Motori di Ricerca presente e futuro prossimo Rilevanza dei Risultati: Prima generazione Paolo Ferragina, Università di Pisa

Rilevanza derivata dal contenuto

- Per ogni occorrenza di una parola si memorizzano:
 - Luogo
 - URL: www.pisa.comune.it
 - Titolo pagina
 - Testo hyperlink: "Città di Pisa"
 - Metatag: autore, data,...
 - Tipo
 - Dimensione e tipo di carattere
 - Maiuscolo o minuscolo

Informazioni sulla "frequenza"

Assegnamo il "peso" a ogni termine e sommiamo i contributi per ogni pagina

Infatti

- La frequenza nel singolo documento non aiuta...
 - 10 occorrenze di culla
 - 10 occorrenze di e
- Per ogni coppia <termine,documento> assegnamo un peso che riflette l'importanza del termine in quel documento
 - Il peso cresce con il "numero di occorrenze" del termine entro quel documento
 - Il peso cresce con la "rarità" del termine fra tutti i documenti della collezione

Paolo Ferragina, Università di Pisa

Un "peso" famoso: tf x idf

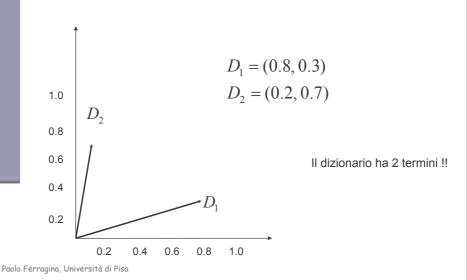
$$W_{t,d} = t f_{t,d} \times \log(n/n_t)$$

 $tf_{t,d}$ = Frequenza del termine t nel documento d

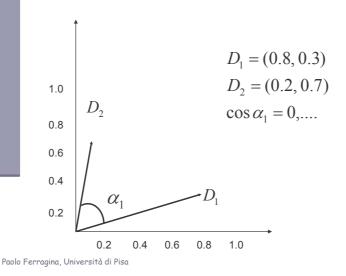
$$idf_t = \log\left(\frac{n}{n}\right)$$
 dove n_t = #documenti che contengono il termine t n = #documenti della collezione

Termine t ha associato un vettore D-dim: [w_{t1}, w_{t2}, ..., w_{tD}]

Documento d ha associato un vettore T-dim: [w_{1d}, w_{2d} ..., w_{Td}]

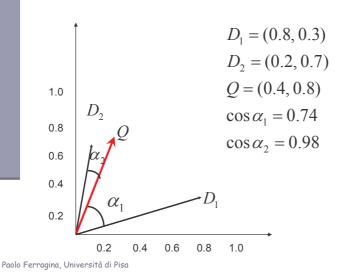

D = # docs in collezione, **T** = #termini del dizionario di tutta la collezione

Come usiamo questi pesi?

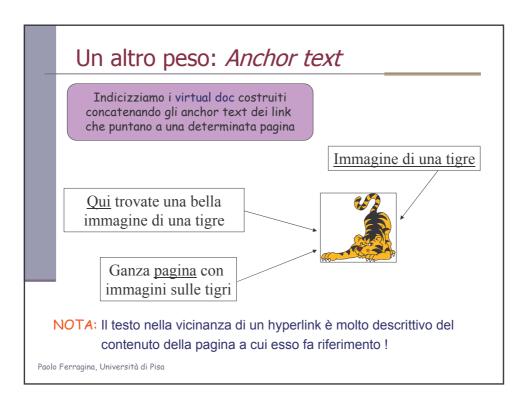

- Data una interrogazione sui termini t_n e t_k potremmo:
 - Sommare w_{hj} e w_{kj} per ogni documento d_j che li contiene, o utilizzare un'altra funzione dei due valori
 - Pesare l'importanza di t_h e t_k all'interno della query e quindi calcolare una combinazione lineare di w_{hj} e w_{kj} .
 - Interpretare ogni documento e la query come vettori, e postulare la similarità tra doc-query in base alla loro vicinanza euclidea o tramite altra misura correlata.

Paolo Ferragina, Università di Pisa

Documenti come vettori


Similarità tra Doc e Interrogazione

Similarità tra Doc


- sim(d1,d2) = Coseno dell'angolo compreso tra d1 e d2
- Nozione di prodotto scalare
 - Calcolare i prodotti di coppie di componenti in d1 e d2
 - Sommare i risultati dei prodotti
 - Esempio <0,1,2> * < 1,1,5> = 0*1 + 1*1 + 2*5 = 11
- Adottiamo come misura di similarità il prodotto scalare tra d1 e d2

Similarità tra Doc e Interrogazione

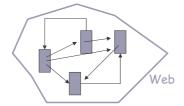
Matrice termini x documenti

- La memorizziamo tutta ?
- Ricordate il caso della matrice binaria sulla collezione di 6Gb, che richiedeva circa 500Gb?
- Immettiamo queste info nella lista invertita. Come?
- Siccome Q consiste di pochi termini t_i, non confrontiamo Q con tutti i docs, ma piuttosto:
 - Consideriamo Q come se fosse un piccolo doc
 - Lista invertita per prendere docs D_i che contengono i termini
 - Estraiamo da ogni D_i il peso w_{ii}, relativo ai t_i che contiene
 - Ricostruiamo i vettori e calcoliamo sim(Q, D_i)

Ricapitolando

- Per ogni occorrenza di una parola si memorizzano:
 - Luogo
 - Tipo
 - TF x ldf
- I motori di prima generazione usavano questi pesi per inferire la similarità dei documenti con la query
- Poi ordinavano le risposte (docs) in accordo a questa

Motori di Ricerca presente e futuro prossimo Rilevanza dei Risultati: Seconda generazione


Sfruttare gli hyperlink

■ Problema:

Molte pagine contengono le parole in Q ma sono "non rilevanti" oppure includono parole "diverse" dal loro contenuto (*spamming*).

Altre pagine sono sì rilevanti ma non contengono le parole di Q.

■ Hyperlink = Citazione

Analisi degli hyperlink

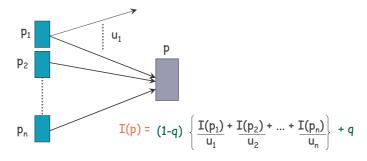
- Due approcci fondamentali
 - Indipendente dalla interrogazione
 - Se due pagine contengono le parole di Q, una sarà sempre migliore dell'altra indipendentemente da Q

(Pagerank di Google)

- Dipendente dalla interrogazione
 - Se due pagine contengono le parole di Q, una sarà migliore dell'altra a seconda del contenuto di Q

(HITS di IBM e Teoma)

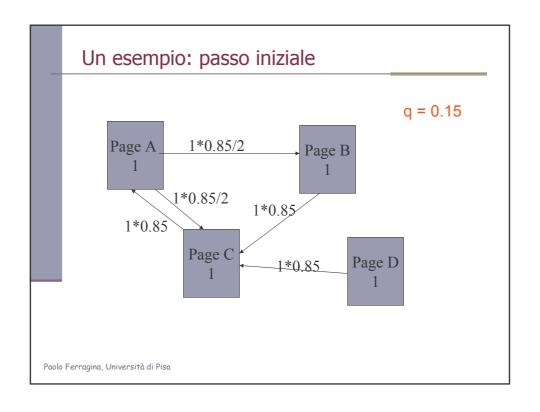
Paolo Ferragina, Università di Pisa

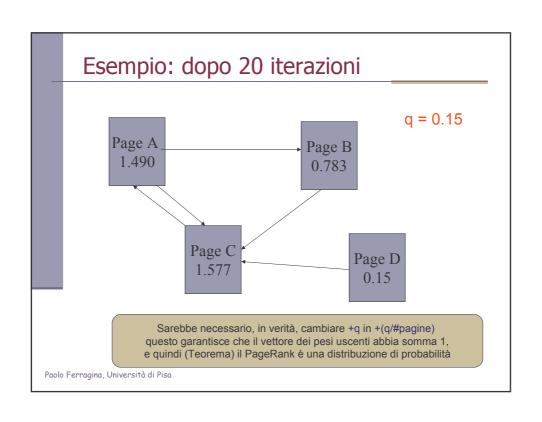

PageRank (Google)

- Pagina rilevante se:
 - Molte pagine puntanto a essa

(popolare)

Alcune pagine "rilevanti" puntano a essa

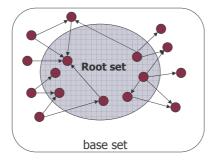

(élite)



Calcolato su tutte le pagine e in modo iterativo (~100)

Paolo Ferragina, Università di Pisa

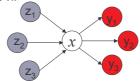
Attenti ai Blog!


HITS (IBM)

- A seguito di una interrogazione si cercano due insiemi "correlati" di pagine:
 - Pagine Hub = pagine che contengono una buona lista di link sul soggetto della interrogazione.
 - Pagine Authority = pagine che occorrono ripetutamente nelle liste contenute dei buoni Hubs.

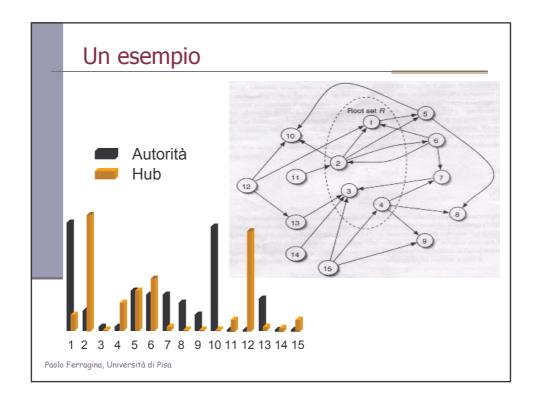
Si tratta di una definizione circolare che quindi richiede una computazione iterativa

Paolo Ferragina, Università di Pisa


HITS: Primo passo per risolvere Q

- Data una interrogazione Q={ **browser**}, si forma il base set:
 - 1. Le pagine che contengono *browser* (root set)
 - 2. Le pagine collegate da o per quelle del root set

HITS: Secondo passo per risolvere Q


- Calcoliamo, per ogni pagina x del base set:
 - un hub score h(x), inizializzato a 1
 - un authority score a(x), inizializzato a 1
- Per poche iterazioni, ricalcoliamo di ogni nodo x:
 - $a(x) = \sum h(z_i)$, $h(x) = \sum a(y_i)$
 - Scaliamo i valori, e iteriamo

Alla fine, restituiamo le pagine con più alto valore di h() come hubs, e di a() come authorities

Costoso: Accumulo del base set e calcolo iterativo !!

Controindicazioni: Facilmente soggetto a SPAM !!

Nuovi obiettivi

- Obiettivo: Integrare dati provenienti dalle sorgenti più disparate – quali, preferenze, click, affinità tra utenti, transazioni– al fine di soddisfare meglio l'interrogazione posta da un utente
- Esempio: Su una interrogazione come "San Francisco" il sistema dovrebbe trovare anche gli hotel o i musei, siti per le previsioni del tempo o mappe stradali, intuendo anche quali di questi è più rilevante per l'utente
- <u>Tools</u>: Ciò richiede analisi semantica, determinazione del contesto, selezione dinamica di archivi utili, confronto tra sessioni ...

Nuove nozioni di Rilevanza!!!

Rilevanza per "affinità"

Precedenti transazioni:

[Collaborative Filtering]

- Quali documenti/pagine sono state visitate, anche da altri utenti
- Quali prodotti sono stati acquistati, anche da altri utenti
- Pagine nei bookmarks dell'utente

Contesto corrente:

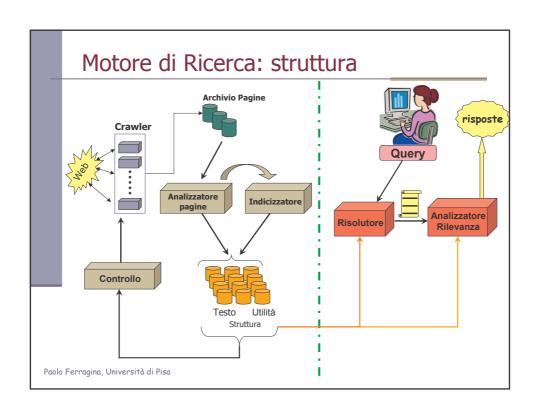
[User behavior]

- Storia della presente navigazione
- Ricerche già formulate dallo stesso utente

Profilo:

[Personalization]

- Professione dell'utente e informazione demografica
- Interessi dell'utente
- > Esistono dei problemi di privacy !!!


Paolo Ferragina, Università di Pisa

Ricapitolando...

- Data una interrogazione Q su più parole
 - Troviamo le pagine dove occorrono quelle parole
 - Per ogni pagina determiniamo:
 - Peso testuale: font, luogo, posizione, vicinanza,...
 - Peso degli hyperlinks: grafo e anchor-text
 - Peso dato da altri fattori: preferenze, comportamento,...
 - Sommiamo "in qualche modo" i pesi
 - Ordiniamo le pagine in funzione di essi ⇒ Risultati !!
 - Offriamo possibilmente dei suggerimenti, anche semantici

Questo è un motore di ricerca moderno!

(siamo alla terza generazione)

