CHAPTER TWENTY-NINE

Users and Trust: A Microsoft Case Study

CHRIS NODDER

ACK IN THE GOOD OLD DAYS, if you lived in a small town, you wouldn't think twice about
leaving your house unlocked while you ran errands, about letting kids play in the streets,
or about sharing details of your family’s life with other people in the town.

However, as the small town grew, and more new people started to arrive, you might have
started to hear about unusual things happening: property disappearing, park benches get-
ting vandalized, strange behavior from the new neighbors.

Over time, you'd learn that maybe it was safer to lock your door, to ask your kids where
they would be going, not to lend out your lawnmower. Normally, you would learn this
through newspaper articles or stories that friends told you. Sometimes, if you were
unlucky, you'd learn through personal experience of having something bad happen to
you—something that would never have happened in the good old days.

The Internet has paralleled this move from small town to larger city life. With the advent
of the first HTML browsers, the Internet became the World Wide Web, and many new
neighbors moved in to what had previously been a relatively trusting small town. The new
neighbors brought with them confidence tricks, unwanted mail, viruses, and lots of candy
that it really wasn’t safe to take.

589

590

The major difference between real-life small towns and the Internet is the compressed
time scale of the Internet’s growth. That growth rate, along with the relative anonyruity
afforded by the Internet and the extreme ease of creating a presence on the Web, has
meant that many regular users of the Internet have not had enough time to build or adjust
their perceptions of trust to deal well with the online environment.

Instead, the responsibility for helping users decide whom to trust online has fallen to the
infrastructure providers: manufactarers of browsers and email programs, antivirus appli-
cations, and spyware scanners.

In the early days of the World Wide Web, fewer people were attempting to exploit the
gaps in technological or social trust online. As the technologies matured and the user base
grew, such exploits became more lucrative.

To counter this rise in the number of exploits, the infrastructure providers have incorpo-
rated technologies and user interface elements aimed at shaping users’ behaviors, teaching
them whom they can trust, and, where necessary, giving them the cues they need to
make trust decisions. However, the code that infrastructure providers produce is much
better at dealing with problems that have a logical right and wrong outcome (virus/no
virus) than problems that have shades of emotional response, such as social engineering
attacks.

Obviously, Microsoft is one of those technology providers. This chapter describes how
research into users’ trust mechanisms led to changes in user interface design philosophy
for Internet Explorer and several other products at Microsoft, The changes represent a first
step in respecting the emotional aspect of trust decisions, and in giving users the informa-
tion they need to make good trust decisions within Microsoft applications.

Users and Trust

As part of continual usability research, usability engineers at Microsoft had observed hun-
dreds of users answering questions posed by the computer (consent dialogs} in Internet
Explorer, Windows Client and Server, Microsolt applications, and other companies’ prod-
ucts. Tt was clear that users often weren‘t following the recommendations that the prod-
ucts made. The question was: why not?

Having seen this behavior over multiple usability sessions, we ran some specific studies 1o
gain more insight. We conducted in-depth interviews about trust with 7 participants, and
lab-based research with 14 more. We then used the results of this work to develop user
interface prototypes that incorporated design elements suggested by the initial research,
and observed a further 50 participants working with various iterations of the designs in
different trust scenarios. Later, we had the chance to verify the concepts and designs with
participarits who were helping us evaluate the interface for Windows XP Service Pack 2
both in multiple lab sessions and through feedback and instrumentation from a very large
user panel.

CHAPTER TWENTY-NINE

We found that it was not just that users didn’t understand the questions being posed by
the computer, although that was definitely part of it. It was also that the computer was
not their only source of trust information. It turns out that users aggregate many “clues”
about trustworthiness and then trade those off against how much they want the item in
question. Interestingly, computers weren't presenting all of the clues that they could have
to help users, and some of the clues they were presenting were so obscure that they just
confused users.

WHAT IS USER RESEARCH AT MICROSOFT?

AUser Besearcher’s role is, specifically, to bring data to the table about how people interact with PCs,
what they want to do but can’t do, and what’s coming around the corner technologically that they'll
need o do but don't even have a clue about. Then, the researcher works closely with designers, user
assistance creators, and the feature program managers 1o ensure that we build the right features to
meet user scenarios, that those features work the way users expect, and that all the other myriad
design considerations are taken inlo account,

User Research at Microsoft draws on multiple data sources to build a picture of user behavior and
user needs. Along with traditional lab-based studies of everything from paper prototypes to finished
cade, we also conduct site visits to walch users in their own environments, perfarm in-depth inter-
views on specific topics, and administer large-scale international surveys. In addition, we rely on
community feedback and our panel of instrumented users, This user panel is composed of regular
people who have opted to run special software that provides us with data on their computer setlings
and their behavior. Interpolating from all of these areas as well as market research and published
academic studies helps us to understand what drives users.

Lab worl {usability “testing”) is actually quite a small part of what User Researchers do. While we're
in the fab, though, along with measuring users’ success on tasks, we also measure things like desir-
ability, learnability, and comprehension. Having the controlled environment of the usability lab
allows us to isolate specific issues more easily. We iterate the design and test again with more users
until we getthe user experience to a point where participants can be successful and safisfied with the
fask.

The data serves other purposes too. Knowing what proportion of users are likely 1o perform a certain
task—say, one that keeps them more secure—is very useful in meelings where other team members
areinclined to make wild guesses based on their own experiences. The realities can be very sobering.
Being able to show how that proportion grows after injection of some user-centered design inta the

task is a major encouragement for teams to think and design in a user-centered way.

USERS AND TRUST: A MICROSOFT CASE STUDY

591

Users’ Reactions to Trust Questions

Trust questions appear at many points in computer interfaces. Typically, they are shown
as dialogs when the computer requires input or consent from the user before proceed-
ing—for example, before downloading a file or before performing an action that could
lead to data loss.

These trust question dialogs are often designed to serve a useful dual purpose of both
informing users and requesting input. During usability research at Microsoft, we found
that these dialogs regularly failed on both counts from users’ perspectives. Some observa-
tions we made about the information and questions in trust dialogs were:

Often, the quesiion being presented is a dilentma rather than a decision
In such cases, the user feels that he has no way of choosing between the options being
presented. Without suitable assistance, the user will be forced into making a choice that
may or may not be the right one for him. Superstitious behavior builds up this way.

Computers can’t help interpret emotional clues because they behave in a purely logical way
This means that computer software has to defer decisions to users even if the outcomes
of those decisions look logically “bad.”

Users dor 't want to deal with the trust issues presented fo them
The larger the scope of the decision, and the less context that is given, the more likely
they are not to consent to the action being presented to them.

Users don 't want to reveal personal data
The closer the question being asked is to revealing personal data, the less likely users
will be to comply.

So, users do not respond to dialogs the way we might anticipate. This is because they are
often forced to make a decision that is at odds with their understanding of the situation,
and the information being provided is both incomplete and only partially intelligible to
them.

Users’' Behavior in Trust Situations

The research I performed also showed that users have some interesting things going on in
their heads during their interactions with trust situations on their computers:

What users say they'll do and what they actually do often differ
For example, while users may claim to run virus-checking software, and be careful to
whom they give personal data, in reality they are more lax than they describe.

Users don’t necessarily want to think about the consequences of their behavior
They may “forget” that they’ve changed a setting or allowed a certain application to
access their data, and thus be confused when thiey suffer consequences such as a broken
user experience or unexpected email.

502 CHAPTER TWENTY-NINE

Users make one-off decisions about trust
Trying to get them to make a global decision to “always do X" will upset them and
potentially lead to their declining that global decision where, in fact, they would want
to accept in some specific instances.

Users conceive of security and privacy issues differently than developers do
Users don’t have the background understanding of issues, are surrounded by myths and
hoaxes, and have a different relationship with “junk” mail than application developers
do.

Users have marny superstitions about how viruses are propagated
They confuse hacking and viruses. They also interchange terms for soliware bugs and
viruses, They often fall prey to virus hoaxes in an attempt to protect themselves, while
simultaneously engaging in risky behavior likely to lead to virus transmission.

Users do not tend 10 consider events requiring trust decisions in the same way that tech-
nologists do. This is because their focus is not on the technology, but on the cutcome of the
trust event and its impact on their lives.

Security Versus Convenience

The worst dilemma for users, and the one that is also the hardest to resolve through user
experience design, is that from a user perspective, increases in security are most frequently
accompanied by a reduction in convenience. Likewise, when users try to accomplish a
task in a convenient way, they often encounter security warnings.

For instance, choosing to set the browser security level to High in Internet Explorer or
other browser products will turn off many of the features of the product that can be used
1o exploit users. However, this same action can degrade the browsing experience to a
point where most users will be dissatisfied, as they will no longer have access to the plug-
in components and scripting functions that they have come to expect on a web site. It is
this dilemma that user experience designers must seek to resolve for users, presenting
them instead with understandable options that allow them to perform their tasks with a
minimum of inconvenicnce.

Making Decisions Versus Supporiing Decisions

1t is important to note that the emphasis here is not on allowing the computer to make
trust decisions, but on how a computer can assist users with their trust decisions. Of
course, there are some instances where the computer can make that decision—ifor
instance, when it detects the presence of a known virus in something the user plans to
download. Here, the decision is easy—protect the user from the virus. Computers can be
programmed to make this kind of decision. Most of the time, however, the decision is less
clear cut, and so it still rests with the user. The challenge is to achieve the correct balance
between exhausting the user with multiple questions and automating the process to the
point where the computer runs the risk of making erroneous decisions.

USERS AND TAUST: A MICROSOFT CASE STUDY 5493

Having observed that users have a tendency to simply dismiss any dialog that gets in their
way, the tendency among interface designers is often to try to remove the dialog. If the
dialog can be completely removed (if the computer can make the decision), that's great. If,
however, the dialog siill needs to exist, our studies have shown that users make a much
mare secure, appropriate, reasoned decision if the dialog is presented in the context of
their task.

Placing the decision in an initial options screen or hiding it in a settings dialog removed in
space and time from the point where users carry out their task requires them to think in a
logical rather than an emotional way about a class of task rather than about a specific
instance.

As noted earlier, users found it easier to make a specific decision rather than a generic
decision. It was much easier for them to agree 1o trust a specific person at a specific time
for a specific transaction than to agree to trust a whole category of people every time a
transaction occurred.

Users could easily make a decision without too much interruption to their task if the dia-
log presented the facts they needed in a way they could understand. We classified this as
presenting a decision, not a dilenima.

For common or repetitive tasks, obviously the fewer interruptions a user experiences, the
better, In these situations, it makes sense to give the user an option to always apply his
current decision to the situation. If you can scope the situation suitably, the user will be
happy to have that decision applied consistently.

For less commuon tasks, it’s not necessarily the number of screens between a user and his
goal that determines the quality of the interaction. Instead, a major factor is whether all of
those screens are perceived by the user to be flowing toward his end goal.

After eliciting from users some of the clues they use, and understanding the philosophies
that they bring to their trust interactions, we worked out which clues can be provided by a
computer, and then worked out how and when to present them in the trust process such
that they aided in the decision. The tone of the interaction was dictated to a large degree

by a wish to stay within users’ comfort zones while simultaneously educating them.

Consent Dialogs

The name of this much maligned interface element suggests something that isn’t always
apparent in the design—dialog boxes are supposed to be a conversation {“dialog”}
between the computer and the user. The consent dialog has a specific conversation topic:
“Do you want this thing to happen?” Frequently, consent dialogs ask trust questions, If
the question is well phrased, users should have little difficulty making a decision, complet-
ing the dialog, and continuing on their way. However, well-phrased dialogs seem to be
difficult to design.

594 CHAPTER TWENTY-NINE

After observing many users working with dialogs in the lab, T would suggest the hierarchy
of decision points shown in Figure 29-1 that users follow in order to continue with what
they perceive as their real task—the one that the dialog box interrupted.

oY

@ @@ internel Browser - File Download File decision path

1. Was this course of actien recommended to
me by someone | trust?

File download warning

@ You are downloading the file 2. Can | decide from just reading the buttons?
application.exe from www.example.com 3. Can | decide from text next to the controls?

4. Does the titie tell me what deciston to make?
more information @ 5. Do | recognize any graphics or icons?

6. Does the body text tell me what t need to do?

Install t Save Cancel || | 7. Does the title bar text give me ¢lues?

8.1s there help, and will it hef ?
@D Always install files from this site P pme

FIGURE 29-1. Decision points users make in evaluating a (hypothetical} consent dialog

Note that before users even start to evaluate the information provided in the dialog, they
have already engaged their emotional feelings about the situation (1, in the figure). If
these feelings are strong and positive (a friend or someone the user trusts recommended
the application, for instance), then his desire to continue down this path may overrule his
usual caution. In this situation, the user has made an emotional decision that is unlikely to
be changed by any logical information or warning on the screen.

Users also gravitate toward the buttons and other controls {checkboxes, radio buttons) on
the screen—they realize that these are the elements that will propel them toward their
desired outcome, so they start by reading the text on and next to controls (2 and 3, in the
figure) to see if these provide enough clues to let them continue. The wording of the but-
tons, and even which one is highlighted by default, are clues that users can employ in
their trust decisions.

If they are unsuccessful after reading the burton labels, users typically proceed to read the
text on the screen. The primary statement is read first, normally because it is {irst on the
nmain page area and in a larger or bold font (4, in the figure).

Dialogs with graphical elements also assist users with the trust decision—have they seen
that graphic before? Is it from a company they trust? Obviously, if the only graphics are
system elements such as the icon of the program that launched the dialog box, then users

may gain a false sense of security {3, in the figure).

Now users are really scraping around for clues and cues to help with their trust decision.
Body text in the dialog box, the title bar, and potentially help links from the dialog box are
all read with increasing levels of irritation and desperation, if at all (6, 7, and &, in the
figure).

USERS AND TRUST: A MICROSOFT CASE STUBY 595

Consent Dialog Redesign

There is very little that a computer can do to counter an emotional decision by the user.
Unfortunately, this is the place where social engineering attacks {e.g., so-called “phishing”
attacks) happen—before the computer interface has a chance to influence the decision.

However, there are user interface design elements that can assist users with making trust
decisions if they choose 1o make use of the information presented by the consent dialog.
Figure 29-2 shows these elements laid out in a figurative consent dialog. For an example
of how these elements are used in a real consent dialog, see Figure 29-8.

[Title bar

Primary question area
Property: Value
Property: Value
Property: Value

i I
Positive

Warnings or details to heip the user make
an informed decision. More details. ...

FIGURE 29-2. Figurative elements of a more informative (hypothetical) consent dialog

Considering that users tend to gravitate to the buttons on the dialog, the default button
(which will be clicked if the user simply presses Enter) should always follow the path rec-
ommended by the computer. This may not necessarily be the most secure path ultimately,
but instead may be the best tradeoff of security and convenience.

The button labels should also be verbose enough 1o allow users to make an informed deci-
sion. For instance, consider the difference in meaning between the button pair Install and
Cancel and the button pair Install Anyway and Cancel. In the second instance, the button
label itself contains a caution that something may require further investigation before
installation. Of course, in conjunction with the button labels, the dialog text needs 1o
make it clear what the issue is that requires investigation, and suggest a path of resolution.

The dialog should contain a summary statement or focused question placed in the primary
area of the dialog box. This statement or question should provide users with an under-
standing of the decision they are being asked to make (what they are “consenting” to).

If further text is required, it should follow the summary statement, but what appears from
testing to be more useful to users at this point is evidence that they can use to evaluate
their response to the question being asked. In an ideal world, this information would
probably contain recommendations {rom trusted sources; in reality, with today’s software
and certification mechanisms, the best that can be done is often to provide what informa-
tion the application knows about the situation to the user in the form of clues he can use
to help him arrive at a decision (the Property: Value pairs in Figure 29-2). Typically, this
means items such as the filename, publisher, and download location of a file, the name of

596 CHAPTER TWENTY-NINE

an application or user who is requesting something, or other such short strings. The com-
puter can often also assign some degree of confidence to these clues by letting the user
know whether the statement is corroborated by a certificate. Although users often have
totally erronecus concepis of what certification entails or guarantees, this can be
abstracted to an extent within the dialog.

For users who still do not have sufficient information to make a decision, there is space to
provide additional assistance text and even a link to a help article. Note that this informa-
tion is placed in a separate area at the hottom of the dialog that does not interfere with the
primary dialog controls. User testing has shown that people who are seeking out this
information will still find it in this location, whereas if it is placed above the action but-
tons, it interferes with the task for users who do not require the additional, often generic,
text. This information is accompanied by an icon that rates the severity of the decision

outcome—informational, warning, or danger/stop.

Windows XP Service Pack 2—A Case Study

In August of 2003, senior executives at Microsoft made it clear that continuing with a
reactive patching approach to fixing security exploits was insufficient. Instead, users
needed a system that was able to deal with whole classes of exploits and to prevent infec-
tion. The technologies required to achieve this required a major rewrite of several compo-
nents of the operating system, and also required us to make changes to the default
behaviors in Windows.

While this last point may not sound like a big deal, this would be the first time in the his-
tory of Windows that a service pack release made significant changes to the user experi-
ence of the product. By working with the program managers for Service Pack 2, we
presented evidence from user studies, surveys, instrumentation reports, and site visiis to
the Windows executives demonstrating that the release would not be successtul without
several large-scale changes to the user experience.

This data had been collected primarily from research into Passport, Hailstorm, XP Service
Pack 1, and early work on Windows Codename “Longhorn”—the next version of Win-
dows. It was fortuitous that it could be applied so directly to the problems that were
addressed by XP Service Pack 2. We also worked to ensure that many of the changes could
be controlled through group policy in order to satisfy corporate customers.

Some of the major attack points in Windows are found in the Internet-related features—
Internet Explorer (IE}, Outlook Express (OE), and the Application Execution Service
{which prompts users to save or run downloaded or attached files). Various other system
components, such as the Windows Firewall and Automatic Updates, are designed to help
protect users but require user interaction in order to work correctly.

The user experience focus for SP2 was on making security and privacy “just work,” and
where that was not possible, making the security and privacy issues understandable to
users so that they can make informed decisions.

USERS AND TRUST: A MICROSOFT CASE STUDY 597

To that end, we took several components of Windows and gave them a design overhaul.
The following sections show before and after images with some commentary on the rea-
sons for the changes. Most frequently, the reasons are based on the consent dialog rede-
sign described earlier.

ActiveX Dialogs

It was very clear from user testing that the ActiveX dialog box in Windows XP and XP Ser-
vice Pack 1 (XP SP1} (see Figure 29-3) was not very successful at giving users the informa-
tion they needed in order to make an informed consent decision.

you art to install and fir "BISH Chat Contesd
: 9.2, 31!2 24017 signed on ?91‘271’25032 12 ?M an

FIGURE 29-3. Original ActiveX consent dialog

Instead of just applying the consent dialog redesign to this interface, we considered ways
of also increasing user satisfaction. This dialog box typically appears while a page is load-
ing—often before any content has appeared on the first page of a site that a user visits. As
such, it is both a frustration because it gets in the way of the user’s primary task, and a
dilemma because the user cannot judge the value of agreeing to the dialog box (if she
even understands what it is asking).

Taking a design element from Qutlook Express, where additional information about email
format options and blocked content is displayed in a “bar” in the message title area, we
developed an in-context but discreet notification called the Information Bar, which ani-
mates down from the Internet Explorer Toolbar.

The Information Bar (shown in Figure 29-4) provides the most condensed information
possible to inform users in context that the web site they are on is requesting that they
consent to a specific action. They can continue to browse the Web without responding to
the Information Bar, or they can interact with the bar to enable downloads of files or
ActiveX controls, or to enable blocked pop-ups.

598 CHAPTER TWERNTY-NINE

Be fdt fou Papokes Ik Wooo

G- BB B

#eg iz [batprfohat.men, comafe_dmenboad, mursyTReRuremfoin oy

o4
1 & Seaurky Wamiteg box bra this spems, st rss chth 22 Yos bUtdn Lo Complite tha
dovmicad

0 MsN Chat seltware,

1ETE 8 ‘,'7;u i Mo, wre i nat e atle o chiat

The duwnloattis in progress
take ok

R takes sporoximatels 2 et
{usig a 236)
cw:mnseau»msm mmnmmmmkyfmzuwm mma E“é ek
o and i
rev!: Lo bagin wiing 113 Chat. 1f you have alreatly downtaaded the seftware, N
1he smiley Face will sppear very guickly., E inatad
L Instalation prable I Sue the Smiley
Face!

E

FIGURE 28-4. The Information Bar in Windows XP Service Pack 2

For ActiveX controls, clicking the Information Bar produces the redesigned consent dialog
sitown in Figure 29-5.

| 'Do'you want tn install this snftwaﬂ:

Pubhs?’wrl "mmagft&mmmhmmga

[#] More eptions Bl inatal E_Bnnttnstal!

™8

: @ :.' : While fﬁes Frum ‘the Interne2 canbe useFuI, I:hrs Fite type ¢ah potentnally harm
NG/ your computer, Only instell softwrere from pablishers you trust, Wht's the rishy-

FIGURE 29-5. The updated Aclive X consent dialcg; even if they read nothing else, users will see their options from the
button labels

The consent dialog from XP SP1 had contained a checkbox option to “Always trust” the
given publisher, and thus not be pestered by these consent dialogs in the future. Once
ActiveX controls got co-opted for unsavory uses, we observed users wanting a checkbox
for “Never trust” more frequently than for “Always trust.” After trying several iterations of
these designs, we ended up with the “More options” button, shown in its expanded state

in Figure 29-6.

USERS AND TRUST: A MICROSOFT CASE STUDY 599

§ Fewer options - : L Lr."ns.ta!l. .j-._:..[;gfm't Inst.aﬂ.

(; this ile tyne can potentially har

publishers you trust: What's the risk?.

While Fles from the Inkernet can b
-yourcamputer. Only install software Fron

FIGURE 29-5. Expanded version of the redesigned ActiveX dialog; the options include a “never install” choice often

requested by users

Note that the redesigned ActiveX consent dialog has several changes:

* Button defaults. Buttons have a secure default: clicking Enter chooses the Don’t Install
option,

® Button labels. Button labels change from OK and Cancel to Install and Don’t Install.
Users can now see the implication of clicking the button (something will be installed)
without reading any other text on the dialog.

* Primary text. Primary text on the screen is a simple question. In the previous design, it
wasn't even clear to mosi users that there was any question at all in the text.

* Bvidence. “Evidence” that the computer knows to be true (via certificates) is presented to
the user. Clicking on the items allows experienced users to see certificate details and the
originating site. This helps prevent users from being fooled into clicking on a consent
dialog that appears to be from the site they are on but that was actually produced by a
pop-under advertisement {trust by association).

* Assistance fext. Assistance text is shown in a separate area at the bottom of the screen,
with a link to further assistance. This is useful if this is the first time a user has seen this
dialog or if the user sees such dialogs infrequently. However, the text is out of the way
if the user knows what he is doing,

File Download Dialogs

File download dialogs are mainly triggered by user actions in Internet Explorer. However,
sometimes the user can be tricked into downloading software through a variety of code or
social engineering manipulations. While Xp SP2 removed several of the code exploits, it
was still important to ensure that users knew what they were getting themselves into with
file downloads, considering that the consequences could be catastrophic i{ the file were
actually a virus.

600 CHAPTER TWENTY-NINE

The file download dialog in Windows XP and XP 5Pl {shown in Figure 29-7) was a rela-
tively innocuous dialog that took an informative approach but did not really help the user.

: You are do#nlaadmg the file

. spyhunters exe ﬁ‘om sa&wara—ﬁles dov.nload o .

Would you Izke fo open the f Ee orsaveitto ym.ar computer’? :

[Open Save

j |

] [Cancel] { HMore .!nfo.]

FIGURE 29-7. Original file download dialog; users have to read the entire dialog in order to see the question

Note the relatively useless text “You are downloading the file:”

, which takes precedence

over the real question in the dialog—*Would you like to open the file or save it to your
computer?” This question is also misleading. In the case of a Word document download,
you truly are “opening” the file. However, in the case of an executable program file, from
a user perspective you are not so much opening the [ile as running it.

Note also how the More Info button has as much precedence on the dialog as the much

more important decision buttons.

Applying some of the trust concepts described earlier, we arrive at the dialog shown in

Figure 29-8.

Do you vant to sun of s'aye.lhis file?: :

" Hame: spyhﬁnt.ers'.éxe-'
Type: Application, 2.40 MB
< From: software-files.download.com

o i Fam

][

Save

]b Cancel § -

. While fites from the Internet can be useful, thls i type caniiii
potentially harm you: compeder. |f vou do not tust lhe source, do not
T O save thls software. What's the righ?

FIGURE 29-8. Redesigned file download dialog; the question is inmediately apparent, and the additional information

that users need for a trust decision is readily available

USERS AND TRUST: A MICROSOFT CASE STUDY

601

Note the purposeful similarities with the ActiveX control redesign:

Button defaults
Buttons have a secure default; clicking Enter chooses the Cancel option.

Button labels
Button labels are more accurate descriptions of the accompanying actions. In the previ-
ous version, users were invited to “open” an executable file in the same way that they
might “open” a text file. Changing the terminology for executable files is one extra clue
to users about the nature of the downloaded file,

Primary text
Primary text on the screen is a simple question. Also, making the question into the pri-
mary text reduced its length, as there was no need to refer back to the previous state-
ment in the dialog.

Evidence
“Evidence” that the computer can ascertain is presented to the user. The user can see
the originating site, check that the filename matches his expectations, and atso check
that the size of the file seems appropriate for the type of application he expected.

Assistance text
Assistance text is shown in a separate area at the bottom of the screen, with a link to
further assistance. This link replaces the large and distracting More Info button.

Another problem with file downloads in previous Windows versions was that once the file
was saved to the computer, it lost any identifying marks. Thus, a user could choose to
download a file from the Internet, mindful of the risks, but then later open it on his
machine without realizing its potentially dangerous history.

The Application Execution Service (AES) is a part of Windows that maost users never have
to think about. Its job is to check that files are pretty much what they say they are, and
then run them. In XP SP2, this little workhorse got some new functionality, and the issue
then became how to message this functionality to users.

The basic premise was that with the changes made in XP SP2, files that were downloaded
from the Internet would be tagged as such, and would always retain that reduced level of
“teustedness” until a user decided otherwise. This reduced trust carried with it a require-
ment that users explicitly consent to running the application. As such, the interface for the
new Application Execution Service functionality became the consent dialog shown in
Figure 29-9.

Again, this dialog has purposeful similarities with the File Download control redesign:

* Button defaults. Buttons have a secure default; clicking Enter chooses the Cancel option.

s Primary text. Primary text on the screen is a simple question. While it may seem to be an
overly obvious question (after all, the user just double-clicked on an icon), often exe-
cutable files masquerade as documents for just this reason. In these situations, the AES
recognizes the subterfuge and presents the consent dialog, thus alerting the user to the
true nature of the file,

602 CHAPTER TWENTY-NIRE

Do you want o run this file?.

Pub!isher‘
: Type: Applimﬁon R
From C:\c}ocument.. ané Set&ngs\chrls\m Documenzs\nevm!o

aug) .C.am:e.i. 1

.Alﬂays askbeforecpenmg lh!sﬁi Ll

Ve Whileﬁ!eﬁfrbrﬁlhéeln!em'e'l'ca'nheiizefi.l'l. is file type can polantiafly:.
. -+ harn your computer. Only run software from publishers you tust What's .
RS T L T e T T

FIGURE 29-9. The Application Execution Service consent dialog; this dialog takes over from the file download dialog if
users choose to save rather than run a downloaded file

s Evidence. “Evidence” that the computer can ascertain is presented to the user. The user
can see the software publisher and check that the filename matches his expectations.

= Checkbox. There is a “don’t show me this again” checkbox on the dialog, but it is pur-
posefully phrased as a positive statement.

» Assistance fext. Assistance text is shown in a separate link at the boitom of the screen,
with a link to further assistance. This dialog is new, and most users will see it infre-
guently, so the assistance text is available but not in the way of the primary decision.

Pop-Up Blocking

Pop-up blocking was new to Windows XP Service Pack 2. Pop-ups are windows that are
generated by a web page to show additional content. A legitimate use for pop-ups may be to
provide a glossary term, assistance, or a product photo when users click a link on a web
page. This would allow the user to stay on the same page, but gain additional information
that was not deemed important enough to have screen real estate devoted to it.

Unfortunately, the legitimate uses of pop-ups are outweighed many times by the more
frustrating or downright dangerous uses. Typically, pop-up technology has been used to
display advertisements to users in separate windows, to open {or “spawn”) additional win-
dows when the user navigates away from a site in order to trap them on the site, or to
cover parts of a dialog box so that it appears to users that they have fewer choices—for
example, to hide a part of the ActiveX consent dialog (Figure 29-3) so that only the Yes
button appears rather than the No and “More info” buitons.

The issue is that there are times when the pop-up may be seen as legitimate by users, so it
is important that users be aware when pop-ups have been blecked, and also have the

opportunity to view the pop-up if they think that it is one they invoked. The Information
Bar, discussed already in the “ActiveX Dialogs” section, provides a useful mechanism both

USERS AND TEUST: A MICROSOFT CASE STUDY 603

for notifying users that a pop-up has been blocked and for giving them access 1o that pop-
é up should they choose to see it, as shown in Figure 29-10.

Fle fdit Vaw Faverites Tooks Help

@Ba&(M @.;:T\ - @ ,’;fé i ‘;:D Search “E%Favoﬂtes @ ég?- 5
[ctess [B8] Bt oo geodion compator Gy o8 s earim ot
j (&) Pap-p blodked. To zee this -up er akditional aptions dick har

FIGURE 29-10. Information Bar showing a blocked pop-up; the bar animates down from the top of the page arga,

accompanied by a sound similar to tapping on a ¢lass monilor screen

This notification occurs in the context of the user’s task, but in a way that does not pre-
vent him from continuing with his current task. In user testing, this implementation pro-
vided the best tradeof] between the ability for users to ignore unwanted pop-ups and to
act on ones they wanted to see. It builds on and reinforces the use of the Information Bar
for ActiveX control consent. Judging from users’ positive remarks during testing and after
release, this feature seems to have struck the right balance between security and conve-

nience.

The Ideal

The redesigned consent dialogs presented in this chapter all follow the consent dialog
redesign format that we based on user research into trust issues. During the process of cre-
ating this format, we came across infrastructure and technical constraints that prevented
us from taking the design as far as we would have liked in the timeframe we had.

Certificate Authorities such as VeriSign allow Internet browsers to have a level of confi-
dence that statements made by software publishers are true. However, only a few pieces of
information are currently certified, such as publisher name and issuer name. With
changes in the Certificate Authority model, it should be possible to also have certified
graphics (for the icon area in the dialog redesign earlier), certified membership of commu-
nities such as TRUSTe, and even a certified audit of the software with accompanying state-
ments about privacy, security, and reliability. Having a certified audit would bring the
concept of certification much closer to users’ ideals than today’s reality.

Users typically see recommendations from a friend as trustable. This is true even when it is
a tenuous recommendation (the friend sends a link to a site that wants to download some-
thing). Users also often have trusted friends whom they will ask whether something is safe
to download. It is not difficult to imagine mechanisms that allow this type of interaction to
occur from within the consent dialog using synchronous communication channels such as
Instant Messaging.

Taking this one stage further, consider expert or community ratings. It is highly likely that
marry other people will already have downloaded a specific piece of software or will have
consented to a certain action. Their comments on this software form a trust rating. Certain

G0% CHAPTER TWENTY-NINE

dialog process to assist users with their decision. An early versi é nof 0

already been implemented in SpyNet, the part of the (post-Xp S'l.’"'i');\.f\}md
application that analyzes user recommendations in order to in‘ake.d'e“fé:rfﬁiﬁ'
what is and is not spyware. : e

Conclusion

Throughout this chapter, T have focused on design sohutions for the user behavi:or thau -
have observed with multiple participants in usability studies of many products. I have)
shown examples of those design concepts being turned into practical dialogs within Inter-
net Explorer. The following recommendations can—and should—be applied to any trust
interaction on comMpuiers:

Let users make trust decisions in context
Decisions made at the time the issue arises contain the scope users need, which would
be missing in a disjointed experience such as a setup dialog. Users who are forced to
make isolated decisions are often overly cautious, which can later hurt their experience
with the application and lead to suboptimal user experiences.

Make the most trusted option the default selection
Users are not well placed to make trust decisions. They seldom have all the details. As
long as they trust your application, they will frequently select the defaults.

Present users with choices, not dilernmas
Ensure that the user is able to understand the consequences of choosing a certain
option, and that wherever possible there is a trusted way for him to complete his task.

Ahways respect the user’s decision
Once you have alerted the user to the consequences, the rest is up to him. Your applica-
tion cannot know the emotional context of a trust decision, only the potential worst-

case logical outcome. Users often place more weight on the emotional context.

This last point deserves further emphasis, as it is the cornerstone of a successful trust user
experience design. Usable and useful trusted software has to accommodate the emotional
and social aspects of users’ experience. It must allow them instant gratification, help them
to fill in the rest of the picture, and gracefully subrit when a user chooses a different path
for reasons the computer will never understand.

USERS AND TRUST: A MICROSOFT CASE STUDY 605

About the Author

Chris Nodder is a user experience specialist with Nielsen Norman Group.
Before joining NN/g, Chris worked as a senior user researcher at Microsoft
Corporation. During his seven years at Microsoft, Chris worked on products
as diverse as videoconferencing, programming tools for web developers,
home networking, online communities, and delivering Internet content over
cell phones. In 2004, he was responsible for the user experience for XP Service Pack 2, a
major upgrade to Windows XP. He has created personas, reality TV episodes, and even
whole rooms (“usertorivms”) as ways of getting developers to walk in their customers’
shoes.

606 CHAPTER TWENTY-NINE

