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How to transform an analyzer 
into a verifier 
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OUTLINE OF THE LECTURE 
•  a verification technique which combines abstract 

interpretation and Park’s fixpoint induction 
•  how to realize a verifier, once you have a "suitable" 

static analyzer (abstract interpreter) 
•  experiments using existing analyzers for type domains 

•  functional programming à la ML 
•  our implementation of a type abstract interpreter in 

Cousot, POPL 1997 

•  logic programming 
•  Codish & Lagoon, TCS 2000
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THE VERIFICATION METHOD: 
abstract interpretation 

•  a semantic evaluation function FP  
•  on a concrete domain (C, ⊆)  
•  the least fixpoint lfp FP is the concrete semantics of program P 

•  the class of properties we want to verify is formalized 
as an abstract domain (A,≤) 

•  (C, ⊆) and (A,≤) are related by a Galois connection 
(α, γ)  

•  the abstract semantic evaluation function Fα
P is 

systematically derived from FP, α and γ  
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THE VERIFICATION METHOD: 
abstract semantics and static analysis 

•  the abstract semantics lfp Fα
P is a safe 

approximation by construction 
•  if the property is verified in lfp Fα

P  it is also verified in lfp 
FP 

•  static analysis (abstract interpreter) = 
computation of the abstract semantics lfp Fα

P  
•  effective only if the least fixpoint is reached in finitely 

many iterations  
•  either the abstract domain is Noetherian 
•  or we use widening operators 
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THE VERIFICATION METHOD: 
partial correctness condition 1 

•  an element S of the domain (A,≤) is the specification 
•  abstraction of the intended concrete semantics 

•  partial correctness of P wrt S 

 
α(lfp FP) ≤  S 

•  not effective since the concrete fixpoint semantics has to 
computed 

•  sufficient condition 1  
•  for any correct abstract semantic evaluation function Fα

P  

lfp Fα
P ≤  S              (1) 

•  an abstract fixpoint computation is still needed 
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THE VERIFICATION METHOD: 
partial correctness condition 2 

•  an element S of the domain (A,≤) is the specification 
•  abstraction of the intended concrete semantics 

•  partial correctness of P wrt S 

 
 
α(lfp FP) ≤  S 

•  not effective since the concrete fixpoint semantics has to 
computed 

•  sufficient condition 2 (by fixpoint theorems, abstract 
version of Park’s induction, for any correct abstract 
semantic evaluation function Fα

P) 
Fα

P(S) ≤  S               (2) 
•  no fixpoint computation 



7 

PARTIAL CORRECTNESS 
CONDITIONS 

•  specification S element of (A,≤)  
•  sufficient condition 1  

•     lfp Fα
P ≤  S              (1)   

•  effective only if (A,≤) is Noetherian or by using widenings 
•  stronger than 2 only when widenings are not needed 

•  sufficient condition 2  
•     Fα

P(S) ≤  S               (2) 

•  more efficient  (no abstract fixpoint computation) 
•  effective even if (A,≤)  is non-Noetherian 

•  ≤ must be decidable 
•  the specification S must have a finite representation 
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CAN WE USE AN EXISTING STATIC 
ANALYZER FOR VERIFICATION? 

•  condition 1  
•  lfp Fα

P ≤  S              (1) 

•  straightforward! 

•  use the analyzer to compute the abstract semantics 

•  condition 2  
•  Fα

P(S) ≤  S               (2) 

•  the analyzer must be defined in a denotational style and give 
access to the function Fα

P  
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2 EXAMPLES 
•  our type inference abstract interpreter for functional 

programs à la ML 
•  the let-polymorphic version 

•  a type analyzer for logic programs (by Codish & 
Lagoon) available from a web site 



10 

The functional language: syntax 
type ide = Id of string	


type exp = 	



| Eint of int 	


| Var of ide	


| Sum of exp * exp	


| Diff of exp * exp      	


| Ifthenelse of exp * exp * exp      	


| Fun of ide * exp     	


| Rec of ide * exp      	


| Appl of exp * exp	


| Let of ide * exp * exp 	

  	


| Letrec of ide * exp * exp	
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The abstract domain of  
parametric polytypes  

type evalt = Notype	


| Vvar of string	


| Intero        	


| Mkarrow of evalt * evalt	

	



type tscheme = Forall of (string list) * evalt	


type eval = tscheme * (evalt * evalt) list 
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The meaning of Fα ( Sα ) ≤ Sα


  in a language with constructs which create a global environment 
(typically containing functions),  
  Sα is an abstract environment associating to each global name its 

specification 
  the new expression is evaluated in such an environment 

•  assuming that all the global values satisfy their specification 
•  using the specification rather than the semantics for the global objects 

  small, modular proofs, which allow us to locate possible bugs 
  in our language we have closed expressions only 

  Fα ( Sα ) is exactly the same as Fα for all the syntactic constructs, 
apart from recursive function definition, where Sα  (when available, 
top level) has to be used as first approximation of their abstract 
value 
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HOW TO USE THE STATIC ANALYZER FOR TYPE 
VERIFICATION 

	

 typeinferd: decl→  env→ int→ env	


•  was called sem1 in the lecture on type inference 

•  compositional verification of a single declaration 
•  specification S 

•  an abstract environment specifying the intended types of 
•  global names  
•  names defined in the declaration 
•  it is finite 

•  ≤ is the extension to environments of the partial order 
relation on types 
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HOW TO USE THE STATIC ANALYZER FOR 
SUFFICIENT CONDITION 1 

typeinferd: decl→  env→ int→ env 
• S type environment 
• sufficient condition 1  

 lfp Fα
P ≤  S              (1) 

infercheck (d:decl) (S:env) (n:int) = 	


  	

(typeinferd d S n) ≤  S	



• verification = inference + comparison 
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HOW TO USE THE STATIC ANALYZER FOR 
SUFFICIENT CONDITION 2 

typeinferd: decl→  env→ int→ env 
• S type environment 
• sufficient condition 2  

Fα
P (S) ≤  S              (2) 

• different for recursive functions only 
• rather than computing (an approximation of) the fixpoint, we evaluate 
the function expression (once) in the specification 

• we handle recursive functions as standard functions 
check (d:decl) (S:env) (n:int) =  match d with	


  |let id = e -> (typeinferd d S n) ≤  S	


  |let rec id = e -> (typeinferd (let id = e) S n) ≤  S 
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HOW TO USE THE STATIC ANALYZER FOR 
SUFFICIENT CONDITION 2 

typeinferd: decl→  env→ int→ env 

• S type environment 
• sufficient condition 2  

Fα
P (S) ≤  S              (2) 

check (d:decl) (S:env) (n:int) =  match d with	


  |let id = e -> (typeinferd d S n) ≤  S	


  |let rec id = e -> (typeinferd (let id = e) S n) ≤  S	



 mutual recursion is not shown  
 the widening control parameter is used for approximating fixpoints 
corresponding to recursive functions occurring within e 
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Why checking Fα ( Sα ) ≤ Sα rather 
than lfp Fα ≤ Sα ?


•  why computing Fα ( Sα ) rather than lfp Fα ?  
•  no fixpoint computation 

•  more efficient 
•  possible even with non-noetherian domains 

•  modular proofs 
•  in which the proof of a component uses the specification rather than the 

semantics of the other components 
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TYPE VERIFICATION EXAMPLES 1 

 compositionality 	


# check 	


``let fact = pi id 1''	


[pi <- (int -> int) -> int -> int -> int; 	


    id <- 'a -> 'a;  fact <- int -> int] 	


1;; 	


- : bool = true	



 condition 2 can be better than 1 (widening) 	


# check 	


``let rec f f1 g n x = if n=0 then g(x) else f(f1)(function x -> 	


	

 (function h -> g(h(x)))) (n-1) x f1'' 	

      	


[f <- ('a -> 'a) -> ('a -> 'b) -> int -> 'a -> 'b] 	


1;; 	


- : bool = true	


# infercheck 	


``let rec f f1 g n x = if n=0 then g(x) else f(f1)(function x -> 	


	

 (function h -> g(h(x)))) (n-1) x f1'' 	

      	


[f <- ('a -> 'a) -> ('a -> 'b) -> int -> 'a -> 'b] 	


1;; 	


- : bool = false	
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TYPE VERIFICATION EXAMPLES 2 

• let polymorphism 
 # check 	


 ̀ `let g = id id''  	


 [ id <- 'a -> 'a; g <- 'b -> 'b ] 	


 1;;	


 - : bool = true 

• mutual recursion 	


 # check 	


 ̀ `let rec ap f x y n = if n=0 then y else ap f x (f x y) (n-1) and 
times x n = ap (function z -> function w -> z + w) x 0 n’’ 	


 [ap <- ('a -> 'b -> 'b) -> 'a -> 'b -> int -> 'b; 	


   times <- int -> int -> int] 	


 1;;	


 - : bool = true	
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TYPE VERIFICATION EXAMPLES 3 

•  incompleteness 
# check 	


``let rec f f1 g n x = if n=0 then g(x) else f(f1)(function x -> 	



         (function h -> g(h(x)))) (n-1) x f1''	


[f <- (int -> int) -> (int -> int) -> int -> int -> int] 	


1;;	


- : bool = false	


# infercheck 	


``let rec f f1 g n x = if n=0 then g(x) else f(f1)(function x -> 	


         (function h -> g(h(x)))) (n-1) x f1''	



[f <- (int -> int) -> (int -> int) -> int -> int -> int] 	


2;;	


-  : bool = true	



•  the specification is not satisfied 
# check 	


``let rec f f1 g n x = if n=0 then g(x) else f(f1)(function x -> 	



         (function h -> g(h(x)))) (n-1) x f1''	


[f <- ('a -> 'c) -> ('a -> 'b) -> int -> 'a -> 'b] 	


1;;	


-  : bool = false	




