to navi-
gate through the UI) we can use the PIM to assist with this. A
manual inspection of the graph of a PIM gives an indication
of not only the amount of navigation required (via the num-
ber of states) but also the complexity of navigation between
these states, based on graph properties such as cycles.

123

Formal models for user interface design artefacts 137

Fig. 4 Top level view of PIM PIMed

Main Window

MainViewPIM

MainViewPMandPIM

MainViewPModel

UI_OpenViewPIM

UI_CloseViewPIM

UI_OpenViewPModel

UI_CloseViewPModel
UI_OpenViewPIM

UI_CloseViewPIM

UI_OpenViewPModel

UI_CloseViewPModel

Fig. 5 Detailed view of PIM
for ViewPIM window

ViewPIM

MainViewPIM

EditR

EditStartState

EditFinalState

EditTransWin

EditStateWin

UI_OpenEdRWin
UI_CloseEdRWin

UI_OpenEdTransWin

UI_CloseEdTransWin

UI_OpenEdStateWin

UI_CloseEdStateWin
UI_OpenEdFSWin

UI_CloseEdFSWin

UI_OpenEdSSWin

UI_CloseEdSSWin

Consider the PIM given in Fig. 6. The cycle which exists
between states A, B and C suggests straightforward navi-
gation between these states (i.e., requiring a single action
from the user each time), whereas the chaining between states
B, D, E and F indicates increasing complexity of naviga-
tion. A user moving from state F back to state A is required
to perform four actions, increasing their cognitive load.

Similarly, the larger the number of states of the PIM the
more complex we consider the UI (as more navigation is
required). If we wish to simplify the design and reduce the
number of states we could take the approach of using FSM
minimisation techniques as a first step in achieving this, the
minimised PIM can be used as a basis for the new design.
While minimisation is not enough by itself to perform such a
simplification of the UI (we must ensure for example that we
do not introduce non-determinism and that the reduced num-
ber of states of the UI does not lead to clutter within the dif-
ferent screens) it may prove a useful first step in approaching

the simplification problem by ensuring that the basis for the
redesign retains the reachability properties already proved.

9 Transforming designs to UIs

Once we have satisfied ourselves that the UI designs are cor-
rect with respect to the specification of the system we are
building, we still need to ensure that the final implementa-
tion of that design is also correct. That is, we need a way to
transform our designs into implementations in a way which
preserves the correctness. In Sect. 3 we described how the
formal process of refinement is used to transform specifica-
tions into correct implementations and we now wish to extend
this notion for UI designs.

There are two main considerations when approaching
refinement for UIs. Firstly, we must define what exactly we
mean when we talk about refinement of a UI so that we can

123

138 J. Bowen, S. Reeves

ComplexUI

A

goB

goA

goC

goA

goC goB

B

C

goD

goB

D

E

goE goD

F

goF goE

Fig. 6 PIM example with chaining

develop the necessary steps to be followed. Secondly, we
need to consider how we put the system and UI together in
one formal description. We start to approach both of these
questions by using the µcharts language and its refinement
theory [32].

9.1 System and UI composition

We describe the formal description of both system and UI
together as the composition of the two parts:

Sys||U I

In order to consider them in this way we need a common
language. Currently we have the system described in some
specification language and the UI described by way of the
presentation models and PIMs of the design. One way to
achieve a common language would be to transform the pre-
sentation model (or PIM) into the same language as the speci-
fication (in our case, Z). However, this would not only require
us to model the entire UI state within the Z specification, but
also describe the interaction between system and UI via all of
the operations. This seems to be a time-consuming and non-
intuitive solution as the complexity of the formalism being
used is very removed from the visual nature of the design.

Instead, we consider a different approach using the µ
Charts language. This language, which began as a simpli-
fied version of statecharts, has both a visual representation
(which we have already used for visualising PIMs) and an
underlying logic and semantics given in Z [19,32]. If we
consider the nature of a sequential µchart, it is essentially a
finite-state automaton that describes the set of outputs that
results from reacting to a set of inputs in a given state. We have
already seen that UIs can be considered in this way, and this
has allowed the representation of UIs by both FSM [26,39]
and statecharts [20] in previous research. We take advantage
of the fact that we can consider a UI as a type of reactive

system and also that µCharts has a logic and a formally
defined refinement theory (which immediately gives us an
advantage over a more commonly used language such as
statecharts which has neither of these things). In addition
µCharts contains a syntax for composition which matches
exactly what we want for our Sys||U I description in that
it allows communication between µcharts (which are the
visual representations of the µCharts language) which can
be restricted to prevent the environment (or user) interacting
directly with the part of the chart representing the system.

Figure 7 shows a simple example of such a µchart. The
chart contains two sequential µcharts in composition with
each other. The top chart models the UI design and the bot-
tom chart the system. µcharts react to inputs from the envi-
ronment (which we consider to be a user) which trigger
transitions between states and at the same time signals may
be output back to the environment. The charts can also com-
municate with each other via a mechanism called feedback.
The signals which the charts can communicate on are given
in the set at the bottom of the chart (privateI and privateO
in our example). Whenever one of the charts outputs one of
these signals is it instantaneously fed back to the other chart.
The signal sets at the left and right hand sides of the chart
represent input and output interfaces. These restrict the sig-
nals which the chart will accept from the environment and
output to the environment. In our example the chart will only
accept the signal user I nputs from the environment and will
output nothing.

The mechanisms we have described for µcharts allows
us to model Sys||U I as composed systems which react to
some signals from an outside environment and which have a
private mode of communication between them. This exactly
replicates our view of a system where the user interacts via
a UI, rather than with the system directly, and the UI and
system communicate privately.

Returning to our earlier example from the case study we
could model the Edit State part of the system with theµchart
of Fig. 8. The user interacts with the top part of the chart
via the input signals Delete, DelY es and Del No, and the

UI

System

{privateI,privateO}

{userInputs} {}

Ietavirp/stupnIresuiu

system privateI/privateO

Fig. 7 System || UI

123

Formal models for user interface design artefacts 139

Fig. 8 Composed chart for
EditStateWindow EditStateWindowUI

StateDisplay

CheckDelete

DeletingState

AddingState

Delete/

UI_Close

DelNo/

DelYes/DeleteState

Add/AddState

/

EditStateSystem

Idle DeleteState

AddState

AddState

\
/

DeleteState

{AddState,DeleteState}

{Delete,DelYes,DelNo,Add} {}

/

UI and the System interact via the signals Add State and
DeleteState.

It is not our intention to try and model all Sys||U I pairs
for all systems in this manner, rather we are using examples
of this approach to generalise the behaviour for the com-
position so that we can begin to understand the refinement
considerations. We will discuss this next.

9.2 Refinement for UIs

In order to formally define what refinement means for UI
designs and UIs we must first understand what such a refine-
ment may consist of. Refinement is a formal process of trans-
formation for some design (at any level of abstraction) to
something which is less abstract. We can repeat the process
until we reach a concrete implementation.

When we consider a UI design, it has both behaviour
and appearance. Informal artefacts, such as prototypes, tell
us a lot about the appearance of a UI, but as we have
discussed, by themselves they do not clarify behaviour. Pre-
sentation models and PIMs on the other hand tell us a lot
about behaviour, but only give an abstract idea of appear-
ance (by describing the types of widgets that may be used
but saying nothing about layout, etc.). We will then need to
consider both the formal and the informal when we consider
refinement.

We can examine the literature on “traditional refinement”
(by which we mean the sorts of formal processes we have
discussed in Sect. 3 and which are well documented in such

works as [24,40,41]) which gives us some ideas about how
we may consider refinement. For example, one general way
of characterising refinement (as we have said before) is via
the concept of substitution. If we have some system A, and
can replace it by system C , and it is not possible to tell that
a substitution has occurred then we might state that a refine-
ment has taken place. This turns out to not be an intuitive
way to consider UI refinement. We may replicate the func-
tionality of our abstract UI with a concrete UI, but if its
appearance is different then any user will recognise that a
substitution has taken place. More useful is the notion of
contractual obligation. If we have a design which satisfies
the user in terms of its behaviour, appearance and usability
then any suitable refinement should not reduce satisfaction
in any of these areas.

These considerations, and how to formally define such
considerations, are the current focus of our research. We aim
to use the refinement rules for µCharts to try and character-
ise UI refinement which will then allow us to investigate the
properties of such a refinement, for example in respect of its
monotonicity.

10 Conclusion

In this paper we have described two models which allow us
to capture the information in informal design artefacts. The
models enable us to integrate informal UI design methods
with formal methods, as well as providing benefits to the UI
design process itself.

123

140 J. Bowen, S. Reeves

We have described the presentation model, which formally
captures an informal UI design, and discussed how we can
use this to include designs in a formal refinement process
as well as for design equivalence and consistency checking.
The presentation model allows us to capture static properties
of a UI design and we have subsequently shown how we can
use this with another formalism, FSM, to capture dynamic
UI behaviour based on UI functions which change the avail-
able functionality of the UI for a user, giving PIMs. Our work
not only acts as a step towards our goal of integrated formal
and informal methods, but also aids in general design issues
relating to design of interfaces for different platforms and
upgrading of legacy applications.

The main advantage we propose for the presentation model
and the methods we have shown is that they work in conjunc-
tion with existing methods being used by formal practitioners
and designers. We do not require that these groups abandon
their existing methods and techniques, but rather enhance
these with a relatively straight-forward formalism and set of
techniques which work alongside, rather than replace, their
existing methods.

Having shown how we can integrate early stages of UI
design into a formal software development process, we have
gone on to describe the next step, that of refining the UI
design into an implementation. We have discussed some of
the problems this presents, namely finding a way to repre-
sent the system and UI together in a common language and
defining what the meaning of UI refinement is. We have then
shown how we can use the µCharts language as a first step
in solving these problems.

An area not covered in this paper, which we believe is
worth further study, is that of integrating our models and
methods with existing work in the field. In particular our work
avoids any attempt to model users or user behaviour. Instead
from the point of view of the formal models we treat the user
as an abstract entity which has the ability to interact with
the system via the specified behaviours; all user concerns
and requirements are contained within the UCD process. It
would certainly be interesting to extend our work to include
issues of user behaviour and cognition. One way to achieve
this might be to take an existing approach to user model-
ling, such as PUM, and find ways to integrate this into our
work. Developed initially as an evaluation tool for UIs, PUMs
[42] have been subsequently adapted and used extensively
by Blandford et al. (see for example [2,3,7]) in approaches
to integrating user models with design models and usability
evaluation at early stages of the design process. It may be
possible to integrate semi-formal PUMs with our presenta-
tion models and PIMs in a way that enables us to do things
such as examine the correspondence between expected user-
behaviours (from the PUM) and behavioural possibilities of
the UI (from the presentation model and PIM) leading to a
more thorough investigation of early design options.

References

1. 13568 I (2002) Information Technology—Z Formal Specification
Notation—Syntax, Type System and Semantics, 1st edn. Prentice-
Hall International Series in Computer Science, ISO/IEC, Upper
Saddle River

2. Blandford AE, Butterworth R, Curzon P (2001) PUMA footprints:
linking theory and craftskill in usability evaluation. In: Proceedings
of Interact, IOS Press, Amsterdam pp 577–584

3. Blandford A, Butterworth R, Curzon P (2004) Models of interac-
tive systems: a case study on programmable user modelling. Int
J Hum-Comput Stud 60(2):149–200. doi:10.1016/j.ijhcs.2003.08.
004

4. Bowen J (2005) Formal specification of user interface design guide-
lines. Master’s thesis, University of Waikato

5. Bowen J, Reeves S (2006) Formal models for informal GUI
designs. In: 1st International Workshop on Formal Methods
for Interactive Systems, Macau SAR China, 31 October 2006,
Electronic Notes in Theoretical Computer Science, Elsevier,
Amsterdam

6. Bowen J, Reeves S (2006) Formal refinement of informal GUI
design artefacts. In: Proceedings of the Australian Software
Engineering Conference (ASWEC’06), IEEE, pp 221–230

7. Butterworth R, Blandford A (1997) Programmable user models:
the story so far, Technical report, Middlesex University

8. Correani F, Mori G, Paternò F (2004) Supporting flexible develop-
ment of multi-device interfaces. In: EHCI/DS-VIS, pp 346–362

9. Courtney A (2003) Functionally modeled user interfaces. In:
Joaquim J, Jardim Nunes N, Falcao e Cunha J (ed) Inter-
active Systems. Design, Specification, and Verification. 10th
International Workshop DSV-IS 2003, Funchal, Madeira Island
(Portugal) Springer Verlag Lecture Notes in Computer Science
LNCS, pp 107–123

10. Coyette A, Faulkner S, Kolp M, Limbourg Q, Vanderdonckt J
(2004) Sketchixml: towards a multi-agent design tool for sketching
user interfaces based on usixml. In: TAMODIA ’04: Proceedings
of the 3rd annual conference on Task models and diagrams, ACM
Press, New York, pp 75–82. http://doi.acm.org/10.1145/1045446.
1045461

11. Derrick J, Boiten E (2001) Refinement in Z and object-Z: founda-
tions and advanced applications. Formal approaches to computing
and information technology, Springer, Berlin. http://www.cs.ukc.
ac.uk/pubs/2001/1200

12. Dijkstra EW (1976) A discipline of programming. Prentice Hall,
Upper Saddle River

13. Dix A, Runciman C (1985) Abstract models of interactive sys-
tems. People and Computers: Designing the Interface, Cook PJ
(ed). Cambridge University Press, Cambridge, pp 13–22

14. Dourish P (2006) Implications for design. In: CHI ’06: Proceedings
of the SIGCHI conference on Human Factors in computing sys-
tems, ACM, New York, pp 541–550. http://doi.acm.org/10.1145/
1124772.1124855

15. Duke DJ, Fields B, Harrison MD (1999) A case study in the spec-
ification and analysis of design alternatives for a user interface.
Formal Asp Comput 11(2):107–131

16. Gieskens DF, Foley JD (1992) Controlling user interface objects
through pre- and postconditions. In: Proc. of CHI-92, Monterey,
CA, pp 189–194

17. GNOME Human Interface Guidelines(1.0), 2002 (2007) http://
developer.gnome.org/projects/gup/hig/1.0/, GNOME Human
Interface Guidelines (1.0)

18. Gow J, Thimbleby HW, Cairns PA (2005) Automatic critiques of
interface modes. In: DSV-IS, pp 201–212

19. Henson MC, Reeves S (2000) Investigating Z. J Log Comput1
10(1):1–30

123

http://dx.doi.org/10.1016/j.ijhcs.2003.08.004
http://dx.doi.org/10.1016/j.ijhcs.2003.08.004
http://doi.acm.org/10.1145/1045446.1045461
http://doi.acm.org/10.1145/1045446.1045461
http://www.cs.ukc.ac.uk/pubs/2001/1200
http://www.cs.ukc.ac.uk/pubs/2001/1200
http://doi.acm.org/10.1145/1124772.1124855
http://doi.acm.org/10.1145/1124772.1124855
http://developer.gnome.org/projects/gup/hig/1.0/
http://developer.gnome.org/projects/gup/hig/1.0/

Formal models for user interface design artefacts 141

20. Horrocks I (1999) Constructing the user interface with statecharts.
Addison-Wesley Longman„ Boston

21. Hussey A, MacColl I, Carrington D (2000) Assessing usability
from formal user-interface designs. Tech. Rep. TR00-15, Software
Verification Research Centre, The University of Queensland

22. IFM07 (2007) http://www.softeng.ox.ac.uk/ifm2007/, http://www.
softeng.ox.ac.uk/ifm2007/

23. Landay J (1996) Silk: Sketching interfaces like krazy. In: Human
Factors in Computing Systems (Conference Companion), ACM
CHI ’96, Vancouver, Canada, 13–18 April, pp 398–399, http://
citeseer.ifi.unizh.ch/landay96silk.html

24. Morgan C (1998) Programming from specifications, 2nd edn.
Prentice Hall, Hertfordshire

25. Paiva A, Tillmann N, Faria J, Vidal R (2005) Modeling and testing
hierarchical GUIs. In: Beauquier D, Borger E, Slissenko A (eds)
ASM05, Universite de Paris

26. Parnas DL (1969) On the use of transition diagrams in the design of
a user interface for an interactive computer system. In: Proceedings
of the 1969 24th national conference, ACM Press, pp 379–385

27. Paternò F (2001) Task models in interactive software systems.
Handbook of software engineering and knowledge engineering

28. Paternò F (2001) Towards a UML for interactive systems. In:
EHCI ’01: Proceedings of the 8th IFIP International Conference on
Engineering for Human-Computer Interaction, Springer, London,
pp 7–18

29. Paternò FM, Sciacchitano M, Lowgren J (1995) A user interface
evaluation mapping physical user actions to task-driven formal
specification. In: Design, specification and verification of inter-
active systems, Springer, London, pp 155—173

30. Pfaff GE (1985) User interface management systems. Springer,
New York

31. Plimmer B, Apperley M (2002) Computer-aided sketching to cap-
ture preliminary design. In: CRPIT ’02: Third Australasian con-
ference on User interfaces, Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, pp 9–12

32. Reeve G (2005) A refinement theory for µcharts. PhD thesis, The
University of Waikato

33. Shneiderman B (1998) Designing the user interface: strategies for
effective human-computer interaction, 3rd edn. Addison Wesley
Longman, Boston

34. Smith G (2000) The object-Z specification language. Kluwer,
Dordrecht

35. Smith S, Mosier J (1986) Guidelines for designing user inter-
face software. Tech. Rep. ESD-TR-86-278, Mitre Corporation,
Bedford, MA

36. Thimbleby H (1990) Design of interactive systems. The Software
Engineer’s Reference Book

37. Thimbleby H (2004) User interface design with matrix algebra.
ACM Trans Comput Hum Interact 11(2):181–236

38. Top 10 Mistakes in Web Design (2007) Jakob Nielsen: Top 10
mistakes in web design, available online. http://www.useit.com/
alertbox/9605.html, http://www.useit.com/ Jakob Nielsen’s usable
information technology website

39. Tsujino Y (2000) A verification method for some GUI dialogue
properties. Syst Comput Jpn 31(14):38–46

40. Wirth N (1971) Program development by stepwise refinement.
Commun ACM 14(4):221–227, http://www.acm.org/classics/
dec95/

41. Woodcock J, Davies J (1996) Using Z: Specification, Refinement
and Proof. Prentice Hall, Upper Saddle River

42. Young RM, Green TRG, Simon T (1989) Programmable user mod-
els for predictive evaluation of interface designs. SIGCHI Bull
20(SI):15–19. http://doi.acm.org/10.1145/67450.67453

123

http://www.softeng.ox.ac.uk/ifm2007/
http://www.softeng.ox.ac.uk/ifm2007/
http://www.softeng.ox.ac.uk/ifm2007/
http://citeseer.ifi.unizh.ch/landay96silk.html
http://citeseer.ifi.unizh.ch/landay96silk.html
http://www.useit.com/alertbox/9605.html
http://www.useit.com/alertbox/9605.html
http://www.useit.com/
http://www.acm.org/classics/dec95/
http://www.acm.org/classics/dec95/
http://doi.acm.org/10.1145/67450.67453

	Formal models for user interface design artefacts
	Abstract
	Introduction
	User-centred design artefacts
	Formal methods and refinement
	Integration of techniques
	Presentation model
	Syntax
	Semantics
	Example
	Using the presentation model
	A common design language
	Presentation models and design equivalence
	Presentation models and design properties
	Presentation interaction models
	Transforming designs to UIs
	System and UI composition
	Refinement for UIs
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

