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of the user
• competence models represent expected

behaviour
• performance models represent and analyse

routine behaviour

deal with three different levels:
• goal and task hierarchies: GOMS, Cognitive

Complexity Theory (CCT)
• human understanding: BNF, Task-action

Grammar (TAG)
• physical/device: Keystroke-level Model (KLM)
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Cognitive models incorporate implicit and explicit
models of cognitive processing

• GOMS: divide and conquer using subgoals
• CCT: production rules in LTM matched agains

STM contents
• KLM: motor and mental operators based on

Model Human processor

are Architectural Aspects
=⇒ aim to some performance analysis
but seldom deals with user observation and per-
ception =⇒ mainly competence models

A. Cerone, UNU-IIST – p.3/46



Error Detection
Models | Architectures | SOAR | PUM | PUMA | Theorem Proving | Model Checking | Rules | Exams | Refs

Weakness of cognitive models:
errors must be explicitly defined in the model
=⇒ no error detection

A. Cerone, UNU-IIST – p.4/46



Error Detection
Models | Architectures | SOAR | PUM | PUMA | Theorem Proving | Model Checking | Rules | Exams | Refs

Weakness of cognitive models:
errors must be explicitly defined in the model
=⇒ no error detection

ATC Example: failure decomposition was given
rather than detected

A. Cerone, UNU-IIST – p.4/46



Error Detection
Models | Architectures | SOAR | PUM | PUMA | Theorem Proving | Model Checking | Rules | Exams | Refs

Weakness of cognitive models:
errors must be explicitly defined in the model
=⇒ no error detection

ATC Example: failure decomposition was given
rather than detected

Users behave rationally
=⇒ make persistent errors
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based on

Rational Behaviour behaviour that is intended to
achieve a specific goal

in AI: Knowledge-level System = Agent behaves
in Environment

in contrast with

Computational Behaviour behaviour defined by
an algorithm without an explicit goal
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• algorithm describes the problem solution
• =⇒ represented in a programming language
• compilation =⇒ problem space + actions to

traverse represented in the machine
architecture

• execution terminates once a desired state
reached

Machine does not formulate the problem space
(the goal is not programmed)
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• goal to achieve
• =⇒ represented as a set of goal states
• rational behaviour =⇒ to select appropriate

operators to generate new states starting form
the initial state

• goal achieved once a goal state is reached

based on problem space theory, developed by
Newell and Simon [Newell et a. 91]
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• goal formulation creates the initial state and
use perception sense changes in the external
environment which are relevant to the goal of
the agent

• operation selection to transform a given state
to one closer to a goal state =⇒ rational
behaviour

• operation application changes the states of
the agent and the environment

• goal completion when the new state is a goal
state the agent becomes inactive
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• goal formulation
• operation selection
• operation application
• goal completion

Steps are triggered by knowledge availability

knowledge availability =⇒ recursion:
new space problem invoked with
goal = find needed knowledge
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Executable Cognitive Architecture developped by
Allen Newell, John Laird and Paul Rosembloom
in 1983 [Newell et a. 87]

Used by the University of Michigan
http://sitemaker.umich.edu/soar/
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Programmable User Models

Psychologically Constrained Architecture
which an interface designer is invited to
program to simulate a user performing a
range of tasks with a proposed interface

[Young et a. 89]
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The interface designer
• must program the PUM respecting the

constraints
=⇒ driven interface design
=⇒ explicit “user program”

• run the model
(=⇒ “user program” is executable)
to make predictions
=⇒ show source of predictions and strategy
options
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• Outcome:
predictive evaluation to tell the designer
usability of a proposed design before it is
actually built

• Benefits for the designer:
• to draw the designer attention to issues of

usability
• to provide a way of reasoning about usability

A. Cerone, UNU-IIST – p.13/46



PUMA: PUM Applications
Models | Architectures | SOAR | PUM | PUMA | Theorem Proving | Model Checking | Rules | Exams | Refs

Research Project aim to
• Bring the PUM metodology into industrial

design
• Using formal methods to effectively implement

PUM

PUMA Research Group Website:
http://www.cs.mdx.ac.uk/puma/
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Work by Curzon and Blandford [Curzon et al. 01]:
• PUM defined in the HOL Theorem Prover
=⇒ Generic User Model described by sets of
non-deterministic rules

• Programming performed using SML
=⇒ target the Generic User Model to a
particular design

• Automated Correctness Proof
• Informal reasoning to detect errors
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• Advantages
• Maximum Modelling Expressivity

• Infinite State Systems
• Complex data structure

• Disadvantages
• Semidecidability
• Verification procedure not fully automated
• Tools difficult to use
• No scalability
• Does not allow debugging
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to describe
• reactive behaviour: user reacts to a stimulus

that clearly indicates that a particular action
should be taken (independently of the goal)

• communication goals: user knows a
task-dependent mental list of information that
must be communicated to the device

• completion: subsidiary tasks generated in
achieving the goal

• abort: no rational action is available

nondeterministic rules =⇒ rule disjunction
A. Cerone, UNU-IIST – p.19/46



Reactive Behaviour
Models | Architectures | SOAR | PUM | PUMA | Theorem Proving | Model Checking | Rules | Exams | Refs

(stimulus t) ∧ NEXT reaction t

A. Cerone, UNU-IIST – p.20/46



Reactive Behaviour
Models | Architectures | SOAR | PUM | PUMA | Theorem Proving | Model Checking | Rules | Exams | Refs

(stimulus t) ∧ NEXT reaction t

NEXTdoes not require that the action is taken
on the next cycle, but rather that it is taken
before any other user action
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(stimulus t) ∧ NEXT reaction t

[(stimulus1, reaction1); ...; (stimulusn, reactionn)]

To target the generic user model to a particular
device, it is applied to a concrete list in SML
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(stimulus t) ∧ NEXT reaction t

[(stimulus1, reaction1); ...; (stimulusn, reactionn)]

Example: [(light,pushbutton); (wait msg,pause);
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(stimulus t) ∧ NEXT reaction t

[(stimulus1, reaction1); ...; (stimulusn, reactionn)]

Example: [(light,pushbutton); (wait msg,pause);
(card msg, take card); (cashmsg, take cash)]

-��
��

-stimulus
��
��

� �
6

action

R

R1 = R/f1 where f1(stimulus) = light
f1(reactions) = push button
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∼ (goalachieved t) ∧ (guard t) ∧ NEXT action t
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∼ (goalachieved t) ∧ (guard t) ∧ NEXT action t

Example: [(has card, insert card); (TRUE, insert pin)]
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∼ (goalachieved t) ∧ (guard t) ∧ NEXT action t

Example: [(has card, insert card); (TRUE, insert pin)]
Goal: HasGotCash
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∼ (goalachieved t) ∧ (guard t) ∧ NEXT action t

Example: [(has card, insert card); (TRUE, insert pin)]
Goal: HasGotCash
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∼ (goalachieved t) ∧ (guard t) ∧ NEXT action t

Example: [(has card, insert card); (TRUE, insert pin)]
Goal: HasGotCash
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��
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if (((invariant t) ∧ (goalachieved t)) ∨ ((finished(t−1))
then action finished t
else—disjunction of nondeterministic rules—
Invariant: VALUE possession t≥ VALUE possession1
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if (((invariant t) ∧ (goalachieved t)) ∨ ((finished(t−1))
then action finished t
else—disjunction of nondeterministic rules—
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if (((invariant t) ∧ (goalachieved t)) ∨ ((finished(t−1))
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if (((invariant t) ∧ (goalachieved t)) ∨ ((finished(t−1))
then action finished t
else—disjunction of nondeterministic rules—
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HOL
Rule disjunction

CSP
U = R1 ‖ ... ‖ Rm ‖

((C1 ‖ G) | [{goal,finished}] | ...
... | [{goal,finished}] | (Cn ‖ G)) ‖
I1 ‖ ... ‖ Is
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HOL
Rule disjunction

CSP
U = R1 ‖ ... ‖ Rm ‖

((C1 ‖ G) | [{goal,finished}] | ...
... | [{goal,finished}] | (Cn ‖ G)) ‖
I1 ‖ ... ‖ Is

What’s missing?
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How to guarantee that all reactive behaviours and
communication goals are performed atomically
within the user model?
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HOL — Correctness Theorem
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HOL — Correctness Theorem
∀̀ state traces.

initial state ∧
device specification∧
user model

⊃ ∃ t . (invariant t) ∧
(goalachieved t)
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HOL — Correctness Theorem
∀̀ state traces.

initial state ∧
device specification∧
user model

⊃ ∃ t . (invariant t) ∧
(goalachieved t)

CSP
− Overall system

OverallSystem = U ‖ Device
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HOL — Correctness Theorem
∀̀ state traces.

initial state ∧
device specification∧
user model

⊃ ∃ t . (invariant t) ∧
(goalachieved t)

CSP
− Overall system

OverallSystem = U ‖ Device
− Temporal Logic Formula

23finished checked on OverallSystem A. Cerone, UNU-IIST – p.26/46
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Errors detected by attempts to prove the task
completion error
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Errors detected by attempts to prove the task
completion error

Classes of errors defined in terms of their
cognitive causes rather than their effects:

• post-completion errors
• communication-goal errors
• device delay errors
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User terminates an interation with outstanding
tasks remaining
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It emerges because of a rule allowing the user to
stop once the goal is achieved
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User terminates an interation with outstanding
tasks remaining

It emerges because of a rule allowing the user to
stop once the goal is achieved

Design Principle: goal cannot be achieved until
after the interaction invariant is restored
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User terminates an interation with outstanding
tasks remaining

It emerges because of a rule allowing the user to
stop once the goal is achieved

Design Principle: goal cannot be achieved until
after the interaction invariant is restored

Error still present if a warning after goal achieved
remind the user to do the completions tasks
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order different from the one required by the
device
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User discharges communication goals in an
order different from the one required by the
device

It emerges because of communication rule
removed too early =⇒ activate abort rule
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User discharges communication goals in an
order different from the one required by the
device

It emerges because of communication rule
removed too early =⇒ activate abort rule

Design Principle: the device must not require a
specific order for the communication goal actions
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User discharges communication goals in an
order different from the one required by the
device

It emerges because of communication rule
removed too early =⇒ activate abort rule

Design Principle: the device must not require a
specific order for the communication goal actions

Error still present if a message tell the user the
right order
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User discharges outstanding communication
goals during device delay
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User discharges outstanding communication
goals during device delay

It emerges because of communication rule
removed too early =⇒ activate abort rule
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User discharges outstanding communication
goals during device delay

It emerges because of communication rule
removed too early =⇒ activate abort rule

Design Principle: the device delay can only occur
when there is no outstanding communicatin goal
in the presence of a “wait” warning causing a
“pause” reaction

A. Cerone, UNU-IIST – p.30/46
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• Theorem Proving
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• Theorem Proving
• automated correctness proof
• informal reasoning to detect errors

• Model Checking more promising
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• Theorem Proving
• automated correctness proof
• informal reasoning to detect errors

• Model Checking more promising
• general correctness: 23finished
• post-completion correctness: 23 invariant
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• Theorem Proving
• automated correctness proof
• informal reasoning to detect errors

• Model Checking more promising
• general correctness: 23finished
• post-completion correctness: 23 invariant
• automatically generated counterexample

allows error detection and correction
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SOAR and PUMA
• Seminars

• Theorem proving and informal reasoning for
usability studies

• The SOAR cognitive architecture
• Reports

• CSP model of the PUMA cognitive
architecture
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Examinations
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Topic: Operator Choice Model for ATC

Full OCM model for the ATC
• D. Leadbetter, P. Lindsay, A. Hussey, A. Neal and M. Humphreys

Towards Towards Model Based Prediction of Human Error Rates in
Interactive Systems, 2000

• A. Hussey, D. Leadbetter, P. Lindsay, A. Neal and M. Humphreys
Modelling and Hazard Identification in an Air-Traffic Control
User-Interface, 2000

• S. Connelly, P. Lindsay, A. Neal and M. Humphreys
A formal model of cognitive processes for an Air Traffic Control
Task, 2001

A. Cerone, UNU-IIST – p.34/46
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Topic: Mode Confusion

Formal analysis of mode confusion
• S. P. Miller and J. N. Potts

Detecting Mode confusion Through formal Modelling and Analysis,
1999

• N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga and J. D. Reese
Analysing Software Specification for Mode Confusion Potential,
1998

• R. W. Butler, S. P. Miller, J. N. Potts and V. A. Carreno
A Formal Methods Approach to the Analysis of Mode Confusion,
1998

A. Cerone, UNU-IIST – p.35/46
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http://www.di.unipi.it/~cerone/courses/fmis/ModeConfusion-analyzing.1997.pdf
http://www.di.unipi.it/~cerone/courses/fmis/ModeConfusion-formal.1998.pdf


Seminar 3 — PUMA
Models | Architectures | SOAR | PUM | PUMA | Theorem Proving | Model Checking | Rules | Exams | Refs

Topic: PUMA Work

Theorem proving and informal reasoning for
usability studies

• P. Curzon and A. Blandford
Detecting Multiple Classes of User Errors, 2001

• P. Curzon and A. Blandford
From a Formal User Model to Design Rules, 2002

• P. Curzon and A. Blandford
Formally Justifying User-Centred Design Rules: a Case Study on
Post-completion Error, 2004

A. Cerone, UNU-IIST – p.36/46

http://www.di.unipi.it/~cerone/courses/fmis/PUMA-detecting-2001.pdf
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Topic: SOAR

The SOAR cognitive architecture (for one or more PhD
students)

• SOAR Home Page
http://sitemaker.umich.edu/soar/

• The SOAR Tutorial
http://sitemaker.umich.edu/soar/documentation and links
Part 1 | Part 2 | Part 3 | Part 4 | Part 5 | Part 6

A. Cerone, UNU-IIST – p.37/46

http://sitemaker.umich.edu/soar/
http://sitemaker.umich.edu/soar/documentation_and_links
http://sitemaker.umich.edu/soar/docs/tutorial/TutorialPart1.pdf
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http://sitemaker.umich.edu/soar/docs/tutorial/TutorialPart3.pdf
http://sitemaker.umich.edu/soar/docs/tutorial/TutorialPart4.pdf
http://sitemaker.umich.edu/soar/docs/tutorial/TutorialPart5.pdf
http://sitemaker.umich.edu/soar/docs/tutorial/TutorialPart6.pdf
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Topic: Operator Choice Model

Formal model of the full OCM for ATC
using CSP or other formalism, possibly running simulation using a tool

• D. Leadbetter, P. Lindsay, A. Hussey, A. Neal and M. Humphreys
Towards Model Based Prediction of Human Error Rates in
Interactive Systems, 2000

• S. Connelly, P. Lindsay, A. Neal and M. Humphreys
A formal model of cognitive processes for an Air Traffic Control
Task, 2001

• Antonio Cerone, Simon Connelly and Peter Lindsay.
Formal Analysis of Operator Behavioural Patterns in Interactive
Systems, submitted

A. Cerone, UNU-IIST – p.38/46
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Topic: Task Models

Formal Analysis of Cooperative Task Models
Discussion of the papers’ differences and limitations and propose
possible extensions

• F. Paternò, C. Santoro and S. Thamassebi
Formal models for Cooperative Tasks: Concepts and an
Application for En-route Air Traffic Control

• V. M. R. Penichlet, F. Paternò, J. A. Gallud and M. D. Lozano
Collaborative Social Structures and Task Modelling Integration

• D. Pinelle and C. Gutwin
Task Analysis for Groupware Usability Evaluation: Modeling
Shared Workplace Tasks with Mechanics of cCllaboration

A. Cerone, UNU-IIST – p.39/46

http://www.di.unipi.it/~cerone/courses/fmis/CooperativeTaskModels-formalATC-1998.pdf
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Topic: PUMA Work

CSP model of the PUMA cognitive architecture
Build a case study and formally analyse it with a tool (e.g. CWNC)

• P. Curzon and A. Blandford
Using a Verification System to Reason about Post-Completion
Errors, 2000

• P. Curzon and A. Blandford
Reasoning about Order Errors in Interaction, 2000

• P. Curzon and A. Blandford
Detecting Multiple Classes of User Errors, 2001

A. Cerone, UNU-IIST – p.40/46

http://www.di.unipi.it/~cerone/courses/fmis/PUMA-postcompletion-2004.pdf
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• []:
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[Newel et al. 91]
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Allen Newell, Gregg Yost, John Laird, Paul
Rosembloom, Ekkehard Altmann.
Formaulating the problem-space computational
model.
In R. F. Rashid (ed) CMU Computer Science: a
25th Anniversary Commemorative, Chapter 11,
ACM Press, 1991.

• Problem Space
• Cognitive Architectures

A. Cerone, UNU-IIST – p.43/46



[Newel et al. 87]
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Allen Newell, John Laird, Paul Rosembloom.
SOAR: an architecture for general intelligence.
Artificial Intelligence 33, 1987, pages 1–64.

• SOAR

A. Cerone, UNU-IIST – p.44/46



[Young et al. 89]
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Richard Young, T. R. G. Green, Tony Simon.
Programmable user models for predictive
evaluation of interface design.
In K. Bice and G. Lewis (eds) Proceedings of
CHI’89: Human Factors in Computing Systems,
ACM Press, 1989, pages 15–19.

• PUM
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[Curzon et al. 01]
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Paul Curzon, Ann Blandford.
Detecting multiple classes of user errors.
In Proceedings of EHCI’01, LNCS 2254,
Springer, 2001, pages 57–71.

• Detecting Errors

A. Cerone, UNU-IIST – p.46/46
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