Foglio di esercizi n.3 - Calcolo Numerico

Esercizio 1 Si calcolino autovalori ed autovettori delle matrici

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Esercizio 2 Si determinino 2 matrici A e B 3×3 con autovalori $\lambda_1 = \lambda_2 = 1$ e $\lambda_3 = 4$ simili tra loro e due matrici con autovalori $\lambda_1 = \lambda_2 = 1$ e $\lambda_3 = 4$ non simili.

Esercizio 3 Si calcolino autovalori ed autovettori della matrice $A = I + vv^T$ con $v \in \mathbf{R}^n$.

Esercizio 4 Si dica se la seguente matrice

$$A = \left[\begin{array}{rrr} 17 & 2 & 2 \\ 1 & 10 & 3 \\ 1 & 2 & 0 \end{array} \right]$$

ha autovalori non reali (senza calcolarli esplicitamente).

Esercizio 5 Si dimostri che se \mathbf{x} è autovettore di A corrispondente all'autovalore λ_i e \mathbf{y} è autovettore di A^T corrispondente all'autovalore λ_j , con $\lambda_i \neq \lambda_j$, allora $\mathbf{y}^t \mathbf{x} = 0$ e quindi se \mathbf{x} e \mathbf{y} sono reali sono anche ortogonali.

Esercizio 6 Sia

$$A = \begin{bmatrix} 2 & \frac{k^2}{4} + \frac{k}{2} & 0\\ 1 & 3 & 0\\ 0 & 0 & k \end{bmatrix}.$$

Si determini k affinchè sia minimo $\rho(A)$.