
Efficient Concurrency Control in Multidimensional Access Methods *

Kaushik Chakrabarti
Department of Computer Science

University of Illinois at Urbana-Champaign
kaushikc@cs.uiuc.edu

Abstract
The importance of multidimensional index structures to numerous
emerging database applications is well established. However, before
these index structures can be supported as access methods (AMs)
in a “commercial-strength” database management system (DBMS),
efficient techniques to provide transactional access to data via the
index structure must be developed. Concurrent accesses to data via
index structures introduce the problem of protecting ranges specified
in the retrieval from phantom insertions and deletions (the phantom
problem). This paper presents a dynamic granular locking approach
to phantom protection in Generalized Search Trees (GiSTs), an index
structure supporting an extensible set of queries and data types. The
granular locking technique offers a high degree of concurrency and
has a low lock overhead. Our experiments show that the granular
locking technique (1) scales well under various system loads and
(2) similar to the B-tree case, provides a significantly more efficient
implementation compared to predicate locking for multidimensional
AMs as well. Since a wide variety of multidimensional index structures
can be implemented using GiST, the developed algorithms provide a
general solution to concurrency control in multidimensional AMs. To
the best of our knowledge, this paper provides the first such solution
based on granular locking.

1 Introduction
Database systems are being increasingly deployed to support
emerging applications such as computer-aided design (CAD),
geographical information systems (GIS), multimedia content-
based retrieval systems, time-series databases, medical/health
care applications, spatio-temporal databases etc. To support
these applications efficiently on top of a DBMS, database
systems must allow application developers to (1) define their
own data types and operations on those data types, and (2)
define their own indexing mechanisms on the stored data
which the database query optimizer can exploit to access the
data efficiently. The Object Relational DBMS (ORDBMS)/
Universal Server (US) technology addresses the first problem
effectively [21]. But the ability to allow application developers

* This work was supported in part by the National Science Foundation
under Grant No. IIS-9734300, in part by the Army Research Laboratory under
Cooperative Agreement No. DAALOl-96-2-0003 and in part by NASA under
Grant No. B9U415912.

Permission to make digital or hard topics of all or part of this work fog
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies hear this notice and the full citation on the tirst page. To copy
otherwise, to republish, to post on scrvcrs or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD ‘99 Philadelphia PA
Copyright ACM 1999 I-581 13-084-8/99/05...$5.00

Sharad Mehrotra
Department of Information and Computer Science

University of California at Irvine
sharad@ics.uci.edu

to easily define their own access methods (AMs) still remains an
elusive goal.

The Generalized Search Tree (GiST) [9] addresses the above
problem. GiST is an index structure that is extensible “both” in
the data types it can index and in the queries it can support. It
is like a “template” - the application developer can implement
her own AM using GiST by simply registering a few extension
methods with the DBMS. GiST solves two problems:

Over the last few years, several multidimensional data
structures have been developed for specific application
domains. Implementing these data structures from scratch
every time requires a significant coding effort. GiST can be
adapted to work like these data structures, a much easier task
than implementing the tree package from scratch.
Since GiST is extensible, if it is supported in a DBMS, the
DBMS can allow application developers to define their own
AM, a task that was not possible before.

Although GiST considerably reduces the effort of integrating
new AMs in DBMSs, before it can be supported in a “commer-
cial strength” DBMS, efficient techniques to support concurrent
access to data via the GiST must be developed. Developing con-
currency control (CC) techniques for GiST have several impor-
tant benefits. (1) Since a wide variety of index structures can be
implemented using GIST, developing CC techniques in the con-
text of GiST would solve the CC problem for multidimensional
index structures in general. (2) Experience with B-trees has
shown that the implementation of CC protocols requires writing
complex code and accounts for a major fraction of the effort for
the AM implementation [8]. Developing the protocols for GiST
is particularly beneficial since it would need writing the code
only once and would allow concurrent access to the database
via any index structure implemented in the DBMS using GiST,
thus avoiding the need to write the code for each index structure
separately.

Concurrent access to data via a general index structure
introduces two independent concurrency control problems:

l Preserving consistency of the data structure in presence of
concurrent insertions, deletions and updates.

l Protecting search regions from phantoms

This paper addresses the problem of phantom protection in
GiSTs. In our previous research, we had studied a granular
locking (GL) solution for phantom protection in R-trees [4].
We refer to it as the GUR-tree protocol. Due to fundamental
differences between R-tree and GiST in the notion of a search
key, the approach developed for R-trees is not a feasible
solution for GiST. Specifically, the GL/R-tree protocol needs
several modifications for making it applicable to GiSTs and

25

Figure 1: A GiST for a key set comprising of rectangles in 2 dimensional space. 0 11 is a new object being inserted in node
a search region. Predicates Pl through P6 are the BPS of the nodes N2 through N7 respectively.

the modified algorithms, when applied to GiSTs, impose a
significant overhead, botlh in terms of disk I/O as well as
computational cost, on the tree operations. To overcome
this problem, we develop a new granular locking approach
for phantom protection in GiSTs in this paper. We refer to
it as the GUGiST protocol. The GWGiST protocol differs
from the GL/R-tree protocol in its strategy to partition the
predicate space and hence defines a new set of lockable
resource granules. Based on the set of granules defined, lock
protocols are developed for the various operations on GiSTs.
For an R-tree implemented using GiST, GL/GiST protocol
provides similar performance as the GWR-tree protocol. On
the other hand, for index structures where the search keys
do not satisfy the “containment hierarchy” constraint, the
GUGiST protocol performs significantly better than the GL/R-
tree protocol. Examp1e.s of such index structures include
distance-based (centroid-radius based) index structures (e.g.,
M-tree, SS-tree). In summary, GWGiST provides a general
solution to concurrency control in multidimensional AMs rather
than a specific solution for a particular index structure (e.g.,
GL/R-tree), without any compromise in perfotmance.

The problem of phantom protection in GiSTs has previously
been addressed in [lo] where the authors develop a solution
based on predicate locking (PL). As discussed in [B], although
predicate locking offers potentially higher concurrency, typi-
cally granular locking is preferred since the lock overhead of
predicate locking is much higher compared to that of granu-
lar locking. The reason is while granular locks can be set and
cleared as efficiently as olbject locks (- 200 RISC instructions),
setting of a predicate lock requires checking for predicate sat-
isfiability against the predicates of all concurrently executing
transactions. For this reason, all existing commercial DBMSs
implement granular locking in preference to the predicate based
approach. Our experiments on various “real” multidimensional
data sets show that (1) GYGiST scales well under various sys-
tem loads and (2) Similar to the B-tree case, GL provides a
significantly more efficient implementation compared to PL for
multidimensional AMs as well.

The rest of the paper is developed as follows. Section 2
reviews the preliminaries. Section 3 describes the space
partitioning strategy for GiSTs and discusses the difficulty in
applying the R-tree approach to GiSTs. Section 4 presents the
dynamic granular locking approach to phantom protection in

N5. R is

GiSTs. The experimental results are presented in Secti.on .5.
Finally, Section 6 offers the conclusions and future work.

2 Preliminaries

In this section, we first review the basic GiST structure. Next
we describe the phantom problem, its solutions for B-trees and
why they cannot be applied to multidimensional data structures.
Finally, we state the desiderata of a granular locking solution
to the phantom problem in multidimensional index structures
followed by the terminology used in presenting the algorithms.

Generalized Search Trees GiST is a height balanced multi-
way tree. Each tree node contains a number of node entries,
E = (p, ptr), where E.p is a predicate that describes the sub-
tree pointed by E.ptr. If N is the node pointed by E.ptr, l3.p
is defined to be the bounding predicate (BP) of N, denoted 'by
BP(N). The BP of the root node is the entire key space S.
Figure 1 shows a GiST for a key space comprising of 2-d rect-
angles.

A key in GiST can be any arbitrary predicate. The appl:ication
developer can implement her own AM by specifying the key
structure via a key class. The design of the key class involves
providing a set of six extension methods which are u.sed to
implement the standard search, insert and delete operations over
the AM. A more detailed description can be found in [93.

Serializability Concepts and the Phantom Problem Trans-
actions, locking and serializability concepts are well docu-
mented in the literature [17, 18, 81. The phantom problem
is defined as follows (from the ANSI/IS0 SQL-92 specifica-
tions [12, 21): Transaction Tl reads a set of data items satisfy-
ing some <search condition>. Transaction TZ then cre-
ates data items that satisfy Tl’s <search condition> and
commits. If Tl then repeats its scan with the same <search
condition>, it gets a set of data items (known as “phan-
toms”) different from the first read. Phantoms must be prevented
to guarantee serializable execution. Object level locking does
not prevent phantoms since even if all objects currently in the
database that satisfy the search predicate are locked, concurrent
insertions into the search range cannot be prevented. These in-
sertions may be a result of insertion of new objects, update:s to

26

I

Table 1: Lock mode compatibility matrix for granular locks.
The purpose of the various lock modes are shown alongside.

existing objects or rolling-back deletions made by other concur-
rent transactions.

Approaches to Phantom Protection There are two general
strategies to solve the phantom problem, namely predicate
locking and its engineering approximation, granular locking.
In predicate locking, transactions acquire locks on predicates
rather than individual objects. Although predicate locking
is a complete solution to the phantom problem, the cost of
setting and clearing predicate locks can be high since (1) the
predicates can be complex and hence checking for predicate
satisfiability can be costly and (2) even if predicate satisfiability
can be checked in constant time, the complexity of acquiring
a predicate lock is proportional in the number of concurrent
transactions which is an order of magnitude costlier compared
to acquiring object locks that can be set and released in constant
time [8]. In contrast, in granular locking, the predicate space is
divided into a set of lockable resource granules. Transactions
acquire locks on granules instead of on predicates. The locking
protocol guarantees that if two transactions request conflicting
mode locks on predicates p and p’ such that p A p’ is satisfiable,
then the two transactions will request conflicting locks on at
least one granule in common. Granular locks can be set and
released as efficiently as object locks. For this reasons, all
existing commercial DBMSs use granular locking in preference
to predicate locking. A more detailed comparison between the
two approaches can be found in [8].

An example of the granular locking approach is the multi-
granularity locking protocol (MGL) [111. MGL exploits addi-
tional lock modes called intention mode locks which represent
the intention to set locks at finer granularity (see Table 1). Ap-
plication of MGL to the key space associated with a B-tree is
referred to as key range Zocking(KRL+) [11, 131. KRL cannot be
applied for phantom protection in multidimensional data struc-
tures since it relies on the total order over the underlying ob-
jects based on their key values which does not exist for multidi-
mensional data. Imposing an artificial total order (say a Z-order
[161) over multidimensional data to adapt KRL would result in
a scheme with low concurrency and high lock overhead since
protecting a multidimensional region query from phantom in-
sertions and deletions will require accessing and locking objects
which may not be in the region specified by the query (since
an object will be accessed as long as it is within the upper and
the lower bounds in the region according to the superimposed
total order). It would severely limit the usefulness of the mul-
tidimensional AM, essentially reducing it to a l-d AM with the
dimension being the total order.

Desiderata of the Solution Since KFU cannot be used in
multidimensional index structures, new techniques need to be
devised to prevent phantoms in such data structures. The
principal challenges in developing a solution based on granular
locking are:

l Defining a set of lockable resource granules ’ over the
multidimensional key space such that they (1) dynamically
adapt to key distribution (2) fully cover the entire embedded
space and (3) are fine enough to afford high concurrency.
The importance of these factors in the choice of granules has
been discussed in [8]. The lock granules (i.e. key ranges) in
KRL satisfy these 3 criteria.

l Easy mapping of a given predicate onto a set of granules that
needs to be locked to scan the predicate. Subsequently, the
granular locks can be set or cleared as efficiently as object
locks using a standard lock manager (LM).

l Ensuring low lock overhead for each operation.
l Handling overlap among granules effectively. This problem

does not arise in KRL since the key ranges are always mutu-
ally disjoint. In multidimensional key space partitioning, the
set of granules defined may be, in GiST terminology, “mutu-
ally consistent”. For example, there may be spatial overlap
among R-tree granules. This complicates the locking proto-
col since a lock on a granule may not provide an “exclusive
coverage” on the entire space covered by the granule. For
correctness, the granular locking protocols must guarantee
that any two conflicting operations will request conflicting
locks on at least one granule in common. This implies that
at least one of the conflicting operations must acquire locks
on all granules that overlap with its predicate while the other
must acquire conflicting locks on enough granules to fully
cover its predicate [4]. This leads to two alternative strate-
gies:
l Overlap-for-Search and Cover-for-lnsert Strategy (0X2)

in which the searchers acquire shared mode locks on all
granules consistent with its search predicate whereas the
inserters, deleters and updators acquire IX locks on a
minimal set of granules sufficient to fully cover the object
being inserted, deleted or updated.

l Cover-for-Search and Overlap-for-Insert Strategy (CSOI)
in which the searchers acquire shared mode locks on a
minimal set of granules sufficient to fully cover its search
predicate whereas the inserters, deleters and updators
acquire IX locks on all granules consistent with the object
being inserted, deleted or updated.

While the former strategy favors the insert and delete
operations by requiring them to do minimal tree traversal
and disfavors the search operation by requiring them to
traverse all consistent paths, the latter strategy does exactly
the reverse. Intermediate strategies are also possible. For
GWGiST, we choose the OSCI strategy in preference to the
rest. The OSCI strategy effectively does not impose any
additional overhead on any operation as far as tree traversal
is concerned since searchers in GiST anyway follow all
consistent paths. The CS01 strategy may be better for index
structures where inserters follow all overlapping paths and
searchers follow only enough paths to cover its predicate.
The R+-tree is an example of such an index structure
[191. We assume that the OSCI strategy is followed for all

‘In this paper, we use the term “granules” to mean lock units - resources that
are locked to insure isolation and not in the sense of granules in “granule graph”
of MCL [8]. This is discussed in further detail in Section 4.1.

27

discussions in the rest of the paper.

Terminology In developing the algorithms, we assume, as
in [I 11, that a transaction may request the following types
of operations on GiST: !:earch, Insert, Delete, ReadSingle,
UpdateSingle and UpdateScan. In presenting the solution to
the phantom problem, we describe the lock requirements of
each of these and present the algorithms used to acquire the
necessary locks. The loclc protocols assumes the presence of
a standard LM which supports all the MGL locks modes (as
shown in Table 1) as we.11 as conditional and unconditional
lock options [141. Furthermore, locks can be held for different
durations, namely, instant, short and commit durations [14].
While describing the lock requirements of various operations for
phantom protection, we assume the presence of some protocol
for preserving the physical consistency of the tree structure in
presence of concurrent operations. The lock protocol presented
in this paper guarantees phantom protection independent of the
specific algorithm used to preserve tree consistency. In our
implementation, we have combined the GL/GiST protocol with
the latching protocol proposed in [101. We do not describe the
combined algorithms in this paper due to space limitations but
can be found in the longer version of this paper [5].

3 Why the R-tree protocol cannot be applied
to GiSTs?

The most obvious solution to the phantom problem in GiSTs
is to treat GiSTs as extensible R-trees and apply the GL/R-tree
protocol we developed in (41 to GiSTs. In this section, we argue
that GL/R-tree protocol is not a feasible solution for GiSTs.
We first briefly review the approach developed for phantom
protection in R-trees [4]. We do this for two main reasons: (1)
it builds the context for the solution developed for GiSTs and
(2) it enables us to illustrate why GL/R-tree cannot be applied
to GiSTs. Subsequently, we define the resource granules in
GiST. We conclude the section by discussing why GL/R-tree is
inapplicable to GiSTs.

3.1 The R-tree granular locking protocol

In GL/R-tree, we define the following two types of lockable
granules:

(1) A leaf granule associated with each leaf level index node
L of the R-tree. We denote it by TG(L) i.e. the tree granule
associated with the le,af node L. The bounding rectangle
(BR) associated with 1; defines the lock coverage of TG(L).
(2) An external granule associated with each non-leaf node
N of the R-tree. We denote it by e&(N) i.e. the external
granule associated with the non-leaf node N. The lock
coverage of ezt(N) is defined to be the space covered by
the BR of N which is not covered by the BRs of any of its
children.

The search operation acquires locks on all leaf granules and
external granules overlapping with the search predicate (referred
to as SP/R-tree).

TO prevent insertion of objects into search ranges of uncom-
mitted searchers, we follow the OSCI policy. Although the plain
GSCI policy guarantees phantom protection when the opera-
tions do not change the granules, phantoms may arise when the
granule boundaries dynamically change due to insertions and

deletions. To prevent phantoms, inserters in GL/R-tree follows
the following protocol (referred to as IP/R-tree):

Let g be the granule corresponding to the leaf node in which
the insertion takes place (referred to as the target granule) and
0 be the object being inserted. IP/R-tree handles the following
2 cases separately:

l Case I - Insertion does not cause g to grow: In this cas’e, the
inserter acquires (1) a commit duration IX lock on g and (2:)
a commit duration X lock on 0.

l Case 2 - Insertion causes g to grow (to say, g’): In this case,
it acquires (1) a commit duration IX lock on g (2) a commit
duration X lock on 0 and (3) short duration IX locks on all
granules into which it grew i.e. all granules overlapping with
(g’ - g). (3) ensures that there exists no old searchers which
could lose their lock coverage due to the growth of g. Note
that acquiring the extra locks of (3) may cause the inserter to
perform additional disk accesses.

A detailed discussion of the lock requirements for other tree
operations and the protocols followed to acquire the 1ock:s can
be found in [4].

3.2 Space partitioning strategy for GiSTs
The first task in developing a granular locking solution ‘to the
phantom problem is to develop a strategy to partition the key
space. Note that the BPS in GiST, unlike the BRs in R-tree,
cannot be used to define the granules since the BPS, unlike
the BRs, are not arranged in a “containment hierarchy” i.e.
given a node T, for any node N under (i.e. reachable from)
T, BP(N) + BP(T) is not necessarily true. So, for a search
with predicate P, there might exist a leaf (or external) granule
that is consistent with the search predicate P under a non-leaf
node N whose BP is not consistent with P. For example, in
Figure I, the search predicate R is not consistent with BP(N2)
(i.e. Pl) but is consistent with TG(N5) (i.e. P4) where AT5 lies
under N2 in the tree. This means that to follow the OSCI policy
(i.e. get locks on all consistent granules), the searcher cannot
“prune” its search below N2 as it would normally do. This is
impractical since the searcher would have to access extra nodes
(and possibly extra disk accesses) for the purpose of getting
locks.

It is clear from the above discussion that we must defilne
granules such that their lock coverage satisfy the “containment
hierarchy” constraint even if the BPS do not. For that purpose,
we define a granule predicate associated with every index node
of a GIST.

Definition l(Granule Predicate): Let N be an index node
and P be the parent of N. The granule predicate of N, denoted
by GP(N), is defined as:

GP(N) = BP(N) if N is the root (1)
= BP(N) A GP(P) otherwise (2)

Note that GPs, unlike BPS, are guaranteed to satisfy the
“containment hierarchy” property.

Using GPs, we define the following two types of granules:

(1) A leaf granule TG(L) associated with each leaf node L
whose coverage is defined by GP(L). For example, in Figure
1, there are 4 leaf granules: TG(N4), TG(NS), TG(N6) and
TG(N7) with lock coverage s lock coverage s Pl A P3,
Pl A P4, P2 A P5 and P2 A P6 respectively
(2) An external granule e&(N) associated with
each non-leaf node N whose coverage defined as

28

r-n PI: p2:
xc=2 02

G3

Figure 2: Insertion causes growth of tree granules that are
outside the insertion path.

(GP(N) A 7 (Vy==,GP(Qi))). where Qi, Qz, . ..Qn are the
children of N. For example, in Figure 1, there are 3 external
granules: ext(Nl), ext(N2) and ext(N3) will have lock cov-
erages s A l(Pl V F?), P1 A ~((pl A P3) V (Pl A P4))
and P2 A -((P2 A P5) V (P2 A P6)) respectively.

Apart from the fact that the granules obey “containment
hierarchy”, the above definition has another motivation. In
GIST, for any index node N, HP(N) holds for each object in
the subtree rooted at N. For example, in Figure 1, Pl holds for
objects 01,02,03,04and 05 while both Pl and P3 holds for
objects 01, 02 and 03. This implies that if an insertion does
not change the BP of any node, it is guaranteed to be covered
by the BP of each node in the path from the root to the leaf in
which the object is being inserted. For example, in Figure 1, the
object 011 (being inserted in node N5) is covered by both Pl
and P4. So the leaf granule TG(N5) should have lock coverage
of P 1 A P4 since that is what the inserter needs for covering the
object. This is exactly the definition of GP

Having defined the new set of granules, we next try to apply
GL/R-tree on GiST.

3.3 Problems in Applying GL/R-tree to GiSTs

Let us consider the GiST shown in Figure 2. There are 4
leaf granules Gl, G2, G3 and G4 corresponding to nodes
N4, N5, N6 and N7 with GPs Pl A P3, Pl A P4, P2 A P5
and P2 A P6 respectively. For simplicity, the partitioning of
the space has been so chosen that all the external granules are
empty.

Let t, be a transaction searching region Rl. Let tins be a new
transaction that arrives to insert R2 into N4. After the insertion,
ti,, updates Pl from z 5 2 to z < 3. This causes t, to lose
it lock coverage. GL/R-tree prevents this by requiring tins to
acquire locks on all granules which the target granule Gl has
grown into. This is not sufficient for GiSTs since, unlike in R-
trees, the target granule is lt~t the only granule that can grow due
to an insertion. For example, in Figure 2, both Gl and G2 grow
due to the insertion. Assuming that only the target granule can
grow can lead to phantoms. Under that assumption, tins would
request a short duration IX lock on only G3 since that is the only
granule into which Gl has grown, get the lock and commit. Now
if ty,y arrives to insert R3 into N2, it would get the IX lock on
G2 and proceed with insertion. Now if t, repeats its scan, it
would find R3 has arrived from nowhere. Growing of multiple
leaf granules can happen in GiSTs because the lock coverage
of the leaf granules, due to the definition of GP, depend of the
BPS of the parents. So if an inserter modifies a node, the lock
coverage of any granule under that node can possibly change.
This is not possible in GL/R-tree since the lock coverage of a

Figure 3: Increase of I/O overhead with the height of the HC-
node

granule is independent of the BRs of its parent nodes.
To prevent phantoms, if the insertion changes any granule, it

must acquire the following locks:
Let HC-node (Highest Changed Node) denote the the highest
node in the insertion path path from root to leaf in which
insertion takes place) whose BP (hence GP) changes due to the
insertion. In Figure 2, N2 is the NC-node for the insertion of
R2. Let G’ be the new GP of HC-node after the insertion (e.g.,
x 5 3 is the new GP of N2). Since any granule that grows
due to the insertion is fully covered by G’, short duration IX
locks on all granules consistent with G’ would ensure that no
searcher loses its lock. In Figure 2, since all the 4 leaf granules
are consistent with the predicate x 5 3, tins would need to
acquire short duration IX locks on G2, G3 and G4 in addition to
the commit duration lock on Gl and X lock on R2. This would
prevent t;*$(by the conflicting lock on G4) till t, commits, thus
preventing the phantom.

The above solution involves additional disk accesses to
acquire those extra locks. In our experiments, we found that the
number of disk accesses involved is significant and increases
exponentially with the level of the HC-node. as shown in
Figure 3. In general, the HC-node can be at any level of the
GiST all levels are equally likely. For the above experiment,
performed on a 5-level GiST with fanout of about 100 and
containing 400,000 2-d point objects, an insertion that causes
a BP-change (about 6% of all insertions caused BP change)
may need upto 1000 additional disk accesses to get all the
locks (when the HC-node is at height 3 i.e. 3 levels above the
leaf). This indicates that GL/R-tree can impose significant I/O
cost for index structures where BPS do not obey “containment
hierarchy” (e.g., distance-based index structures like M-tree).

Besides high cost, GWR-tree has some other limitations
for GiSTs: (1) It requires checking consistency with external
granules during search, an extra task not performed by the
regular GiST algorithm. This check can be computationally
expensive in GiSTs. (2) It cannot allow an insertion or deletion
to take place at an arbitrary level of the tree, a situation that can
arise in GiSTs.

4 Phantom Protection in GiSTs

In this section, we present a dynamic granular locking approach
to phantom protection in GIST. In the following subsections,
we define the set of lockable resource granules for GiSTs and
present lock protocols for various operations on GiSTs.

4.1 Resource granules in GiSTs

In GWGiST, we define two types of granules:

29

(1) Leaf granules: This is the same as the previous GP-
based definition of leaf granules. A leaf granule TG(L)
is associated with each leaf node L whose lock coverage is
defined by GP(L).
(2) Non-leaf granules: This is a new set of granules. A
non-leaf granule TG(:N) is associated with each non-leaf
node N whose lock coverage, like leaf granules, is defined
by GP(N). In Figure 1, there are 3 non-leaf granules
associated with the 3 non-leaf nodes N 1, N2 and N3 with
GPs S (entire key space), Pl and P2 respectively.

For both types of granules, the page ids of the index nodes
are the resource ids used to lock the granules.

Thus, GL/GiST defines a different set of lock granules
compared to those in the GL/R-tree protocol developed in [4].
External granules are no longer used as lockable granules. Non-
leaf granules are used irrstead. There are several reasons for
this choice: (1) it allows us to develop protocols that imposes
absolutely no overhead (in terms of extra node accesses) on
any tree operation (2) it causes almost no loss in concurrency
since all commit duration locks held on non-leaf granules are
shared mode locks (3) it lnas no extra computational cost since
checking for consistency with non-leaf granules, unlike that with
external granules, does not involve any extra checking other
than what is performed anyway during the regular GiST search
algorithm and (4) it allows the protocols to work even when
insertions/deletions take place at arbitrary levels of the tree.

It is important to note that although non-leaf granules
are introduced as lockable units, the GiST/GL protocol is
completely different frorn and should not be confused with
MGL. First, in MGL, the granules are hierarchically arranged
to form a “granule graph” over which it follows the DAG
protocol. In a granule graph, each node represents or “covers” a
“logical” predicate. Since: they are “logical”, operations cannot
dynamically change the predicate covered by any node in the
graph. On the other hand, in GUGiST, each node in a GiST
represents a “physical” predicate: the GP of the node. Since
GP is “physical” (i.e. defined based on the structure of the
tree), operations (like insertions, deletions and updates) can
dynamically change their lock coverages which complicates
the protocol. Second, in MGL, a lock on a coarse (higher
level) granule grants a certain lock coverage on the finer (lower
level) granules under it. In GiST/GL, that is not the case:
the higher level (non-leaf) granules are introduced in order to
cover the entire embedded space and a lock on does not grant
coverage on any granule under it. In summary, DAG locking
and GWGiST are fundamentally different protocols and serve
different purposes. We believe that the idea of defining lock
granules associated with non-leaf nodes is novel and, to the best
of our knowledge, has been discussed before only in the context
of bulk insertions in B-trees as an open problem in [8].

4.2 Search
In this section, we describe the lock protocol followed by the
search operation in GiST. According to the OSCI policy, a
searcher with search predicate Q acquires commit duration S
mode locks on all granules consistent with Q. The concurrent
search algorithm is described is Table 2.

We refer to the above lock protocol as SP/GiST (Search
Protocol for GiST). SP/GiST is a straightforward protocol and
does not require any modification to the basic tree-navigation
algorithm of GIST. This gives rise to a possible discrepancy.
Like the regular GiST search algorithm, SP/GiST uses the BPS

--
Algorithm Search(R, q, t) --
Input: GiST rooted at R, predicate q, transaction t
Output: All tuples that satisfy q -
Sl:

s2:

s3:

If R is root, request an S mode unconditional
commit duration lock on R.
If R is non-leaf, check each entry E on R to
determine whether Consistent(E,q). For each entry
that is consistent, request an S mode unconditional
commit duration lock on the node N referenced b:y
E.ptr and Search is invoked on the subtree rooted
at N.
If R is a leaf, check each entry E on R to determine
whether Consistent(E,q). If E is Consistent, it is a
qualifying entry that can be returned to the calling
process. --

Table 2: Concurrent Search Algorithm

to do the “Consistency(E,q)” check during tree navigation. But
the granules in GiST are defined in terms of the GPs. To show
that SP/GiST is correct, we need to show that it guarantees that
a searcher acquires locks on all the necessary granules i.e. for
any index node T, if GP(T) A Q is satisfiable, then the searcher
acquires an S lock on TG(T).

To prove it, let us assume that PO, PI, P, are the nodes
in the path from the root to T where PO is the root and P, is
T. Since a searcher acquires a shared lock on TG(T) iff it is
consistent with with the BPS of all Pi, i = [l, m], we need to
prove that if GP(T) A Q is satisfiable, Q is consistent with the
BP of Pi, Vi = [l, m]. In other words, we need to prove tlhat

GP(T) A& is satisfiable j i;\ Consistent(BP(P;), Q) (3)
i=o

Using the definition of GP(T),

GP(T) A Q is satisfiable (j
()

i;\ L?P(P;) A Qis satisfiable
i=l

(4)
Since A is idempotent,

AQ is satisfiable e i(sP(Pi)AQ)is satisfiable

1

1

i=l

i5)
Since p A q is satisfiable + Consistent(p, q), so Vi, i = [l, ,A]

(BP(Pi) A Q) is satisfiable j Consistent(BP(Pi), Q) ((6)

Since (A + B A C j 0) 3 (A A C + C A D),

i (BP(Pi) A Q) is satisfiable j i;\ Consistent(BP(Pi), Q)
i=l i=O

Equations (4) and (7) together implies (3).

4.3 Insertion
The locking protocol for an insert operation must guarantee:

l Full Coverage of the object being inserted till the time of
transaction commit/rollback: We say an object 0 be:ing

30

1. tl anives to scan R3: acquires S lock on RI.

2. C? arrlves to Insert R4: acquires IX locks on R2 and extlRl

5. 0 arr$ces to lnscrt R5: acquires IX lock on R2’ and X lock on R5

6. tl repeats its scan: R4 has appeared from nowhere

Figure 4: Loss of lock coverage can cause phantoms.

inserted (deleted) is fully covered by a set of granules G ifs

0 * usa g. An insertion (as well as a deletion or an
update) operation must acquire commit duration IX locks
on G such that &! fully covers 0. Full coverage guarantees
that an insertion is permitted only if 0 does not conflict with
the predicate of any uncommitted searcher assuming that
each searcher hold commit duration locks on all consistent
granules.

l Prevent Phantoms due to Loss of Lock Coverage: Since
insertions (as well deletions and updates) can dynamically
modify one or more granules which in turn can affect
the lock coverage of transactions holding locks on other
granules, full coverage is not sufficient to prevent phantoms.
For example, the insertion of an object 0 into a leaf node
L of a GiST may cause the granule TG(L) to grow into
the search range of an old uncommitted searcher, resulting
in the searcher losing its lock. This loss of lock coverage
may cause future insertions, in spite of satisfying the full
coverage condition, giving rise to phantoms as illustrated
in Figure 4. The insertion lock protocol must prevent such
phantoms from arising.

To ensure full coverage and prevention of phantoms due to
loss of lock coverage, the following protocol, referred to as
IP/GiST (Insert Protocol for GiST), is used.

Let 0 be the object being inserted and g be the target granule.
We consider the following two cases:

l Case I - Insertion does not cause g to grow: In this case, the
inserter acquires (1) a commit duration IX lock on g and (2)
a commit duration X lock on 0.

l Case 2 - Insertion causes g to grow: Let LU-node (Lowest
Unchanged Node) denote the lowest node in the insertion
path whose GP does not change due to the insertion. For
example, in Figure 2, Nl is the LU-node for the insertion
operation of R2. The insertion acquires (1) a commit
duration IX lock on g (2) a commit duration X lock on 0
and (3) a short duration IX lock on TG(LU-node). * For
example, in Figure 2, tiras would need to acquire a short
duration IX lock on TG(N1) in addition to the IX lock on
TG(N4) and X lock on R2.

The concurrent insert algorithm is described in Table 3.
IP/GiST is a simple and efficient protocol since it, unlike the

IP/R-tree, does not impose any I/O or computational overhead
on the insertion operation. As a result, IP/GiST is more
efficient that IP/R-tree even on R-trees. Second, unlike IP/R-
tree, IP/GiST works even if the target granule is a non-leaf
granule i.e. when insertion takes place at a higher level of the
tree.

‘The short duration IX lock can be released immediately if the AdjustKeys
operation is performed right away i.e. in a top-down fashion rather than bottom-
up as is done in GiSTs. This would avoid holding the lock across I/O operations.

Algorithm Insert(R, E, I, t)
Input: GiST rooted at R, entry E=(p, ptr) (where p

is a predicate such that p holds for all tuples
reachable from ptr), level 1, transaction t.

output: New GiST resulting from insert of E at level 1
Variables: root is global variable (const) pointing to the

root node of the GIST. L is a lock initialized to
NULL.

11: If R is not at level 1, check all entries Ei =
(pi, ptri) in R and evaluate Penalty(Ei,E) for
each i. Let m be argmini (Penalty(Ei, E)).
If ((L == NULL) A (Union(E.p, E,.p,) #
E,,, .p,)), request a unconditional IX mode lock
L on R (for short duration). Insert is invoked
on the subtree rooted at the node referenced by
E,,, .ptr,.

12: Otherwise (level of insertion reached), request
a commit duration unconditional IX lock on R
and a commit duration unconditional X lock on
E.ptr. If there is room for E on R, install E on
R. Otherwise invoke Split(root, R, E, t).

13: AdjustKeys(root, R, t).
14: If L # NULL, release L.

Table 3: Concurrent Insert Algorithm

Now we show that IP/GiST satisfy the above requirements
of correctness. First, we prove full coverage. In Case 1, g
fully covers 0, so commit duration IX lock on g ensures full
coverage. In Case 2, at the start of the operation, g does not fully
cover 0 but TG(LU-node) does. So full coverage is provided
by the sequence of 2 locks: (1) the short duration IX lock on
TG(LU-node) from the beginning of the operation till the end of
the operation 3 (2) the commit duration IX lock on g from the
end of the operation till the end of the transaction (since g has
already grown to accommodate 0).

Next we show prevention of phantoms due to loss of lock
coverage. In Case 1, there can be no loss of lock coverage of any
searcher. In Case 2, the short duration IX lock on TG(LU-node)
guarantees that no searcher can lose it lock coverage. Let us first
consider a searcher t, already executing when the inserter tins
arrives to insert 0. Let Q be the search predicate oft,. Let h
be a granule that grows to h’ due to the insertion of 0. t, can
lose its lock ifSh A Q is not satisfiable but h’ A Q is satisfiable.
From the definition of LU-node, h’ j TG(LU-node). (h’ A Q)
is satisfiable and (h’ + TG(LU-node)) imply (TG(LU-node)
AQ) is satisfiable which in turn implies Consistent(TG(LU-
node), Qj. This means that t, can lose it’s lock coverage ifs
it has an S lock on TG(LU-node) (since searcher acquires S
locks on all consistent granules). Thus, the IX lock requirement
on TG(LU-node) prevents any searcher from losing its lock
coverage. The IX lock on TG(LU-node), being a short duration
lock, would prevent any loss of lock by even those searchers
that arrive during the operation. Any searcher that arrives after
the completion of the insertion operation cannot lose its lock
coverage due to the insertion.

3Note that this the best we can do since, at this point of time, TG(LU-node)
is the smallest granule in the insertion path thatfilly covers 0.

31

Operation Lock Requirements Other Actions 7
Insertion(no granule change Commit dur. IX on g; Commit dur. X on 0 None
/no node split)
Insertion (granule change) Short dur. IX on TG(LU-node); IX on g; X on 0 None
Insert (node split) If T is leaf : Instant dur. SIX on TG(T) before split; IX on Inherit S locks

either TG(T) or TG(TT), whichever contains 0 after split TG(TT) if itself holding
If T is non-leaf : Instant dur. SIX on TG(T); S lock on TG(T)

Search S on all consistent leaf and non-leaf granules None
Delete (Logical) 1Xong;XonO Mark 0 deleted; Remove

0 from page
Delete (Deferred) If node is not empty: Short dur. IX on TG(HC-node); IX on g; Eliminate node if empty

XonO.
If becomes empty: If T is leaf, Short dur. SIX on TG(T); If T
is non-leaf, Short dur. IX on TG(T)
S on 0 None
If no indexed attribute changed: IX on g; X on 0 None
Otherwise: Delete 0; Insert modified 0
S on all consistent granules; For every individual object None
updated, same requirement as UpdateSingle

Table 4: Lock requirements for various operations in the dynamic granular locking approach. g is the target granule for
insertion/deletion, 0 is the object being inserted/deleted/updated.

4.4 Node Split

We now consider the special case where the insertion by a
transaction t into an alrea.dy full node causes the target granule
g to split into granules g1 and g2. Insertions causing node
splits follow the IP/GiST except that it needs to acquire some
additional locks when it causes the splits.

If the insertion by t causes g to split, since the IX lock held by
t on g is lost after the split, t needs to acquire IX locks on g1 and
g2 to protect the inserted object. Since t acquires an IX lock on g
before the insertion, no other transaction, besides t itself, can be
holding an S lock on g. If t itself holds an S lock on g, it needs
to inherit its S lock on g to g1 and g2. This is because g1 and
g2 are the only additional granules that may become consistent
with the search predicate oft due to the split.

Since before the split the inserter acquires an IX lock on g,
other inserters and deleters may also be holding IX locks on
g. When g splits, all transactions holding IX locks on g must
acquire IX locks on g1 and g2 after the split. This is sufficient as
all the insert and/or delete ranges (logical deletion) is guaranteed
to be protected by the IX locks on g1 and g2 since all objects in g
will be either in g1 or 92. It may not possible fort to change lock
requests of other transac:tions using a standard lock manager.
The problem can be avoided if the inserter acquires a instant
duration SIX lock on g in case it causes g to split. After the
split, the inserter acquires a commit duration IX lock on either
g1 or g2, whichever contains 0.

The splitting of the granule may propagate upwards causing
the non-leaf nodes to spl:it. As in the case of leaf node split, the
transaction causing a non-leaf node N to split acquires a instant
duration SIX lock on TG(N) to prevent any other transaction
losing its lock. If t itself was holding an S lock on TG(N), it
needs to inherit its S lock. on the two granules formed after split.

The node split operation can be allowed to be ca$ed out
“asynchronously”. This requires maintaining the information
of an “outstanding split” in the node - the transaction can
subsequently commit while a separate transaction executes the

split operation later by checking the “outstanding split” flags.
The lock requirements remain the same as in the “synchronous”
case.

4.5 Deletion
Similar to insertion, to delete an object 0, the deleter requires
an IX lock on the region that covers 0. However, unlike
insertion, (in which the granule where the object is inserted
grows and covers the inserted object), the granule g from whj.ch
0 is deleted may shrink due to the deletion and may not cover
0. To protect the delete region, the deleter would ,need a
commit duration IX lock on TG(LU-node) (here it is the LU-
node of the deletion of operation) since TG(LU-node) is 1:he
smallest granule to fully cover 0 at the completion of the
deletion operation. This would result in low concurrency since
a large number of searchers may be unnecessarily prevented till
the deleter commits. For this reason, we do not consider this
approach any further. Instead, deletes are performed logically.
We present the lock needs of the logical and physical deletions
in the following subsections.

4.5.1 Logical Deletion

The logical deleter needs to acquire a commit duration IX lock
on only the leaf granule g that contains the object and an X
lock on 0 itself. The IX lock on g is sufficient to clover 0
since even if the GP of g changes due to other insertions and
deletions (physical) since g would still cover 0. Subsequently,
it removes the object from the page and marks it as deleted. If
the transaction aborts, the changes are undone, the delete mark
is removed and the locks are released. On the other hand, if it
commits, the physical deletion of 0 from the GiST is executed
as a separate operation.

If the transaction requests deletion of an object 0 thlat does
not exist, other transactions wishing to insert the same ob.ject
should be prevented as long as the deleter is active. For ,this
purpose, the deleter acquires S locks on all consistent granules
just like a search operation with 0 as the search predical:e.

32

4.5.2 Deferred (Physical) Deletion

The deferred delete operation removes the logically deleted
object from the GiST and adjusts the BPS of the ancestors. To
physically delete an object from a granule g, a short duration IX
lock on g is acquired to prevent other searchers having S locks
on g from losing their lock coverage. The IX lock is sufficient as
inserters and other deleters holding locks on g would not lose the
necessary lock coverage even after g shrinks due to the physical
deletion. Deletion of an entry from the node may also result in
the node becoming empty in which case it is eliminated from the
GiST. Since a node is eliminated only when it becomes empty,
no transaction can lose its IX lock due to elimination of g as g
does not cover any object. So the IX lock on g is sufficient even
if the deletion causes the elimination of the node.

In either case, since the change of g may propagate upwards
causing BPS of the ancestor nodes to change, the non-leaf
granules associated with the ancestors may shrink. Since only
searchers hold locks on non-leaf granules (inserters request
only instant-duration locks), only searchers can lose their lock
coverage due to this shrinkage. Note that only the searchers
whose predicates are consistent with the HC-node (i.e. the
highest index node in the deletion path whose BP changes due
to the deletion) can lose lock coverage, possibly giving rise to
phantoms. The loss of lock coverage of the searchers can be
prevented by acquiring a short duration IX lock on TG(HC-
node). Note that for insertion, it was the TG(LU-node) on which
the short duration IX lock had to be acquired. The difference
comes from the fact that insertion causes granules to grow while
deletion causes them to shrink.

4.6 Other Operations

The locks needs for the other operations are:
The ReadSingle operation just acquires an S lock on the
object.
The UpdateSingle operation, if none of the attributes in-
dexed by GiST are changed, just needs an IX lock on the
granule containing the object and an X lock on the object.
Otherwise, it first executes a deletion operation of the object
to be updated followed by the insertion of the updated object
obeying the respective lock protocols.
The UpdateScan operation acquires S locks on all consis-
tent granules just like a Search operation. For every indi-
vidual object 0 updated, it requires the same locks as an
UpdateSingle operation on 0.

The lock requirements for the various operations is shown in the
Table 4.

5 Experimental Evaluation
We performed several experiments to (1) evaluate the perfor-
mance of the GWGiST protocol under various degrees of sys-
tem loads and (2) compare it with other protocols in terms of
concurrency and lock overhead. In this section, we discuss our
implementation of the protocols followed by the performance
results.

5.1 Implementation
Implementation of the Protocols We implemented the com-
plete GL/GiST protocol as described in this paper. To evalu-
ate the performance of the GL/GiST protocol, we also imple-
mented the pure predicate locking (referred to as the PurePL
protocol) to serve as the baseline case. In PurePL, each search

Parameters

1 MPL
1 Meaning
1 multiprogramming level

the number of operations per transac-

action that are writes (i.e. inserts)
the average selectivity of a search
operation

External mean time between transactions
Think Time
Restart Delay mean time after which an aborted

transaction is restarted

Table 5: Workload Parameters

operation checks its predicate against the objects of the in-
sert/delete/update operations of all currently executing transac-
tions. If there is any conflict, it blocks on that transaction by
requesting an S lock on that transaction ID, assuming that ev-
ery transaction acquires an X lock on its own ID when it starts
up. Otherwise it proceeds with the search. Similarly, each in-
sert/delete/update operation checks its object against the predi-
cates of the search operations of all currently executing transac-
tions and in case of a conflict, blocks on the conflicting transac-
tion.

Construction of GiST We conducted our experiments on two
different GiSTs constructed over the following two datasets:

The 2-d dataset: is the 2-d point data set of the Sequoia
2000 benchmark [20]. It contains locations(easting and
northing values) of 62,556 California places extracted from
the US Geological Survey’s Geographic Names Information
System (GNIS)). The points are geographically distributed
over a 1046km by 13 l’i’km area.
The 3-d dataset: is derived from the FOURIER dataset
[6]. The FOURIER dataset data set comprises of 1.2
million vectors of fourier coefficients produced by fourier
transformation of polygons. We constructed the 3-d dataset
by taking the first 3 fourier coefficients of each vector.

We set aside some points (by random choice) from the
above data files for insertion into the GiST during the run of
transactions. The searches to be executed during the run are
generated by randomly choosing the query anchor from the data
file and generating a bounding box by choosing a proper side
length needed to obtain desired search selectivity. The set-aside
points and the queries are stored in two separate files which are
used by the workload generator.

We created the GiSTs by bulkloading the remaining points.
The two GiSTs are described below:

2-d GiST: constructed on 56,655 2-d points with 2K page
size (fanout 102, 821 nodes). Since the size of the data set is
small, we use a comparatively small page size to make the
GiST of significant size.
3-d GiST: constructed on 480,471 3-d points with 8K page
size (fanout 292,236O nodes)

In both cases, we configured the GiST to behave as an R-tree by
specifying the extension methods appropriately.

33

Figure 5: Throughput at various MPLs
for 2-d data (write probability=0.2, trans-
action size=1 0, query selectivity=O. 1%)

Figure 8: Throughput at various trans-
action sizes (MPL=50, write probabil-
ity=O. 1, query selectivity==O. 1%)

Figure 6: Throughput at various MPLs Figure 7: Throughput at various mixes
for 3-d data (write probability=0.2, trans- of reads and writes (MPL=50, transaction
action size=lO, query selectivity=0.05%) size=lO, query selectivity=O.l%)

Figure 9: Throughput at various query Figure 10: Conflict Ratio (transaction
sizes (MPL=50, transaction size=lO, size=lO, write probability=0.2, query se-
write probability=O.l) lectivity=O. 1%)

Workload Generator and the Lock Manager The workload
generator (WC) generates a workload based on the input param-
eters shown in Table 5. The WG assigns some search operations
(from the bounding box query file) and some insertion opera-
tions (from the set-aside point file) to each transaction. Each
transaction executes as a iseparate thread. We use the Pthread li-
brary (Solaris 2.6 implementation) for creating and managing
the threads [151. One thread only executes one transaction:
it is created at the beginning of the transaction and is termi-
nated when the latter commits. The WG maintains the MPL
at the specified value by using an array of flags (MPL num-
ber of them): when a thread finishes, it sets a flag. The main
WG thread constantly polls on this array and when it detects
the setting of a flag, it starts a new thread and assigns the next
transaction to it. The thread waits for some time (external think
time) and starts executing the transaction: it executes one oper-
ation after another on the GiST following the lock protocols. If
any lock request returns an error (due to a deadlock or a time-
out), the transaction aborts. If it aborts, it is re-executed within
the same thread after a certain restart delay (each transaction
remembers its constituent operations till it commits for possible
re-execution). 0urimple:mentation of the WG consists of 3 main
C++ classes (TransactionManager, Transaction and Operation).
The TransactionManager class also maintains the global statis-
tics of the run (e.g., throughput, conflict-ratio, number of locks
acquired, number of aborts etc.) which are used to measure the
performance of the various protocols. Although the other 4 sim-
ulation parameters are varied, we fix the external think time to
3 seconds and the restart delay to 3 seconds for all our experi-
ments. AIso, for the two GiSTs, the buffer sizes are set such that

about 75% of the pages fit in memory.
For the lock manager (LM) implementation, we reuseId most

of the LM code of MiniRel system obtained from the University
of Maryland. The LM code closely follows the description in
WI.

All experiments were performed on a Sun Ultra Enterprise
3000 Server running Solaris 2.6 with two 167MHz CPU,
5 12MB of physical memory and several GB of secmondary
storage.

5.2 Experimental Results

Evaluation of the GWGiST protocol We conducted exper-
iments to evaluate the performance of the GL/GiST protocol
under various system loads. Performance is measured using
throughput i.e. the ratio of the total number of transactions that
completed during the period when the transactions ran at full
MPL (ignoring the starting phase and the dying phase when the
MPLs are lower) to the total duration of the full-MPL phase 1: I].
Figures 5 shows the throughput of GL/GiST and PurePL, proto-
cols at various MPLs for the 2d dataset. Initially, the throughput
increases with the MPL as the system resources were underuti-
lized at low MPLs. For GL/GiST, the throughput reaches a peak
(- 14 tps) at an MPL of 50 while for PurePL, the peak + 6
tps) is reached at an MPL of 60. Beyond that point, the through-
put starts decreasing as the system starts thrashing. Figures 6
shows the performance of the two protocols for the 3d dataset.
Like the 2-d dataset, the GWGiST achieves significantly higher
throughput compared to PurePL.

We also varied the system load by tweaking the otherparame-
ters like write probability, transaction size and size of search [11.

34

I

Figure 11: Lock Overhead of Search Op-
eration (transaction size=lO, write proba-
bility=0.2, query selectivity=O. 1%)

Figure 12: Lock Overhead of Insert Op-
eration (transaction size=lO, write proba-
bility=0.2, query selectivity=O.l%)

These experiments were conducted on the 2-d dataset. Figure 7
shows the performance of the two protocols under various mixes
of read(search) and write(insert) operations. GL/GiST signifi-
cantly outperforms PurePL under all workloads. Figure 8 shows
the throughputs at various transaction sizes. Again, GL/GiST
mostly outperforms PurePL. At an MPL of 50, for transactions
with 20 or more operations, since a large portion of the GiST is
locked by some transaction or the other, GL/GiST starts thrash-
ing due to high lock contention leading to decrease in through-
put. Figure 9 shows the performance for various query sizes.
Once again, GUGiST performs better than PL for all workloads.

Comparison to other techniques In this section, we compare
GWGiST protocol with the predicate locking protocol presented
in [lo]. We refer to the above protocol as the PL/GiST protocol.
In PWGiST, a searcher attaches its search predicate & to all the
index nodes whose BPS are consistent with Q. Subsequently,
the searcher acquires S locks on all objects consistent with
Q. An inserter checks the object to be inserted against all the
predicates attached to the node in which the insertion takes
place. If it conflicts with any of them, the inserter also attaches
its predicate to the node (to prevent starvation) and waits for
the conflicting transactions to commit. If the insertion causes
a BP of a node N to grow, the predicate attachments of the
parent of N is checked with new BP of N and are replicated
at N if necessary. The process is carried out top-down over
the entire path where node BP adjustments take place. Similar
predicate checking and replication is done between sibling
nodes during split propagation. The details of the protocol
can be found in [lo]. A complete performance study would
require a full fledged implementation of the PWGiST protocol
(including implementation of the Predicate Manager, augment
GiST with data structures to be able to attach/detach predicates
to tree nodes etc.). Due to the complexity of the this task,
we only compare the two protocols in terms of the degrees of
concurrency offered and their lock overheads. Again PurePL
is used to serve as the baseline case. All the experiments were
conducted on the 2-d dataset.

Figure 10 compares the concurrency offered by the GWGiST
and the PL protocols. Concurrency is measured using conflict
ratio i.e. the average number of times some transaction blocked
on a lock request per committed transaction [l]. Lower the
conflict ratio, higher the concurrency. Both PWGiST and
PurePL protocols offer the maximum permissible concurrency
since transactions are blocked only when they truly conflict.

Figure 13: Throughput at various MPLs
for 5-d data (write probability=O. 1, trans-
action size=lO, query selectivity=O. 1%)

On the other hand, GL/GiST offers lower concurrency due to
“false conflicts” i.e. a situation where although the predicates do
not conflict with each other, they end up requesting conflicting
locks on the same granule (e.g., in R-trees, a search predicate
and an object being inserted do not overlap with each other but
they overlap with the BR of the same leaf node). More the
number of false conflicts, higher the loss of concurrency. Figure
10 shows that false conflicts do not cause a significant loss of
concurrency in GL/GiST compared to PL. This is an outcome
of the “fineness” of the chosen granules.

Figure 11 and 12 shows the lock overheads imposed by the
GL/GiST, PL/GiST and PurePL protocols for the search and
insert operations respectively. The lock overhead is measured
by the average number of locks acquired or the average number
of predicate checks performed, as the case may be, measured on
the same scale. Although the two costs (i.e. acquiring a lock
and performing a predicate check) are within the same order
of magnitude (between 50-200 RISC instructions) for 2d data,
the costs would differ for higher dimensional data (predicate
checking becomes costlier while the cost of acquiring a lock
remains the same). While the lock overhead of predicate locking
increases linearly with MPL, that of GL is independent of MPL.
The figures show that for both search and insert operations,
GWGiST imposes considerably lower lock overhead compared
to PL protocols.

To study the performance of GL at higher dimensionalities,
we also conducted experiments on 5-d data. The 5-d dataset
is derived from the FOURIER dataset and is constructed by
taking the first 5 fourier coefficients of each vector. We built
the GiST on 480,471 points of the 5-d dataset with 8K page
size(fanout 136, 5186 nodes). The buffer size was set to about
10% of the size of the GiST. Figure 13 shows the performance
the two approaches at various MPLs for 5-d data. Like 2-d and
3-d datasets, granular locking outperforms predicate locking for
5-d data as well.

In summary, there is a tradeoff between GL and PL -
while GL enjoys lower lock overhead, it has lower concurrency
compared to PL. Our experiments confirm that similar to granule
based protocols for l-d datasets, the GL protocol performs
significantly better than PL for multidimensional datasets as
well.

6 Conclusions and Future Work
Numerous emerging applications (e.g., GIS, multimedia, CAD)
need support of multidimensional AMs in DBMSs. The

35

Generalized Search Tree (GiST) is an important step to meet that
need. GiST, being an extensible index structure, when supported
in a DBMS, will allow application developers to define their own
AMs by supplying a set of extension methods. However, before
GiSTs can be supported by any commercial strength DBMSs,
efficient techniques to support concurrent access to data via
the GiST must be developed. Concurrent access to data via a
general index structure introduces two independent concurrency
control problems. First, techniques must be developed to ensure
the consistency of the data structure in presence of concurrent
insertions, deletions and updates. Second, mechanisms to
protect search regions frolm phantom insertions and deletions
must be developed. Developing such mechanisms to guarantee
transactional access to data via multidimensional data structures
has been identified as one, of the key challenges to transaction
management in future database systems [8].

This paper presents a dynamic granular locking approach to
phantom protection in GiSTs. The paper builds on our previ-
ous work on a dynamic granular locking strategy for R-trees
[4]. Due to some fundamental differences between R-tree and
GiST in the notion of a s,earch key, the algorithms developed
for R-trees do not provide. a feasible solution for phantom pro-
tection in GiST. Motivate:d by the limitations of the previous
approach in the context of GiSTs, we develop a new granular
locking approach suited for concurrency control in GiSTs. The
developed protocols provide a high degree of concurrency and
have low lock overhead. Our experiments have shown that the
granular locking technique (1) scales well under various system
loads and (2) significantly outperforms predicate locking for low
to medium dimensional datasets (2d, 3d and 5d). While most
applications that involve dynamic datasets and require highly
concurrent accesses to the data deal with low to medium di-
mensional spaces, 4 it is nevertheless interesting to explore ap-
proaches that provide good performance for high dimensional
datasets as well. Although1 the granular locking proposed in this
paper provides almost as high concurrency as the predicate lock-
ing approach for low to medium dimensionalities (see Figure
lo), the loss of concurrency increases with the increase in di-
mensionality. The reason is that at high dimensionalities, the
data space gets increasingly sparse (a phenomenon commonly
known as the “dimensionality curse” [3]), resulting in coarser
leaf granules which causes more “false conflicts” and hence a
higher loss in concurrency. While at low to medium dimension-
alities the efficiency of granular locking far outweighs the loss of
concurrency resulting in better performance compared to pred-
icate locking, it may not be the case at high dimensionalities.
This is evidenced by the fact that for 5-d data, though granular
locking still outperforms predicate locking, the performance gap
between them is less comlpared to the 2-d and 3-d datasets. A
simple approach to improve the concurrency offered by granu-
lar locking is to define filner granules. The benefit of such an
approach is not clear since while the finer granules will improve
concurrency, it will also increase the lock overhead of each op-
eration. A hybrid strateg:y between the granular and predicate
locking techniques may be a more suitable solution for high di-
mensional datasets. We intend to explore such a solution in the
future.

4F~r example, GIS and CAD systems deals with spatial data which is either
2-d or 3-d. Spatio-temporal applications (e.g., management of moving objects)
deals with 3-d or 4-d data. Multimedia retrieval systems like QBIC index images
using 3-d feature vectors [7].

36

7 Acknowledgements
We wish to thank Mike Franklin for providing us with the
MINIREL code. We would like to thank Stefan Berchtold
for giving us the FOURIER dataset. We obtained the 2-d
dataset from the Sequoia 2000 Project’s FI’P site (http://sajk-
ftp.cs.berkeley.edu:8000/sequoia/benchmarrW). Finally, we
thank the reviewers for their comments.

References
[l] R. Agrawal, M. Carey, and M. Livny. Models for shidying

concurrency control performance: Alternatives and implic.ations.
In SIGMOD, May 1985.

[2] ANSI. Ansi x3.135-1992, american national standard fi3r
information systems - database language - sql. November, 1992.

[3] S. Berchtold, C. Bohm, D. Keim, and H. P. Kriegel. A cost model
for nearest neighbor search in high dimensional data spaces.
PODS, 1997.

[4] K. Chakrabarti and S. Mehrotra. Dynamic granular locking
approach to phantom protection in r-trees. Proc. of the IEEE
International Conference on Data Engineering (ICDE), February
1998.

[5] K. Chakrabarti and S. Mehrotra. Efficient concurrency control in
multidimensional access methods. Technical Report TR-MARS-
97-12, Department of Computer Science, University of Ii!lino,B,
October 1998.

[6] K. Chakrabarti and S. Mehrotra. High dimensional feature
indexing using hybrid trees. Proc. of the 15th IEEE International
Conference on Data Engineering (ICDE), March 1999.

[7] C. Faloutsos and et. al. Efficient and effective querying by image
content. In Journal of Intell. If: Systems, July 1994.

[8] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, CA, 1993.

[9] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized search
trees in database systems. In Proceeding of VLDB, pages 562-
573, September 1995.

[lo] M. Komacker, C. Mohan, and J. Hellerstein. Concurrency and
recovery in generalized search trees. In Proc. of SIGMOD, 1997.

11 l] D. Lomet. Key range locking strategies for improved c:oncur-
rency. In VLDB Proceedings, August 1993.

[121 J. Melton and A. R. Simon. Understanding the new sql: A
complete guide. Morgan Kaufian, 1993.

[13] C. Mohan. ARIESIKVL: A key value locking method for
concurrency control of multiaction transactions operating on b-
tree indexes. In Proceeding of VLDB, August 1990.

[14] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh., and
P. Schwarz. ARIES: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead
logging. ACM TODS, Vol. 17, No. 1:94-162, March 1992.

[15] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Programming.
O’Reilly & Associates, 1996.

[16] J. Orenstein and T. Merett. A class of data struchtres for
associative searching, In Proc. Third SIGACT News SIGMOD
Symposium on the Principles of Database Systems, pages l&l-
190,1984.

[17] V. H. P. A. Bernstein and N. Goodman. Concurrency control and
recovery in database systems. Addison Wesley, 1987.

[18] C. Papadimitriou. The theory of database concurrency control.
Computer Science Press, 1986.

[19] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A
dynamic index for multi-dimensional objects. In Proc. VLDB,
1987.

[20] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The
sequoia 2000 storage benchmark. Proc. of SIGMOD, 1993.

1211 M. Stonebraker and D. Moore. Object-relational dbmss: The next
great wave. The Morgan Kaufmann Series in Data Management
Systems, Jim Gray, Series Editor, 1996.

