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What if Martians had linear algebra?

I L
A S

 

They would have the same underlying results, but possibly in an ‘alien’
notation or format: they may not have the same primitives such as linear
maps, factorization, or even equal signs.

Principal pivot transforms feel a lot like a tool from a different world.
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Principal pivot transforms

Definition
Let A ∈ Rn×n, s = {1 : k} (Fortran/Matlab notation), and define (when
A11 is invertible)

ppts(A) = ppts(
[
A11 A12
A21 A22

]
) :=

[
−A−1

11 A−1
11 A12

A21A−1
11 A22 − A21A−1

11 A12

]
.

Several classical linear algebra objects: inverses, linear system solutions,
Schur complements; packaged in an unusual form.
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Principal pivot transforms

Definition
Let A ∈ Rn×n, s = {1 : k} (Fortran/Matlab notation), and define (when
A11 is invertible)

ppts(A) = ppts(
[
A11 A12
A21 A22

]
) :=

[
−A−1

11 ±A−1
11 A12

±A21A−1
11 A22 − A21A−1

11 A12

]
.

Several classical linear algebra objects: inverses, linear system solutions,
Schur complements; packaged in an unusual form.

Technical detail: we will allow for minus signs on the rows of the (2, 1)
block, and columns of the (1, 2) block.

Signs are important to get symmetry right, but we will not be concerned
with them in this talk.

F. Poloni (U Pisa) Principal pivot transforms ILAS 2019 3 / 37



PPTs with general indices
If s ⊂ {1, 2, . . . , n} is not 1 : k, we take the same definition but with the
first block to mean “the entries in s”: to get

ppt{1,3,4}(

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×




),

replace the dark block with minus its inverse, the white block with the
Schur complement, and multiply by the inverse the rows/columns in the
light block.
Some would write it[

B[s, s] B[s, s′]
B[s′, s] B[s′, s′]

]
=
[
−A[s, s]−1 A[s, s]−1A[s, s′]

A[s′, s]A[s, s]−1 A[s′, s′]− A[s′, s]A[s, s]−1A[s, s′]

]
.
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Swapping variables
Review paper [Tsatsomeros, 2000]: PPTs appear in various fields. One way to
think about them: Ax = b holds iff[

−A−1
11 A−1

11 A12
A21A−1

11 A22 − A21A−1
11 A12

] [
b1
x2

]
=
[
−x1
b2

]
.

PPTs “swap” some of the unknowns with right-hand sides.
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Elementary PPTs
When the block to be inverted is 1× 1, a PPT takes O(n2) operations:
most of it is a rank-1 update of a (n − 1)× (n − 1) submatrix.

−a−1
11 a−1

11 a12

a21a−1
11 A22 − a21a−1

11 a12

 ,

ppt{4}(

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×




).
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Quiz: a mysterious alien algorithm
Standard algorithm on every linear algebra textbook published on Mars:

Tnhff-Wbeqna algorithm
Start from A ∈ Rn×n, and perform elementary PPTs on the entries
1, 2, 3, . . . , n in sequence. (Actually, in any order at your choice.)

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×




What does this algorithm compute?
What do we call it on Earth?
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?
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Gauss–Jordan algorithm
Start from

[
A −I

]
.

Perform row elementary operations to transform it into
[
I X

]
.

Then, X = −A−1.

× × × × × −1 0 0 0 0
× × × × × 0 −1 0 0 0
× × × × × 0 0 −1 0 0
× × × × × 0 0 0 −1 0
× × × × × 0 0 0 0 −1




Each step is an elementary PPT;
We store only the “active” part of the matrix at each step, keeping
columns mod n.
Cost: 2n3, exactly like inv.
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What is going on
Given A ∈ Rn×n and s ⊂ {1, 2, . . . , n}, let Gs(A) be the 2n × n matrix
with columns of ±I in positions s and n + s′, and of A elsewhere:

G{1,4}(A) :=

1 A12 A13 0 A15 A11 0 0 A14 0
0 A22 A23 0 A25 A21 −1 0 A24 0
0 A32 A33 0 A35 A31 0 −1 A34 0
0 A42 A43 1 A45 A41 0 0 A44 0
0 A52 A53 0 A55 A51 0 0 A54 −1





G{2,3,4}(B) :=

B11 0 0 0 B15 −1 B12 B13 B14 0
B21 1 0 0 B25 0 B22 B23 B24 0
B31 0 1 0 B35 0 B32 B33 B34 0
B41 0 0 1 B45 0 B42 B43 B44 0
B51 0 0 0 B55 0 B52 B53 B54 −1




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What is going on

Theorem
Gs1

(A) and Gs2
(B) have the same row space ⇐⇒ B = ppts1 ∆ s2

(A).

PPTs convert between G-matrices that have the same row space
i.e., they are equivalent by row operations / left multiplication.
For each k, one among columns k and n + k is ±ek . Each PPT with
k ∈ s switches between the two positions.

Consequences:
All sequences of PPTs that produce the same final s return the same
matrix.
The only thing that matters is whether each index k is ‘inverted’ an
even or odd number of times;
PPTs commute one with each other.

Example Any sequence of PPTs that acts once on each k transforms[
A −I

]
into the equivalent matrix

[
I −A−1

]
.
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Symmetry

If A is symmetric, then ppts(A) is symmetric, too.

Clear from the definition:

ppts(A) =
[
−A−1

11 ±A−1
11 A12

±A21A−1
11 A22 − A21A−1

11 A12

]

Actually, here we presented the theory with symmetry in mind: a
non-symmetric variant with two subsets (rows/columns) instead of one is
possible.
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Just for fun
A Martian proof that (AB)−1 = B−1A−1 using (non-symmetric) PPTs:

I B
A 0

 
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−I + B(AB)−1A −B(AB)−1

−(AB)−1A (AB)−1




The same PPTs in a different order:

0 −A−1

−B−1 B−1A−1




We could have used symmetric PPTs and a
[

0 M
MT 0

]
trick.

Comparing products of pivots, one also gets the relation
det(AB) = det(A) det(B).
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Indefinite linear algebra
Matrices Gs(A) are related to various matrix structures of indefinite linear
algebra with the (antisymmetric) scalar product

J =
[
0 I
−I 0

]
.

For each s and M = MT , the rows of Gs(M) span a Lagrangian subspace
W (W equals its J-orthogonal W⊥).
Actually, each Lagrangian W has a basis of the form Gs(M). [Dopico
Johnson ’06, Mehrmann FP ’12]
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Structured pencils [Mehrmann FP ’12]

Various structured pencils can be written analogously by stacking columns

of ±I and columns of a symmetric M =
[

G A
AT −Q

]
: e.g.,

Hamiltonian (J-skew-selfadjoint):
[

A G
−Q AT

]
− λ

[
I 0
0 −I

]
;

Symplectic (J-orthogonal):
[

A 0
−Q I

]
− λ

[
I G
0 AT

]
.

Same structure, up to block swaps =⇒ same tools can be used.

Applying row transformations to turn
[
A E

]
into

[
KA KE

]
⇐⇒

Transforming A− λE into a pencil K (A− λE) with same eigenvalues and
right eigenvectors.
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Permuted graph bases [Mehrmann FP ’12]

Particularly interesting because one can obtain well-conditioned Gs(M):

Theorem
Every Lagrangian W admits a basis Gs(M) (with a well-chosen s) with

max
ij
|Mij | ≤

√
2.

Proof: given any basis W ∈ Rn×2n, among all 2n possible locations W:,α
where we can put I, choose the one with maximal |det W:,α|.

Bounded M =⇒ small condition number κ(Gs(M)).
Well-conditioned, exactly structure-preserving basis.

Similar “bases” can be used to work with symplectic and Hamiltonian
pencils.
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Example

Z =


1 11

3 −10
3 1 1

6 −2 0 8
3

0 −7
3

7
3 −1 2

3 1 0 −7
3

1 1
3 −1 0 5

6 −1 −1 −1
0 7

3 −7
3 1 −2

3 −1 0 7
3

 .
Im ZT is Lagrangian. It has a basis of the form Gs(M) with M = MT and
maxij |Mij | ≤

√
2:

G{1,4}(M) =


1 1

3 0 0 1
2 0 0 −1

0 1 −1 0 1
3 −1 0 4

3
0 −1 0 0 0 0 −1 −4

3
0 4

3 −4
3 1 −1 0 0 1

 .
Remark The non-symmetric analogue (every subspace has a
non-symmetric-PPT basis Gs(M) with maxij |M|ij ≤ 1) is in [Knuth ’85].
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Quasi-definiteness
Another structure: quasi-definiteness. [George, Ikramov ’00]

Definition
A = AT is s-quasi-definite (s-qd) if As,s � 0 and As

′
,s

′ ≺ 0
(complementary blocks of opposite definiteness).

Cfr. saddle-point matrices in optimization. [Benzi, Golub, Liesen ’05]

If M = MT � 0, then ppts(M) exists for all s, and is s-quasi-definite.

Clear from the definition:

ppts(M) =
[
−M−1

11 ±M−1
11 M12

±M21M−1
11 M22 −M21M−1

11 M12

]

PPTs transform qd matrices into other qd matrices (while changing the
partition).
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PPTs and quasidefiniteness
Consequence (by continuity):

Suppose M = MT is s1-weakly-qd (≺,� replaced by �,�).
Then, for each subset s2, the matrix ppts2

(M) is s1 ∆ s2-weakly-qd (when
it exists). [FP, Strabić ’16]

Example:

ppt{3,4}(

+ + + × ×
+ + + × ×
+ + + × ×
× × × − −
× × × − −




) =

+ + × + ×
+ + × + ×
× × − × −
+ + × + ×
× × − × −




.

The index 3 “switches” from the positive semidef. part to the negative
semidef. part; the index 4 does the opposite.
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Factored PPTs
Weakly-qd matrices appear frequently in applications, e.g., control theory.

Symplectic
[

A 0
−Q I

]
− λ

[
I G
0 AT

]
and Hamiltonian[

A G
−Q AT

]
− λ

[
I 0
0 −I

]
are built with columns of the quasi-definite

[
G A

AT −Q

]
=
[
BBT A
AT −CT C

]
.

Often, rk(G) and rk(Q) are very small.

Can we perform PPTs while keeping the semidefinite blocks factored?
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Factored PPTs
We parametrize a s-weakly-qd matrix with (A,B,C) such that

M =
[
BBT A
AT −CT C

]
=: p(

[
B A
? C

]
)

(assume s = {1, 2, . . . , k} to keep blocks ordered.)

Remark A not necessarily square.

Perform an elementary PPT on entry k ∈ s, and look at the semidefinite
blocks:

(BBT )1:k−1,1:k−1 − (BBT )1:k−1,k(BBT )−1
k,k(BBT )k,1:k−1,

−(CT C)− (AT ):,k(BBT )−1
k,k(A)k,:.

We add a rk-1 term to CT C =⇒ one row inserted in C .
We subtract a rk-1 term from BBT =⇒ one column removed from B
(hope).
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Factored PPTs: the formula [FP, Strabić ’16]

Nice-looking formulas if we apply a Householder reflector H to insert zeros
in the last row of B:

ppt{k}(p( B A
? C

 )) = ppt{k}(p( BH A
? C

 ))

= ppt{k}(p(
B11 b A1

0 β a
? ? C


)) = p(

B11 ±bβ−1 A1 − bβ−1a

? β−1 ±β−1a
? 0 C



).

Surprisingly, these formulas to update the factors are very similar to a
non-factored PPT.
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Factored PPTs: the formula
Analogous formula for an elementary PPT with an index in the CT C
block:

ppt{k+1}(p( B A
? C

 )) = ppt{k+1}(p( B A
? HC

 ))

= ppt{k+1}(p(
B a A2
? γ c
? 0 C22


)) = p(

B ±aγ−1 A2 − aγ−1c

0 γ−1 ±γ−1c
? ? C22



).

Remark We switch rows/columns around between blocks, but
[ B A
? C

]
never

changes size.
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Inverting quasi-semidefinite matrices
We know how to perform factored PPTs;
Elementary PPTs on indices 1, 2, . . . , n (in any order) can be used to
invert a matrix.

These two ingredients produce an algorithm to compute inverses of
quasi-semidefinite matrices[

BBT A
AT −CT C

]−1

=
[
B̂B̂T Â
ÂT −ĈT Ĉ

]
.

Just perform n PPTs one after the other, in factored form!

Exact ranks are preserved: (Â, B̂, Ĉ) have the same sizes as (AT ,CT ,BT ).
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Pivoting
Pivoting (i.e., reordering elementary PPTs) works the same as the classical
LDLT theory [Bunch–Parlett ’71, Bunch–Kaufman ’77]: at each step,

either locate a large diagonal pivot |Mii |. . .
. . . or a 2× 2 pivot with large offdiagonal |Mij | and smaller diagonal
|Mii |, |Mjj |.

But using quasi-definiteness, we can cut some corners:
Off-diagonal entries in the blocks BBT ,−CT C are always smaller
than diagonal ones;

2× 2 pivots P =
[
β α
α γ

]
have β ≥ 0, γ ≤ 0, hence there is no

cancellation in det P = βγ − |α|2.

Technical detail: we also need a 2× 2 version of the factored update
formulas.
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Stability
Gauss–Jordan can be unstable for general matrices, but not for
quasidefinite ones:

Theorem (backward stability) [Benner FP]

When Gauss–Jordan / successive PPTs are used to compute X = M−1 for
a quasidefinite M (not in factored form), the jth column of X̂ is the jth
column of (M +∆)−1, with

|∆| ≤ p(n)u(|L||D||L∗|+ |M||L−∗||L∗|).

Backward stable if:
1 Not too much element growth in M = LDL∗;
2 Not too much element growth when forming L−1.

1 and 2 are related, since D = L−1ML−∗.

([Peters-Wilkinson ’75, Higham ’97, Malyshev ’00] treat LDL and GJ separately.)
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Stability

What about the method with factored-form updates?

Proving stability seems challenging, but computationally residuals are as
small as with inv. On 100 matrices with random badly-scaled A,B,C :

104 105 106 107 108 109 1010 1011 1012 1013
10−20

10−19

10−18

10−17

10−16

cond(M)

‖M
X
−

I‖
‖M
‖‖

X
‖

pptinv
inv
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Application: sign function and Riccati equations

Definition
Given A = V diag(λi )V

−1, define sign(A) = V diag(sign(λi ))V−1, where

sign(λi ) =
{
−1 Re(λi ) < 0,
1 Re(λi ) > 0.

Theorem [Roberts, ’71] Let S = sign(
[

A BBT

CT C −AT

]
). Then,

ker S + I = span
[

I
−X

]
and ker S − I = span

[
Y
I

]
, where X � 0 and

Y � 0 solve the Riccati equations

AT X + XA + CT C = XBBT X ,
YAT + AY + BBT = YCT CY .
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The matrix sign iteration

Matrix sign iteration

H0 = H, Hk+1 = 1
2(Hk + H−1

k ).

The iteration converges to limk→∞Hk = sign(H).

It can be recast using weakly-qd matrices Mk = HkJ . [Gardiner-Laub ’86].

M0 = HJ , Mk+1 = 1
2(Mk + JM−1

k J).
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PPT =⇒ matrix sign [Benner, FP]

Algorithm

1 Start from H0J = M0 = p(
[

B A
? C

]
) from system data

2 Compute M−1
0 = p(

[
B̂ Â
? Ĉ

]
)

3 Form M1 = 1
2(M0 + JM−1

0 J) = p(


1√
2

[
B ĈT

]
1
2(A + ÂT )

? 1√
2

[
C

B̂T

] )

4 Optionally, “compress” (rrqr)
[
B ĈT

]
and

[
C

B̂T

]
5 Repeat: M2,M3,M4, . . . until convergence to sign(H0)J .
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Uses of the matrix sign
This algorithm computes

sign(H0) =
[

As BsB
T
s

CT
s Cs −AT

s

]

directly in factored form (without forming Gram matrices and refactoring
them as in [Benner–Ezzatti–Quintana Ortí–Remón ’14]).

What do we do with it?
Bs ,Cs used directly in applications in model reduction [Wortelboer, ’94]

Solutions to CAREs from ker(sign(H0)± I)
It is well-established that often X = ZZT ,Y = WW T have low numerical
rank (see e.g. [Benner, Bujanović ’16]).

Can we compute them directly in factored form?
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Think like an alien
Idea Try to see everything as PPTs / Schur complements.

Cayley transform via PPTs [Benner, FP]

Given H =
[

A BBT

CT C −AT

]
, we can compute its Cayley transform

(H − I)−1(H + I) =
[

I BcBT
c

0 AT
c

]−1 [ Ac 0
−CT

c Cc I

]

getting
[

BcBT
c Ac

AT
c −CT

c Cc

]
as the Schur complement of the quasidefinite

BBT 0 A− I −
√
2I

0 0
√
2I I

AT − I
√
2I −CT C 0

−
√
2I I 0 0




.
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PPTs =⇒ Cayley transforms =⇒ Riccati solutions

Algorithm
1 Input: A,B,C .

2 Run sign iteration on H0 =
[

A BBT

CT C −AT

]
via PPTs, getting

H∞ = sign(H0) =
[

As BsB
T
s

CT
s Cs −AT

]
.

3 Compute Cayley transform

(H∞ − I)−1(H∞ + I) =
[

I BcBT
c

0 AT
c

]−1 [ Ac 0
−CT

c Cc I

]
via PPTs.

4 Then, X = CT
c Cc , Y = BcBT

c solve the two CAREs.
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Some preliminary experiments

0 2 4 6 8 10 12 14 16 1810−31

10−22

10−13

10−4

test # (from [Benner-Ezzatti Quintana-Ortí-Remón ’14])

‖A
T

X
+

X
A

+
C

T
C
−

X
B

B
T

X
‖ F

‖C
T

C
‖ F

+
2‖

A
‖ F

+
‖B

T
B
‖ F
‖X
‖2 F

pptsign
sign
care

Some improvement on sign.
Returns factored iterates natively.
Still some work to do!
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PPTs =⇒ sign iteration
Possible solution: More PPTs!

One step of the sign iteration

H0 =
[

A BBT

CT C −AT

]
7→ 1

2(H0 + H−1
0 ) =

[
A1 B1BT

1
CT

1 C1 −AT
1

]

can be interpreted as a Schur complement

[
B1BT

1 A1
AT

1 −CT
1 C1

]
=

BBT 0 A I
0 BBT −I A

AT −I −CT C 0

I AT 0 −CT C




.

And so can various other operations; e.g., a step of structured doubling
algorithm [Chu-Fan-Lin-Wang ’04].
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Conclusions
What we did: factored PPTs =⇒ quasidefinite inverses =⇒ matrix
sign =⇒ Riccati solutions.
PPTs are an unusual but elegant tool “from another planet” for linear
algebra.
Ask yourself: can I write this as a Schur complement / PPT?
Quasi-definite / saddle-point matrices fit naturally in this framework.

On the TO-DO list: run these algorithms not on H =
[

A BBT

CT C −AT

]
and

its blocks, but on its version with maxij |M|ij ≤
√
2

(as in [Mehrmann P ’12] for the structured doubling algorithm).
Co-authors: Volker Mehrmann, Nataša Strabić, Peter Benner.

. . . and many thanks to I L
A S

 
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