Combining verification and
analysis

CONCLUSIONS ON VERIFICATION

»» denotational abstract interpreters have the extra-value
of being easily transformed into compositional verifiers

2» compositional verification is useful for debugging

e condition2 F%(S)=< S

IS exactly the one used In abstract diagnosis to locate
possible bugs, when not satisfied

2 verification can be combined with analysis (inference),
when the program contains property specifications
o types in ML-like languages

COMBINING VERIFICATION AND ANALYSIS

#» the typing rule for recursion in ML

H[f<1]|-Ax.e=T

HI-uf.Ax.e =7
e H type environment

* 1T monotype with variables

» the expected type o of the expression can be specified in ML and might be
used by the inference algorithm

H|-(uf.Ax.e : 0)=0

 the premise of the rule is exactly our condition 2 3

TYPING RULES AND TYPE CHECKING

»the interesting case is the one of recursion

»the typing rule in the Damas-Milner type system, where H is a type

environment and T is a monotype with variables,

H[f<1]|Ax.e= 7

H|-uf.Ax.e= 7

shows that T is a fixpoint of the functional associated to the recursive
definition
othe rule does not give hints on how to guess T for type inference

othe rule can directly be used for type checking, if T occurs in the program, as
a type specification

ois this rule actually used by the ML’s type checking algorithm?

ML’s TYPE CHECKER DOES NOT USE THE RECURSION
TYPING RULE

H[f<1]|Ax.e=T

H|-(uf.Ax.e: T)= T
#»a counterexample (example 2 with type specification)

let rec (f:('a -> 'a)->('a -> 'b)-> int -> 'a -> 'Db)
= function f1 -> function g -> function n -> function x
-> if n=0 then g(x) else f(fl) (function x -> (function
h -> g(h(x)))) (n-1) x £1;;

This expression has type ('a -> 'a) -> 'b but is here
used with type 'b

othe specified type is indeed a fixpoint

esuggests that type checking is performed as type inference + comparison
(sufficient condition 1, early widening)

esame behaviour with the mutual recursion example

COMBINING VERIFICATION AND ANALYSIS

H[f<1]|) x.e= 7

s»verification of type specifications might help in type inference
oif the specified type is satisfied, then it is the inferred type

emore precise types without better fixpoint approximations (no fixpoint
computation is involved in type checking)

s»We can use a weaker rule for type checking
H [f<O0]|-Ax.e=T T=<0

H|-(uf.Ax.e : 0)= 0O

»the premise of the rule is exactly our condition 2

FROM TYPE SYSTEMS TO TYPE INFERENCE

»type systems are very important to handle a large class of properties
ofunctional and object-oriented programming
ecalculi for concurrency and mobility
»the type system directly reflects the property we are interested in
»typing rules are easy to understand
it is often hard to move from the typing rules to the type inference
algorithm

eSystematic techniques are needed

eabstract interpretation provides some of these techniques

