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Abstract 
The importance of multidimensional index structures to numerous 
emerging database applications is well established. However, before 
these index structures can be supported as access methods (AMs) 
in a “commercial-strength” database management system (DBMS), 
efficient techniques to provide transactional access to data via the 
index structure must be developed. Concurrent accesses to data via 
index structures introduce the problem of protecting ranges specified 
in the retrieval from phantom insertions and deletions (the phantom 
problem). This paper presents a dynamic granular locking approach 
to phantom protection in Generalized Search Trees (GiSTs), an index 
structure supporting an extensible set of queries and data types. The 
granular locking technique offers a high degree of concurrency and 
has a low lock overhead. Our experiments show that the granular 
locking technique (1) scales well under various system loads and 
(2) similar to the B-tree case, provides a significantly more efficient 
implementation compared to predicate locking for multidimensional 
AMs as well. Since a wide variety of multidimensional index structures 
can be implemented using GiST, the developed algorithms provide a 
general solution to concurrency control in multidimensional AMs. To 
the best of our knowledge, this paper provides the first such solution 
based on granular locking. 

1 Introduction 
Database systems are being increasingly deployed to support 
emerging applications such as computer-aided design (CAD), 
geographical information systems (GIS), multimedia content- 
based retrieval systems, time-series databases, medical/health 
care applications, spatio-temporal databases etc. To support 
these applications efficiently on top of a DBMS, database 
systems must allow application developers to (1) define their 
own data types and operations on those data types, and (2) 
define their own indexing mechanisms on the stored data 
which the database query optimizer can exploit to access the 
data efficiently. The Object Relational DBMS (ORDBMS)/ 
Universal Server (US) technology addresses the first problem 
effectively [21]. But the ability to allow application developers 

* This work was supported in part by the National Science Foundation 
under Grant No. IIS-9734300, in part by the Army Research Laboratory under 
Cooperative Agreement No. DAALOl-96-2-0003 and in part by NASA under 
Grant No. B9U415912. 

Permission to make digital or hard topics of all or part of this work fog 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies hear this notice and the full citation on the tirst page. To copy 
otherwise, to republish, to post on scrvcrs or to redistribute to lists, 
requires prior specific permission and/or a fee. 

SIGMOD ‘99 Philadelphia PA 
Copyright ACM 1999 I-581 13-084-8/99/05...$5.00 

Sharad Mehrotra 
Department of Information and Computer Science 

University of California at Irvine 
sharad@ics.uci.edu 

to easily define their own access methods (AMs) still remains an 
elusive goal. 

The Generalized Search Tree (GiST) [9] addresses the above 
problem. GiST is an index structure that is extensible “both” in 
the data types it can index and in the queries it can support. It 
is like a “template” - the application developer can implement 
her own AM using GiST by simply registering a few extension 
methods with the DBMS. GiST solves two problems: 

Over the last few years, several multidimensional data 
structures have been developed for specific application 
domains. Implementing these data structures from scratch 
every time requires a significant coding effort. GiST can be 
adapted to work like these data structures, a much easier task 
than implementing the tree package from scratch. 
Since GiST is extensible, if it is supported in a DBMS, the 
DBMS can allow application developers to define their own 
AM, a task that was not possible before. 

Although GiST considerably reduces the effort of integrating 
new AMs in DBMSs, before it can be supported in a “commer- 
cial strength” DBMS, efficient techniques to support concurrent 
access to data via the GiST must be developed. Developing con- 
currency control (CC) techniques for GiST have several impor- 
tant benefits. (1) Since a wide variety of index structures can be 
implemented using GIST, developing CC techniques in the con- 
text of GiST would solve the CC problem for multidimensional 
index structures in general. (2) Experience with B-trees has 
shown that the implementation of CC protocols requires writing 
complex code and accounts for a major fraction of the effort for 
the AM implementation [8]. Developing the protocols for GiST 
is particularly beneficial since it would need writing the code 
only once and would allow concurrent access to the database 
via any index structure implemented in the DBMS using GiST, 
thus avoiding the need to write the code for each index structure 
separately. 

Concurrent access to data via a general index structure 
introduces two independent concurrency control problems: 

l Preserving consistency of the data structure in presence of 
concurrent insertions, deletions and updates. 

l Protecting search regions from phantoms 

This paper addresses the problem of phantom protection in 
GiSTs. In our previous research, we had studied a granular 
locking (GL) solution for phantom protection in R-trees [4]. 
We refer to it as the GUR-tree protocol. Due to fundamental 
differences between R-tree and GiST in the notion of a search 
key, the approach developed for R-trees is not a feasible 
solution for GiST. Specifically, the GL/R-tree protocol needs 
several modifications for making it applicable to GiSTs and 
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Figure 1: A GiST for a key set comprising of rectangles in 2 dimensional space. 0 11 is a new object being inserted in node 
a search region. Predicates Pl through P6 are the BPS of the nodes N2 through N7 respectively. 

the modified algorithms, when applied to GiSTs, impose a 
significant overhead, botlh in terms of disk I/O as well as 
computational cost, on the tree operations. To overcome 
this problem, we develop a new granular locking approach 
for phantom protection in GiSTs in this paper. We refer to 
it as the GUGiST protocol. The GWGiST protocol differs 
from the GL/R-tree protocol in its strategy to partition the 
predicate space and hence defines a new set of lockable 
resource granules. Based on the set of granules defined, lock 
protocols are developed for the various operations on GiSTs. 
For an R-tree implemented using GiST, GL/GiST protocol 
provides similar performance as the GWR-tree protocol. On 
the other hand, for index structures where the search keys 
do not satisfy the “containment hierarchy” constraint, the 
GUGiST protocol performs significantly better than the GL/R- 
tree protocol. Examp1e.s of such index structures include 
distance-based (centroid-radius based) index structures (e.g., 
M-tree, SS-tree). In summary, GWGiST provides a general 
solution to concurrency control in multidimensional AMs rather 
than a specific solution for a particular index structure (e.g., 
GL/R-tree), without any compromise in perfotmance. 

The problem of phantom protection in GiSTs has previously 
been addressed in [lo] where the authors develop a solution 
based on predicate locking (PL). As discussed in [B], although 
predicate locking offers potentially higher concurrency, typi- 
cally granular locking is preferred since the lock overhead of 
predicate locking is much higher compared to that of granu- 
lar locking. The reason is while granular locks can be set and 
cleared as efficiently as olbject locks (- 200 RISC instructions), 
setting of a predicate lock requires checking for predicate sat- 
isfiability against the predicates of all concurrently executing 
transactions. For this reason, all existing commercial DBMSs 
implement granular locking in preference to the predicate based 
approach. Our experiments on various “real” multidimensional 
data sets show that (1) GYGiST scales well under various sys- 
tem loads and (2) Similar to the B-tree case, GL provides a 
significantly more efficient implementation compared to PL for 
multidimensional AMs as well. 

The rest of the paper is developed as follows. Section 2 
reviews the preliminaries. Section 3 describes the space 
partitioning strategy for GiSTs and discusses the difficulty in 
applying the R-tree approach to GiSTs. Section 4 presents the 
dynamic granular locking approach to phantom protection in 
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GiSTs. The experimental results are presented in Secti.on .5. 
Finally, Section 6 offers the conclusions and future work. 

2 Preliminaries 

In this section, we first review the basic GiST structure. Next 
we describe the phantom problem, its solutions for B-trees and 
why they cannot be applied to multidimensional data structures. 
Finally, we state the desiderata of a granular locking solution 
to the phantom problem in multidimensional index structures 
followed by the terminology used in presenting the algorithms. 

Generalized Search Trees GiST is a height balanced multi- 
way tree. Each tree node contains a number of node entries, 
E = (p, ptr), where E.p is a predicate that describes the sub- 
tree pointed by E.ptr. If N is the node pointed by E.ptr, l3.p 
is defined to be the bounding predicate (BP) of N, denoted 'by 
BP(N). The BP of the root node is the entire key space S. 
Figure 1 shows a GiST for a key space comprising of 2-d rect- 
angles. 

A key in GiST can be any arbitrary predicate. The appl:ication 
developer can implement her own AM by specifying the key 
structure via a key class. The design of the key class involves 
providing a set of six extension methods which are u.sed to 
implement the standard search, insert and delete operations over 
the AM. A more detailed description can be found in [93. 

Serializability Concepts and the Phantom Problem Trans- 
actions, locking and serializability concepts are well docu- 
mented in the literature [ 17, 18, 81. The phantom problem 
is defined as follows (from the ANSI/IS0 SQL-92 specifica- 
tions [12, 21): Transaction Tl reads a set of data items satisfy- 
ing some <search condition>. Transaction TZ then cre- 
ates data items that satisfy Tl’s <search condition> and 
commits. If Tl then repeats its scan with the same <search 
condition>, it gets a set of data items (known as “phan- 
toms”) different from the first read. Phantoms must be prevented 
to guarantee serializable execution. Object level locking does 
not prevent phantoms since even if all objects currently in the 
database that satisfy the search predicate are locked, concurrent 
insertions into the search range cannot be prevented. These in- 
sertions may be a result of insertion of new objects, update:s to 
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Table 1: Lock mode compatibility matrix for granular locks. 
The purpose of the various lock modes are shown alongside. 

existing objects or rolling-back deletions made by other concur- 
rent transactions. 

Approaches to Phantom Protection There are two general 
strategies to solve the phantom problem, namely predicate 
locking and its engineering approximation, granular locking. 
In predicate locking, transactions acquire locks on predicates 
rather than individual objects. Although predicate locking 
is a complete solution to the phantom problem, the cost of 
setting and clearing predicate locks can be high since (1) the 
predicates can be complex and hence checking for predicate 
satisfiability can be costly and (2) even if predicate satisfiability 
can be checked in constant time, the complexity of acquiring 
a predicate lock is proportional in the number of concurrent 
transactions which is an order of magnitude costlier compared 
to acquiring object locks that can be set and released in constant 
time [8]. In contrast, in granular locking, the predicate space is 
divided into a set of lockable resource granules. Transactions 
acquire locks on granules instead of on predicates. The locking 
protocol guarantees that if two transactions request conflicting 
mode locks on predicates p and p’ such that p A p’ is satisfiable, 
then the two transactions will request conflicting locks on at 
least one granule in common. Granular locks can be set and 
released as efficiently as object locks. For this reasons, all 
existing commercial DBMSs use granular locking in preference 
to predicate locking. A more detailed comparison between the 
two approaches can be found in [8]. 

An example of the granular locking approach is the multi- 
granularity locking protocol (MGL) [ 111. MGL exploits addi- 
tional lock modes called intention mode locks which represent 
the intention to set locks at finer granularity (see Table 1). Ap- 
plication of MGL to the key space associated with a B-tree is 
referred to as key range Zocking(KRL+) [ 11, 131. KRL cannot be 
applied for phantom protection in multidimensional data struc- 
tures since it relies on the total order over the underlying ob- 
jects based on their key values which does not exist for multidi- 
mensional data. Imposing an artificial total order (say a Z-order 
[ 161) over multidimensional data to adapt KRL would result in 
a scheme with low concurrency and high lock overhead since 
protecting a multidimensional region query from phantom in- 
sertions and deletions will require accessing and locking objects 
which may not be in the region specified by the query (since 
an object will be accessed as long as it is within the upper and 
the lower bounds in the region according to the superimposed 
total order). It would severely limit the usefulness of the mul- 
tidimensional AM, essentially reducing it to a l-d AM with the 
dimension being the total order. 

Desiderata of the Solution Since KFU cannot be used in 
multidimensional index structures, new techniques need to be 
devised to prevent phantoms in such data structures. The 
principal challenges in developing a solution based on granular 
locking are: 

l Defining a set of lockable resource granules ’ over the 
multidimensional key space such that they (1) dynamically 
adapt to key distribution (2) fully cover the entire embedded 
space and (3) are fine enough to afford high concurrency. 
The importance of these factors in the choice of granules has 
been discussed in [8]. The lock granules (i.e. key ranges) in 
KRL satisfy these 3 criteria. 

l Easy mapping of a given predicate onto a set of granules that 
needs to be locked to scan the predicate. Subsequently, the 
granular locks can be set or cleared as efficiently as object 
locks using a standard lock manager (LM). 

l Ensuring low lock overhead for each operation. 
l Handling overlap among granules effectively. This problem 

does not arise in KRL since the key ranges are always mutu- 
ally disjoint. In multidimensional key space partitioning, the 
set of granules defined may be, in GiST terminology, “mutu- 
ally consistent”. For example, there may be spatial overlap 
among R-tree granules. This complicates the locking proto- 
col since a lock on a granule may not provide an “exclusive 
coverage” on the entire space covered by the granule. For 
correctness, the granular locking protocols must guarantee 
that any two conflicting operations will request conflicting 
locks on at least one granule in common. This implies that 
at least one of the conflicting operations must acquire locks 
on all granules that overlap with its predicate while the other 
must acquire conflicting locks on enough granules to fully 
cover its predicate [4]. This leads to two alternative strate- 
gies: 
l Overlap-for-Search and Cover-for-lnsert Strategy (0X2) 

in which the searchers acquire shared mode locks on all 
granules consistent with its search predicate whereas the 
inserters, deleters and updators acquire IX locks on a 
minimal set of granules sufficient to fully cover the object 
being inserted, deleted or updated. 

l Cover-for-Search and Overlap-for-Insert Strategy (CSOI) 
in which the searchers acquire shared mode locks on a 
minimal set of granules sufficient to fully cover its search 
predicate whereas the inserters, deleters and updators 
acquire IX locks on all granules consistent with the object 
being inserted, deleted or updated. 

While the former strategy favors the insert and delete 
operations by requiring them to do minimal tree traversal 
and disfavors the search operation by requiring them to 
traverse all consistent paths, the latter strategy does exactly 
the reverse. Intermediate strategies are also possible. For 
GWGiST, we choose the OSCI strategy in preference to the 
rest. The OSCI strategy effectively does not impose any 
additional overhead on any operation as far as tree traversal 
is concerned since searchers in GiST anyway follow all 
consistent paths. The CS01 strategy may be better for index 
structures where inserters follow all overlapping paths and 
searchers follow only enough paths to cover its predicate. 
The R+-tree is an example of such an index structure 
[ 191. We assume that the OSCI strategy is followed for all 

‘In this paper, we use the term “granules” to mean lock units - resources that 
are locked to insure isolation and not in the sense of granules in “granule graph” 
of MCL [8]. This is discussed in further detail in Section 4.1. 

27 



discussions in the rest of the paper. 

Terminology In developing the algorithms, we assume, as 
in [I 11, that a transaction may request the following types 
of operations on GiST: !:earch, Insert, Delete, ReadSingle, 
UpdateSingle and UpdateScan. In presenting the solution to 
the phantom problem, we describe the lock requirements of 
each of these and present the algorithms used to acquire the 
necessary locks. The loclc protocols assumes the presence of 
a standard LM which supports all the MGL locks modes (as 
shown in Table 1) as we.11 as conditional and unconditional 
lock options [ 141. Furthermore, locks can be held for different 
durations, namely, instant, short and commit durations [14]. 
While describing the lock requirements of various operations for 
phantom protection, we assume the presence of some protocol 
for preserving the physical consistency of the tree structure in 
presence of concurrent operations. The lock protocol presented 
in this paper guarantees phantom protection independent of the 
specific algorithm used to preserve tree consistency. In our 
implementation, we have combined the GL/GiST protocol with 
the latching protocol proposed in [ 101. We do not describe the 
combined algorithms in this paper due to space limitations but 
can be found in the longer version of this paper [5]. 

3 Why the R-tree protocol cannot be applied 
to GiSTs? 

The most obvious solution to the phantom problem in GiSTs 
is to treat GiSTs as extensible R-trees and apply the GL/R-tree 
protocol we developed in (41 to GiSTs. In this section, we argue 
that GL/R-tree protocol is not a feasible solution for GiSTs. 
We first briefly review the approach developed for phantom 
protection in R-trees [4]. We do this for two main reasons: (1) 
it builds the context for the solution developed for GiSTs and 
(2) it enables us to illustrate why GL/R-tree cannot be applied 
to GiSTs. Subsequently, we define the resource granules in 
GiST. We conclude the section by discussing why GL/R-tree is 
inapplicable to GiSTs. 

3.1 The R-tree granular locking protocol 

In GL/R-tree, we define the following two types of lockable 
granules: 

(1) A leaf granule associated with each leaf level index node 
L of the R-tree. We denote it by TG( L) i.e. the tree granule 
associated with the le,af node L. The bounding rectangle 
(BR) associated with 1; defines the lock coverage of TG( L). 
(2) An external granule associated with each non-leaf node 
N of the R-tree. We denote it by e&(N) i.e. the external 
granule associated with the non-leaf node N. The lock 
coverage of ezt(N) is defined to be the space covered by 
the BR of N which is not covered by the BRs of any of its 
children. 

The search operation acquires locks on all leaf granules and 
external granules overlapping with the search predicate (referred 
to as SP/R-tree). 

TO prevent insertion of objects into search ranges of uncom- 
mitted searchers, we follow the OSCI policy. Although the plain 
GSCI policy guarantees phantom protection when the opera- 
tions do not change the granules, phantoms may arise when the 
granule boundaries dynamically change due to insertions and 

deletions. To prevent phantoms, inserters in GL/R-tree follows 
the following protocol (referred to as IP/R-tree): 

Let g be the granule corresponding to the leaf node in which 
the insertion takes place (referred to as the target granule) and 
0 be the object being inserted. IP/R-tree handles the following 
2 cases separately: 

l Case I - Insertion does not cause g to grow: In this cas’e, the 
inserter acquires (1) a commit duration IX lock on g and (2:) 
a commit duration X lock on 0. 

l Case 2 - Insertion causes g to grow (to say, g’): In this case, 
it acquires (1) a commit duration IX lock on g (2) a commit 
duration X lock on 0 and (3) short duration IX locks on all 
granules into which it grew i.e. all granules overlapping with 
(g’ - g). (3) ensures that there exists no old searchers which 
could lose their lock coverage due to the growth of g. Note 
that acquiring the extra locks of (3) may cause the inserter to 
perform additional disk accesses. 

A detailed discussion of the lock requirements for other tree 
operations and the protocols followed to acquire the 1ock:s can 
be found in [4]. 

3.2 Space partitioning strategy for GiSTs 
The first task in developing a granular locking solution ‘to the 
phantom problem is to develop a strategy to partition the key 
space. Note that the BPS in GiST, unlike the BRs in R-tree, 
cannot be used to define the granules since the BPS, unlike 
the BRs, are not arranged in a “containment hierarchy” i.e. 
given a node T, for any node N under (i.e. reachable from) 
T, BP(N) + BP(T) is not necessarily true. So, for a search 
with predicate P, there might exist a leaf (or external) granule 
that is consistent with the search predicate P under a non-leaf 
node N whose BP is not consistent with P. For example, in 
Figure I, the search predicate R is not consistent with BP(N2) 
(i.e. Pl) but is consistent with TG(N5) (i.e. P4) where AT5 lies 
under N2 in the tree. This means that to follow the OSCI policy 
(i.e. get locks on all consistent granules), the searcher cannot 
“prune” its search below N2 as it would normally do. This is 
impractical since the searcher would have to access extra nodes 
(and possibly extra disk accesses) for the purpose of getting 
locks. 

It is clear from the above discussion that we must defilne 
granules such that their lock coverage satisfy the “containment 
hierarchy” constraint even if the BPS do not. For that purpose, 
we define a granule predicate associated with every index node 
of a GIST. 

Definition l(Granule Predicate): Let N be an index node 
and P be the parent of N. The granule predicate of N, denoted 
by GP(N), is defined as: 

GP(N) = BP(N) if N is the root (1) 
= BP(N) A GP(P) otherwise (2) 

Note that GPs, unlike BPS, are guaranteed to satisfy the 
“containment hierarchy” property. 

Using GPs, we define the following two types of granules: 

(1) A leaf granule TG(L) associated with each leaf node L 
whose coverage is defined by GP(L). For example, in Figure 
1, there are 4 leaf granules: TG(N4), TG(NS), TG(N6) and 
TG(N7) with lock coverage s lock coverage s Pl A P3, 
Pl A P4, P2 A P5 and P2 A P6 respectively 
(2) An external granule e&(N) associated with 
each non-leaf node N whose coverage defined as 
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Figure 2: Insertion causes growth of tree granules that are 
outside the insertion path. 

(GP(N) A 7 (Vy==,GP(Qi))). where Qi, Qz, . ..Qn are the 
children of N. For example, in Figure 1, there are 3 external 
granules: ext(Nl), ext(N2) and ext(N3) will have lock cov- 
erages s A l(Pl V F?), P1 A ~((pl A P3) V (Pl A P4)) 
and P2 A -((P2 A P5) V (P2 A P6)) respectively. 

Apart from the fact that the granules obey “containment 
hierarchy”, the above definition has another motivation. In 
GIST, for any index node N, HP(N) holds for each object in 
the subtree rooted at N. For example, in Figure 1, Pl holds for 
objects 01,02,03,04and 05 while both Pl and P3 holds for 
objects 01, 02 and 03. This implies that if an insertion does 
not change the BP of any node, it is guaranteed to be covered 
by the BP of each node in the path from the root to the leaf in 
which the object is being inserted. For example, in Figure 1, the 
object 011 (being inserted in node N5) is covered by both Pl 
and P4. So the leaf granule TG( N5) should have lock coverage 
of P 1 A P4 since that is what the inserter needs for covering the 
object. This is exactly the definition of GP 

Having defined the new set of granules, we next try to apply 
GL/R-tree on GiST. 

3.3 Problems in Applying GL/R-tree to GiSTs 

Let us consider the GiST shown in Figure 2. There are 4 
leaf granules Gl, G2, G3 and G4 corresponding to nodes 
N4, N5, N6 and N7 with GPs Pl A P3, Pl A P4, P2 A P5 
and P2 A P6 respectively. For simplicity, the partitioning of 
the space has been so chosen that all the external granules are 
empty. 

Let t, be a transaction searching region Rl. Let tins be a new 
transaction that arrives to insert R2 into N4. After the insertion, 
ti,, updates Pl from z 5 2 to z < 3. This causes t, to lose 
it lock coverage. GL/R-tree prevents this by requiring tins to 
acquire locks on all granules which the target granule Gl has 
grown into. This is not sufficient for GiSTs since, unlike in R- 
trees, the target granule is lt~t the only granule that can grow due 
to an insertion. For example, in Figure 2, both Gl and G2 grow 
due to the insertion. Assuming that only the target granule can 
grow can lead to phantoms. Under that assumption, tins would 
request a short duration IX lock on only G3 since that is the only 
granule into which Gl has grown, get the lock and commit. Now 
if ty,y arrives to insert R3 into N2, it would get the IX lock on 
G2 and proceed with insertion. Now if t, repeats its scan, it 
would find R3 has arrived from nowhere. Growing of multiple 
leaf granules can happen in GiSTs because the lock coverage 
of the leaf granules, due to the definition of GP, depend of the 
BPS of the parents. So if an inserter modifies a node, the lock 
coverage of any granule under that node can possibly change. 
This is not possible in GL/R-tree since the lock coverage of a 

Figure 3: Increase of I/O overhead with the height of the HC- 
node 

granule is independent of the BRs of its parent nodes. 
To prevent phantoms, if the insertion changes any granule, it 

must acquire the following locks: 
Let HC-node (Highest Changed Node) denote the the highest 
node in the insertion path path from root to leaf in which 
insertion takes place) whose BP (hence GP) changes due to the 
insertion. In Figure 2, N2 is the NC-node for the insertion of 
R2. Let G’ be the new GP of HC-node after the insertion (e.g., 
x 5 3 is the new GP of N2). Since any granule that grows 
due to the insertion is fully covered by G’, short duration IX 
locks on all granules consistent with G’ would ensure that no 
searcher loses its lock. In Figure 2, since all the 4 leaf granules 
are consistent with the predicate x 5 3, tins would need to 
acquire short duration IX locks on G2, G3 and G4 in addition to 
the commit duration lock on Gl and X lock on R2. This would 
prevent t;*$(by the conflicting lock on G4) till t, commits, thus 
preventing the phantom. 

The above solution involves additional disk accesses to 
acquire those extra locks. In our experiments, we found that the 
number of disk accesses involved is significant and increases 
exponentially with the level of the HC-node. as shown in 
Figure 3. In general, the HC-node can be at any level of the 
GiST all levels are equally likely. For the above experiment, 
performed on a 5-level GiST with fanout of about 100 and 
containing 400,000 2-d point objects, an insertion that causes 
a BP-change (about 6% of all insertions caused BP change) 
may need upto 1000 additional disk accesses to get all the 
locks (when the HC-node is at height 3 i.e. 3 levels above the 
leaf). This indicates that GL/R-tree can impose significant I/O 
cost for index structures where BPS do not obey “containment 
hierarchy” (e.g., distance-based index structures like M-tree). 

Besides high cost, GWR-tree has some other limitations 
for GiSTs: (1) It requires checking consistency with external 
granules during search, an extra task not performed by the 
regular GiST algorithm. This check can be computationally 
expensive in GiSTs. (2) It cannot allow an insertion or deletion 
to take place at an arbitrary level of the tree, a situation that can 
arise in GiSTs. 

4 Phantom Protection in GiSTs 

In this section, we present a dynamic granular locking approach 
to phantom protection in GIST. In the following subsections, 
we define the set of lockable resource granules for GiSTs and 
present lock protocols for various operations on GiSTs. 

4.1 Resource granules in GiSTs 

In GWGiST, we define two types of granules: 
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(1) Leaf granules: This is the same as the previous GP- 
based definition of leaf granules. A leaf granule TG(L) 
is associated with each leaf node L whose lock coverage is 
defined by GP(L). 
(2) Non-leaf granules: This is a new set of granules. A 
non-leaf granule TG(:N) is associated with each non-leaf 
node N whose lock coverage, like leaf granules, is defined 
by GP(N). In Figure 1, there are 3 non-leaf granules 
associated with the 3 non-leaf nodes N 1, N2 and N3 with 
GPs S (entire key space), Pl and P2 respectively. 

For both types of granules, the page ids of the index nodes 
are the resource ids used to lock the granules. 

Thus, GL/GiST defines a different set of lock granules 
compared to those in the GL/R-tree protocol developed in [4]. 
External granules are no longer used as lockable granules. Non- 
leaf granules are used irrstead. There are several reasons for 
this choice: (1) it allows us to develop protocols that imposes 
absolutely no overhead (in terms of extra node accesses) on 
any tree operation (2) it causes almost no loss in concurrency 
since all commit duration locks held on non-leaf granules are 
shared mode locks (3) it lnas no extra computational cost since 
checking for consistency with non-leaf granules, unlike that with 
external granules, does not involve any extra checking other 
than what is performed anyway during the regular GiST search 
algorithm and (4) it allows the protocols to work even when 
insertions/deletions take place at arbitrary levels of the tree. 

It is important to note that although non-leaf granules 
are introduced as lockable units, the GiST/GL protocol is 
completely different frorn and should not be confused with 
MGL. First, in MGL, the granules are hierarchically arranged 
to form a “granule graph” over which it follows the DAG 
protocol. In a granule graph, each node represents or “covers” a 
“logical” predicate. Since: they are “logical”, operations cannot 
dynamically change the predicate covered by any node in the 
graph. On the other hand, in GUGiST, each node in a GiST 
represents a “physical” predicate: the GP of the node. Since 
GP is “physical” (i.e. defined based on the structure of the 
tree), operations (like insertions, deletions and updates) can 
dynamically change their lock coverages which complicates 
the protocol. Second, in MGL, a lock on a coarse (higher 
level) granule grants a certain lock coverage on the finer (lower 
level) granules under it. In GiST/GL, that is not the case: 
the higher level (non-leaf) granules are introduced in order to 
cover the entire embedded space and a lock on does not grant 
coverage on any granule under it. In summary, DAG locking 
and GWGiST are fundamentally different protocols and serve 
different purposes. We believe that the idea of defining lock 
granules associated with non-leaf nodes is novel and, to the best 
of our knowledge, has been discussed before only in the context 
of bulk insertions in B-trees as an open problem in [8]. 

4.2 Search 
In this section, we describe the lock protocol followed by the 
search operation in GiST. According to the OSCI policy, a 
searcher with search predicate Q acquires commit duration S 
mode locks on all granules consistent with Q. The concurrent 
search algorithm is described is Table 2. 

We refer to the above lock protocol as SP/GiST (Search 
Protocol for GiST). SP/GiST is a straightforward protocol and 
does not require any modification to the basic tree-navigation 
algorithm of GIST. This gives rise to a possible discrepancy. 
Like the regular GiST search algorithm, SP/GiST uses the BPS 

-- 
Algorithm Search(R, q, t) -- 
Input: GiST rooted at R, predicate q, transaction t 
Output: All tuples that satisfy q - 
Sl: 

s2: 

s3: 

If R is root, request an S mode unconditional 
commit duration lock on R. 
If R is non-leaf, check each entry E on R to 
determine whether Consistent(E,q). For each entry 
that is consistent, request an S mode unconditional 
commit duration lock on the node N referenced b:y 
E.ptr and Search is invoked on the subtree rooted 
at N. 
If R is a leaf, check each entry E on R to determine 
whether Consistent(E,q). If E is Consistent, it is a 
qualifying entry that can be returned to the calling 
process. -- 

Table 2: Concurrent Search Algorithm 

to do the “Consistency(E,q)” check during tree navigation. But 
the granules in GiST are defined in terms of the GPs. To show 
that SP/GiST is correct, we need to show that it guarantees that 
a searcher acquires locks on all the necessary granules i.e. for 
any index node T, if GP(T) A Q is satisfiable, then the searcher 
acquires an S lock on TG(T). 

To prove it, let us assume that PO, PI, . . . . P, are the nodes 
in the path from the root to T where PO is the root and P, is 
T. Since a searcher acquires a shared lock on TG(T) iff it is 
consistent with with the BPS of all Pi, i = [l, m], we need to 
prove that if GP(T) A Q is satisfiable, Q is consistent with the 
BP of Pi, Vi = [l, m]. In other words, we need to prove tlhat 

GP(T) A& is satisfiable j i;\ Consistent(BP(P;), Q) (3) 
i=o 

Using the definition of GP(T), 

GP(T) A Q is satisfiable (j 
( ) 

i;\ L?P(P;) A Qis satisfiable 
i=l 

(4) 
Since A is idempotent, 

AQ is satisfiable e i(sP(Pi)AQ)is satisfiable 

1 

1 

i=l 

i5) 
Since p A q is satisfiable + Consistent(p, q), so Vi, i = [l, ,A] 

(BP(Pi) A Q) is satisfiable j Consistent(BP(Pi), Q) ((6) 

Since (A + B A C j 0) 3 (A A C + C A D), 

i (BP(Pi) A Q) is satisfiable j i;\ Consistent(BP(Pi), Q) 
i=l i=O 

Equations (4) and (7) together implies (3). 

4.3 Insertion 
The locking protocol for an insert operation must guarantee: 

l Full Coverage of the object being inserted till the time of 
transaction commit/rollback: We say an object 0 be:ing 
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1. tl anives to scan R3: acquires S lock on RI. 

2. C? arrlves to Insert R4: acquires IX locks on R2 and extlRl 

5. 0 arr$ces to lnscrt R5: acquires IX lock on R2’ and X lock on R5 

6. tl repeats its scan: R4 has appeared from nowhere 

Figure 4: Loss of lock coverage can cause phantoms. 

inserted (deleted) is fully covered by a set of granules G ifs 

0 * usa g. An insertion (as well as a deletion or an 
update) operation must acquire commit duration IX locks 
on G such that &! fully covers 0. Full coverage guarantees 
that an insertion is permitted only if 0 does not conflict with 
the predicate of any uncommitted searcher assuming that 
each searcher hold commit duration locks on all consistent 
granules. 

l Prevent Phantoms due to Loss of Lock Coverage: Since 
insertions (as well deletions and updates) can dynamically 
modify one or more granules which in turn can affect 
the lock coverage of transactions holding locks on other 
granules, full coverage is not sufficient to prevent phantoms. 
For example, the insertion of an object 0 into a leaf node 
L of a GiST may cause the granule TG(L) to grow into 
the search range of an old uncommitted searcher, resulting 
in the searcher losing its lock. This loss of lock coverage 
may cause future insertions, in spite of satisfying the full 
coverage condition, giving rise to phantoms as illustrated 
in Figure 4. The insertion lock protocol must prevent such 
phantoms from arising. 

To ensure full coverage and prevention of phantoms due to 
loss of lock coverage, the following protocol, referred to as 
IP/GiST (Insert Protocol for GiST), is used. 

Let 0 be the object being inserted and g be the target granule. 
We consider the following two cases: 

l Case I - Insertion does not cause g to grow: In this case, the 
inserter acquires (1) a commit duration IX lock on g and (2) 
a commit duration X lock on 0. 

l Case 2 - Insertion causes g to grow: Let LU-node (Lowest 
Unchanged Node) denote the lowest node in the insertion 
path whose GP does not change due to the insertion. For 
example, in Figure 2, Nl is the LU-node for the insertion 
operation of R2. The insertion acquires (1) a commit 
duration IX lock on g (2) a commit duration X lock on 0 
and (3) a short duration IX lock on TG(LU-node). * For 
example, in Figure 2, tiras would need to acquire a short 
duration IX lock on TG(N1) in addition to the IX lock on 
TG(N4) and X lock on R2. 

The concurrent insert algorithm is described in Table 3. 
IP/GiST is a simple and efficient protocol since it, unlike the 

IP/R-tree, does not impose any I/O or computational overhead 
on the insertion operation. As a result, IP/GiST is more 
efficient that IP/R-tree even on R-trees. Second, unlike IP/R- 
tree, IP/GiST works even if the target granule is a non-leaf 
granule i.e. when insertion takes place at a higher level of the 
tree. 

‘The short duration IX lock can be released immediately if the AdjustKeys 
operation is performed right away i.e. in a top-down fashion rather than bottom- 
up as is done in GiSTs. This would avoid holding the lock across I/O operations. 

Algorithm Insert(R, E, I, t) 
Input: GiST rooted at R, entry E=(p, ptr) (where p 

is a predicate such that p holds for all tuples 
reachable from ptr), level 1, transaction t. 

output: New GiST resulting from insert of E at level 1 
Variables: root is global variable (const) pointing to the 

root node of the GIST. L is a lock initialized to 
NULL. 

11: If R is not at level 1, check all entries Ei = 
(pi, ptri) in R and evaluate Penalty(Ei,E) for 
each i. Let m be argmini (Penalty(Ei, E)). 
If ((L == NULL) A (Union(E.p, E,.p,) # 
E,,, .p,)), request a unconditional IX mode lock 
L on R (for short duration). Insert is invoked 
on the subtree rooted at the node referenced by 
E,,, .ptr,. 

12: Otherwise (level of insertion reached), request 
a commit duration unconditional IX lock on R 
and a commit duration unconditional X lock on 
E.ptr. If there is room for E on R, install E on 
R. Otherwise invoke Split(root, R, E, t). 

13: AdjustKeys(root, R, t). 
14: If L # NULL, release L. 

Table 3: Concurrent Insert Algorithm 

Now we show that IP/GiST satisfy the above requirements 
of correctness. First, we prove full coverage. In Case 1, g 
fully covers 0, so commit duration IX lock on g ensures full 
coverage. In Case 2, at the start of the operation, g does not fully 
cover 0 but TG(LU-node) does. So full coverage is provided 
by the sequence of 2 locks: (1) the short duration IX lock on 
TG(LU-node) from the beginning of the operation till the end of 
the operation 3 (2) the commit duration IX lock on g from the 
end of the operation till the end of the transaction (since g has 
already grown to accommodate 0). 

Next we show prevention of phantoms due to loss of lock 
coverage. In Case 1, there can be no loss of lock coverage of any 
searcher. In Case 2, the short duration IX lock on TG(LU-node) 
guarantees that no searcher can lose it lock coverage. Let us first 
consider a searcher t, already executing when the inserter tins 
arrives to insert 0. Let Q be the search predicate oft,. Let h 
be a granule that grows to h’ due to the insertion of 0. t, can 
lose its lock ifSh A Q is not satisfiable but h’ A Q is satisfiable. 
From the definition of LU-node, h’ j TG(LU-node). (h’ A Q) 
is satisfiable and (h’ + TG(LU-node)) imply (TG(LU-node) 
AQ) is satisfiable which in turn implies Consistent(TG(LU- 
node), Qj. This means that t, can lose it’s lock coverage ifs 
it has an S lock on TG(LU-node) (since searcher acquires S 
locks on all consistent granules). Thus, the IX lock requirement 
on TG(LU-node) prevents any searcher from losing its lock 
coverage. The IX lock on TG(LU-node), being a short duration 
lock, would prevent any loss of lock by even those searchers 
that arrive during the operation. Any searcher that arrives after 
the completion of the insertion operation cannot lose its lock 
coverage due to the insertion. 

3Note that this the best we can do since, at this point of time, TG(LU-node) 
is the smallest granule in the insertion path thatfilly covers 0. 
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Operation Lock Requirements Other Actions 7 
Insertion(no granule change Commit dur. IX on g; Commit dur. X on 0 None 
/no node split) 
Insertion (granule change) Short dur. IX on TG(LU-node); IX on g; X on 0 None 
Insert (node split) If T is leaf : Instant dur. SIX on TG(T) before split; IX on Inherit S locks 

either TG(T) or TG(TT), whichever contains 0 after split TG(TT) if itself holding 
If T is non-leaf : Instant dur. SIX on TG(T); S lock on TG(T) 

Search S on all consistent leaf and non-leaf granules None 
Delete (Logical) 1Xong;XonO Mark 0 deleted; Remove 

0 from page 
Delete (Deferred) If node is not empty: Short dur. IX on TG(HC-node); IX on g; Eliminate node if empty 

XonO. 
If becomes empty: If T is leaf, Short dur. SIX on TG(T); If T 
is non-leaf, Short dur. IX on TG(T) 
S on 0 None 
If no indexed attribute changed: IX on g; X on 0 None 
Otherwise: Delete 0; Insert modified 0 
S on all consistent granules; For every individual object None 
updated, same requirement as UpdateSingle 

Table 4: Lock requirements for various operations in the dynamic granular locking approach. g is the target granule for 
insertion/deletion, 0 is the object being inserted/deleted/updated. 

4.4 Node Split 

We now consider the special case where the insertion by a 
transaction t into an alrea.dy full node causes the target granule 
g to split into granules g1 and g2. Insertions causing node 
splits follow the IP/GiST except that it needs to acquire some 
additional locks when it causes the splits. 

If the insertion by t causes g to split, since the IX lock held by 
t on g is lost after the split, t needs to acquire IX locks on g1 and 
g2 to protect the inserted object. Since t acquires an IX lock on g 
before the insertion, no other transaction, besides t itself, can be 
holding an S lock on g. If t itself holds an S lock on g, it needs 
to inherit its S lock on g to g1 and g2. This is because g1 and 
g2 are the only additional granules that may become consistent 
with the search predicate oft due to the split. 

Since before the split the inserter acquires an IX lock on g, 
other inserters and deleters may also be holding IX locks on 
g. When g splits, all transactions holding IX locks on g must 
acquire IX locks on g1 and g2 after the split. This is sufficient as 
all the insert and/or delete ranges (logical deletion) is guaranteed 
to be protected by the IX locks on g1 and g2 since all objects in g 
will be either in g1 or 92. It may not possible fort to change lock 
requests of other transac:tions using a standard lock manager. 
The problem can be avoided if the inserter acquires a instant 
duration SIX lock on g in case it causes g to split. After the 
split, the inserter acquires a commit duration IX lock on either 
g1 or g2, whichever contains 0. 

The splitting of the granule may propagate upwards causing 
the non-leaf nodes to spl:it. As in the case of leaf node split, the 
transaction causing a non-leaf node N to split acquires a instant 
duration SIX lock on TG(N) to prevent any other transaction 
losing its lock. If t itself was holding an S lock on TG(N), it 
needs to inherit its S lock. on the two granules formed after split. 

The node split operation can be allowed to be ca$ed out 
“asynchronously”. This requires maintaining the information 
of an “outstanding split” in the node - the transaction can 
subsequently commit while a separate transaction executes the 

split operation later by checking the “outstanding split” flags. 
The lock requirements remain the same as in the “synchronous” 
case. 

4.5 Deletion 
Similar to insertion, to delete an object 0, the deleter requires 
an IX lock on the region that covers 0. However, unlike 
insertion, (in which the granule where the object is inserted 
grows and covers the inserted object), the granule g from whj.ch 
0 is deleted may shrink due to the deletion and may not cover 
0. To protect the delete region, the deleter would ,need a 
commit duration IX lock on TG(LU-node) (here it is the LU- 
node of the deletion of operation) since TG(LU-node) is 1:he 
smallest granule to fully cover 0 at the completion of the 
deletion operation. This would result in low concurrency since 
a large number of searchers may be unnecessarily prevented till 
the deleter commits. For this reason, we do not consider this 
approach any further. Instead, deletes are performed logically. 
We present the lock needs of the logical and physical deletions 
in the following subsections. 

4.5.1 Logical Deletion 

The logical deleter needs to acquire a commit duration IX lock 
on only the leaf granule g that contains the object and an X 
lock on 0 itself. The IX lock on g is sufficient to clover 0 
since even if the GP of g changes due to other insertions and 
deletions (physical) since g would still cover 0. Subsequently, 
it removes the object from the page and marks it as deleted. If 
the transaction aborts, the changes are undone, the delete mark 
is removed and the locks are released. On the other hand, if it 
commits, the physical deletion of 0 from the GiST is executed 
as a separate operation. 

If the transaction requests deletion of an object 0 thlat does 
not exist, other transactions wishing to insert the same ob.ject 
should be prevented as long as the deleter is active. For ,this 
purpose, the deleter acquires S locks on all consistent granules 
just like a search operation with 0 as the search predical:e. 
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4.5.2 Deferred (Physical) Deletion 

The deferred delete operation removes the logically deleted 
object from the GiST and adjusts the BPS of the ancestors. To 
physically delete an object from a granule g, a short duration IX 
lock on g is acquired to prevent other searchers having S locks 
on g from losing their lock coverage. The IX lock is sufficient as 
inserters and other deleters holding locks on g would not lose the 
necessary lock coverage even after g shrinks due to the physical 
deletion. Deletion of an entry from the node may also result in 
the node becoming empty in which case it is eliminated from the 
GiST. Since a node is eliminated only when it becomes empty, 
no transaction can lose its IX lock due to elimination of g as g 
does not cover any object. So the IX lock on g is sufficient even 
if the deletion causes the elimination of the node. 

In either case, since the change of g may propagate upwards 
causing BPS of the ancestor nodes to change, the non-leaf 
granules associated with the ancestors may shrink. Since only 
searchers hold locks on non-leaf granules (inserters request 
only instant-duration locks), only searchers can lose their lock 
coverage due to this shrinkage. Note that only the searchers 
whose predicates are consistent with the HC-node (i.e. the 
highest index node in the deletion path whose BP changes due 
to the deletion) can lose lock coverage, possibly giving rise to 
phantoms. The loss of lock coverage of the searchers can be 
prevented by acquiring a short duration IX lock on TG(HC- 
node). Note that for insertion, it was the TG(LU-node) on which 
the short duration IX lock had to be acquired. The difference 
comes from the fact that insertion causes granules to grow while 
deletion causes them to shrink. 

4.6 Other Operations 

The locks needs for the other operations are: 
The ReadSingle operation just acquires an S lock on the 
object. 
The UpdateSingle operation, if none of the attributes in- 
dexed by GiST are changed, just needs an IX lock on the 
granule containing the object and an X lock on the object. 
Otherwise, it first executes a deletion operation of the object 
to be updated followed by the insertion of the updated object 
obeying the respective lock protocols. 
The UpdateScan operation acquires S locks on all consis- 
tent granules just like a Search operation. For every indi- 
vidual object 0 updated, it requires the same locks as an 
UpdateSingle operation on 0. 

The lock requirements for the various operations is shown in the 
Table 4. 

5 Experimental Evaluation 
We performed several experiments to (1) evaluate the perfor- 
mance of the GWGiST protocol under various degrees of sys- 
tem loads and (2) compare it with other protocols in terms of 
concurrency and lock overhead. In this section, we discuss our 
implementation of the protocols followed by the performance 
results. 

5.1 Implementation 
Implementation of the Protocols We implemented the com- 
plete GL/GiST protocol as described in this paper. To evalu- 
ate the performance of the GL/GiST protocol, we also imple- 
mented the pure predicate locking (referred to as the PurePL 
protocol) to serve as the baseline case. In PurePL, each search 

Parameters 

1 MPL 
1 Meaning 
1 multiprogramming level 

the number of operations per transac- 

action that are writes (i.e. inserts) 
the average selectivity of a search 
operation 

External mean time between transactions 
Think Time 
Restart Delay mean time after which an aborted 

transaction is restarted 

Table 5: Workload Parameters 

operation checks its predicate against the objects of the in- 
sert/delete/update operations of all currently executing transac- 
tions. If there is any conflict, it blocks on that transaction by 
requesting an S lock on that transaction ID, assuming that ev- 
ery transaction acquires an X lock on its own ID when it starts 
up. Otherwise it proceeds with the search. Similarly, each in- 
sert/delete/update operation checks its object against the predi- 
cates of the search operations of all currently executing transac- 
tions and in case of a conflict, blocks on the conflicting transac- 
tion. 

Construction of GiST We conducted our experiments on two 
different GiSTs constructed over the following two datasets: 

The 2-d dataset: is the 2-d point data set of the Sequoia 
2000 benchmark [20]. It contains locations(easting and 
northing values) of 62,556 California places extracted from 
the US Geological Survey’s Geographic Names Information 
System (GNIS)). The points are geographically distributed 
over a 1046km by 13 l’i’km area. 
The 3-d dataset: is derived from the FOURIER dataset 
[6]. The FOURIER dataset data set comprises of 1.2 
million vectors of fourier coefficients produced by fourier 
transformation of polygons. We constructed the 3-d dataset 
by taking the first 3 fourier coefficients of each vector. 

We set aside some points (by random choice) from the 
above data files for insertion into the GiST during the run of 
transactions. The searches to be executed during the run are 
generated by randomly choosing the query anchor from the data 
file and generating a bounding box by choosing a proper side 
length needed to obtain desired search selectivity. The set-aside 
points and the queries are stored in two separate files which are 
used by the workload generator. 

We created the GiSTs by bulkloading the remaining points. 
The two GiSTs are described below: 

2-d GiST: constructed on 56,655 2-d points with 2K page 
size (fanout 102, 821 nodes). Since the size of the data set is 
small, we use a comparatively small page size to make the 
GiST of significant size. 
3-d GiST: constructed on 480,471 3-d points with 8K page 
size (fanout 292,236O nodes) 

In both cases, we configured the GiST to behave as an R-tree by 
specifying the extension methods appropriately. 

33 



Figure 5: Throughput at various MPLs 
for 2-d data (write probability=0.2, trans- 
action size=1 0, query selectivity=O. 1%) 

Figure 8: Throughput at various trans- 
action sizes (MPL=50, write probabil- 
ity=O. 1, query selectivity==O. 1%) 

Figure 6: Throughput at various MPLs Figure 7: Throughput at various mixes 
for 3-d data (write probability=0.2, trans- of reads and writes (MPL=50, transaction 
action size=lO, query selectivity=0.05%) size=lO, query selectivity=O.l%) 

Figure 9: Throughput at various query Figure 10: Conflict Ratio (transaction 
sizes (MPL=50, transaction size=lO, size=lO, write probability=0.2, query se- 
write probability=O.l) lectivity=O. 1%) 

Workload Generator and the Lock Manager The workload 
generator (WC) generates a workload based on the input param- 
eters shown in Table 5. The WG assigns some search operations 
(from the bounding box query file) and some insertion opera- 
tions (from the set-aside point file) to each transaction. Each 
transaction executes as a iseparate thread. We use the Pthread li- 
brary (Solaris 2.6 implementation) for creating and managing 
the threads [ 151. One thread only executes one transaction: 
it is created at the beginning of the transaction and is termi- 
nated when the latter commits. The WG maintains the MPL 
at the specified value by using an array of flags (MPL num- 
ber of them): when a thread finishes, it sets a flag. The main 
WG thread constantly polls on this array and when it detects 
the setting of a flag, it starts a new thread and assigns the next 
transaction to it. The thread waits for some time (external think 
time) and starts executing the transaction: it executes one oper- 
ation after another on the GiST following the lock protocols. If 
any lock request returns an error (due to a deadlock or a time- 
out), the transaction aborts. If it aborts, it is re-executed within 
the same thread after a certain restart delay (each transaction 
remembers its constituent operations till it commits for possible 
re-execution). 0urimple:mentation of the WG consists of 3 main 
C++ classes (TransactionManager, Transaction and Operation). 
The TransactionManager class also maintains the global statis- 
tics of the run (e.g., throughput, conflict-ratio, number of locks 
acquired, number of aborts etc.) which are used to measure the 
performance of the various protocols. Although the other 4 sim- 
ulation parameters are varied, we fix the external think time to 
3 seconds and the restart delay to 3 seconds for all our experi- 
ments. AIso, for the two GiSTs, the buffer sizes are set such that 

about 75% of the pages fit in memory. 
For the lock manager (LM) implementation, we reuseId most 

of the LM code of MiniRel system obtained from the University 
of Maryland. The LM code closely follows the description in 
WI. 

All experiments were performed on a Sun Ultra Enterprise 
3000 Server running Solaris 2.6 with two 167MHz CPU, 
5 12MB of physical memory and several GB of secmondary 
storage. 

5.2 Experimental Results 

Evaluation of the GWGiST protocol We conducted exper- 
iments to evaluate the performance of the GL/GiST protocol 
under various system loads. Performance is measured using 
throughput i.e. the ratio of the total number of transactions that 
completed during the period when the transactions ran at full 
MPL (ignoring the starting phase and the dying phase when the 
MPLs are lower) to the total duration of the full-MPL phase 1: I]. 
Figures 5 shows the throughput of GL/GiST and PurePL, proto- 
cols at various MPLs for the 2d dataset. Initially, the throughput 
increases with the MPL as the system resources were underuti- 
lized at low MPLs. For GL/GiST, the throughput reaches a peak 
(- 14 tps) at an MPL of 50 while for PurePL, the peak + 6 
tps) is reached at an MPL of 60. Beyond that point, the through- 
put starts decreasing as the system starts thrashing. Figures 6 
shows the performance of the two protocols for the 3d dataset. 
Like the 2-d dataset, the GWGiST achieves significantly higher 
throughput compared to PurePL. 

We also varied the system load by tweaking the otherparame- 
ters like write probability, transaction size and size of search [ 11. 
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Figure 11: Lock Overhead of Search Op- 
eration (transaction size=lO, write proba- 
bility=0.2, query selectivity=O. 1%) 

Figure 12: Lock Overhead of Insert Op- 
eration (transaction size=lO, write proba- 
bility=0.2, query selectivity=O.l%) 

These experiments were conducted on the 2-d dataset. Figure 7 
shows the performance of the two protocols under various mixes 
of read(search) and write(insert) operations. GL/GiST signifi- 
cantly outperforms PurePL under all workloads. Figure 8 shows 
the throughputs at various transaction sizes. Again, GL/GiST 
mostly outperforms PurePL. At an MPL of 50, for transactions 
with 20 or more operations, since a large portion of the GiST is 
locked by some transaction or the other, GL/GiST starts thrash- 
ing due to high lock contention leading to decrease in through- 
put. Figure 9 shows the performance for various query sizes. 
Once again, GUGiST performs better than PL for all workloads. 

Comparison to other techniques In this section, we compare 
GWGiST protocol with the predicate locking protocol presented 
in [lo]. We refer to the above protocol as the PL/GiST protocol. 
In PWGiST, a searcher attaches its search predicate & to all the 
index nodes whose BPS are consistent with Q. Subsequently, 
the searcher acquires S locks on all objects consistent with 
Q. An inserter checks the object to be inserted against all the 
predicates attached to the node in which the insertion takes 
place. If it conflicts with any of them, the inserter also attaches 
its predicate to the node (to prevent starvation) and waits for 
the conflicting transactions to commit. If the insertion causes 
a BP of a node N to grow, the predicate attachments of the 
parent of N is checked with new BP of N and are replicated 
at N if necessary. The process is carried out top-down over 
the entire path where node BP adjustments take place. Similar 
predicate checking and replication is done between sibling 
nodes during split propagation. The details of the protocol 
can be found in [lo]. A complete performance study would 
require a full fledged implementation of the PWGiST protocol 
(including implementation of the Predicate Manager, augment 
GiST with data structures to be able to attach/detach predicates 
to tree nodes etc.). Due to the complexity of the this task, 
we only compare the two protocols in terms of the degrees of 
concurrency offered and their lock overheads. Again PurePL 
is used to serve as the baseline case. All the experiments were 
conducted on the 2-d dataset. 

Figure 10 compares the concurrency offered by the GWGiST 
and the PL protocols. Concurrency is measured using conflict 
ratio i.e. the average number of times some transaction blocked 
on a lock request per committed transaction [l]. Lower the 
conflict ratio, higher the concurrency. Both PWGiST and 
PurePL protocols offer the maximum permissible concurrency 
since transactions are blocked only when they truly conflict. 

Figure 13: Throughput at various MPLs 
for 5-d data (write probability=O. 1, trans- 
action size=lO, query selectivity=O. 1%) 

On the other hand, GL/GiST offers lower concurrency due to 
“false conflicts” i.e. a situation where although the predicates do 
not conflict with each other, they end up requesting conflicting 
locks on the same granule (e.g., in R-trees, a search predicate 
and an object being inserted do not overlap with each other but 
they overlap with the BR of the same leaf node). More the 
number of false conflicts, higher the loss of concurrency. Figure 
10 shows that false conflicts do not cause a significant loss of 
concurrency in GL/GiST compared to PL. This is an outcome 
of the “fineness” of the chosen granules. 

Figure 11 and 12 shows the lock overheads imposed by the 
GL/GiST, PL/GiST and PurePL protocols for the search and 
insert operations respectively. The lock overhead is measured 
by the average number of locks acquired or the average number 
of predicate checks performed, as the case may be, measured on 
the same scale. Although the two costs (i.e. acquiring a lock 
and performing a predicate check) are within the same order 
of magnitude (between 50-200 RISC instructions) for 2d data, 
the costs would differ for higher dimensional data (predicate 
checking becomes costlier while the cost of acquiring a lock 
remains the same). While the lock overhead of predicate locking 
increases linearly with MPL, that of GL is independent of MPL. 
The figures show that for both search and insert operations, 
GWGiST imposes considerably lower lock overhead compared 
to PL protocols. 

To study the performance of GL at higher dimensionalities, 
we also conducted experiments on 5-d data. The 5-d dataset 
is derived from the FOURIER dataset and is constructed by 
taking the first 5 fourier coefficients of each vector. We built 
the GiST on 480,471 points of the 5-d dataset with 8K page 
size(fanout 136, 5186 nodes). The buffer size was set to about 
10% of the size of the GiST. Figure 13 shows the performance 
the two approaches at various MPLs for 5-d data. Like 2-d and 
3-d datasets, granular locking outperforms predicate locking for 
5-d data as well. 

In summary, there is a tradeoff between GL and PL - 
while GL enjoys lower lock overhead, it has lower concurrency 
compared to PL. Our experiments confirm that similar to granule 
based protocols for l-d datasets, the GL protocol performs 
significantly better than PL for multidimensional datasets as 
well. 

6 Conclusions and Future Work 
Numerous emerging applications (e.g., GIS, multimedia, CAD) 
need support of multidimensional AMs in DBMSs. The 
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Generalized Search Tree (GiST) is an important step to meet that 
need. GiST, being an extensible index structure, when supported 
in a DBMS, will allow application developers to define their own 
AMs by supplying a set of extension methods. However, before 
GiSTs can be supported by any commercial strength DBMSs, 
efficient techniques to support concurrent access to data via 
the GiST must be developed. Concurrent access to data via a 
general index structure introduces two independent concurrency 
control problems. First, techniques must be developed to ensure 
the consistency of the data structure in presence of concurrent 
insertions, deletions and updates. Second, mechanisms to 
protect search regions frolm phantom insertions and deletions 
must be developed. Developing such mechanisms to guarantee 
transactional access to data via multidimensional data structures 
has been identified as one, of the key challenges to transaction 
management in future database systems [8]. 

This paper presents a dynamic granular locking approach to 
phantom protection in GiSTs. The paper builds on our previ- 
ous work on a dynamic granular locking strategy for R-trees 
[4]. Due to some fundamental differences between R-tree and 
GiST in the notion of a s,earch key, the algorithms developed 
for R-trees do not provide. a feasible solution for phantom pro- 
tection in GiST. Motivate:d by the limitations of the previous 
approach in the context of GiSTs, we develop a new granular 
locking approach suited for concurrency control in GiSTs. The 
developed protocols provide a high degree of concurrency and 
have low lock overhead. Our experiments have shown that the 
granular locking technique (1) scales well under various system 
loads and (2) significantly outperforms predicate locking for low 
to medium dimensional datasets (2d, 3d and 5d). While most 
applications that involve dynamic datasets and require highly 
concurrent accesses to the data deal with low to medium di- 
mensional spaces, 4 it is nevertheless interesting to explore ap- 
proaches that provide good performance for high dimensional 
datasets as well. Although1 the granular locking proposed in this 
paper provides almost as high concurrency as the predicate lock- 
ing approach for low to medium dimensionalities (see Figure 
lo), the loss of concurrency increases with the increase in di- 
mensionality. The reason is that at high dimensionalities, the 
data space gets increasingly sparse (a phenomenon commonly 
known as the “dimensionality curse” [3]), resulting in coarser 
leaf granules which causes more “false conflicts” and hence a 
higher loss in concurrency. While at low to medium dimension- 
alities the efficiency of granular locking far outweighs the loss of 
concurrency resulting in better performance compared to pred- 
icate locking, it may not be the case at high dimensionalities. 
This is evidenced by the fact that for 5-d data, though granular 
locking still outperforms predicate locking, the performance gap 
between them is less comlpared to the 2-d and 3-d datasets. A 
simple approach to improve the concurrency offered by granu- 
lar locking is to define filner granules. The benefit of such an 
approach is not clear since while the finer granules will improve 
concurrency, it will also increase the lock overhead of each op- 
eration. A hybrid strateg:y between the granular and predicate 
locking techniques may be a more suitable solution for high di- 
mensional datasets. We intend to explore such a solution in the 
future. 

4F~r example, GIS and CAD systems deals with spatial data which is either 
2-d or 3-d. Spatio-temporal applications (e.g., management of moving objects) 
deals with 3-d or 4-d data. Multimedia retrieval systems like QBIC index images 
using 3-d feature vectors [7]. 
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