
1

Combining verification and
analysis

2

CONCLUSIONS ON VERIFICATION
 denotational abstract interpreters have the extra-value

of being easily transformed into compositional verifiers
 compositional verification is useful for debugging

  condition 2 Fα
P(S) ≤ S

 is exactly the one used in abstract diagnosis to locate
possible bugs, when not satisfied

 verification can be combined with analysis (inference),
when the program contains property specifications
  types in ML-like languages	

3

COMBINING VERIFICATION AND ANALYSIS
  the typing rule for recursion in ML

H [f ← τ] |- λx.e ⇒ τ

H |- µf.λx.e ⇒ τ	

•  H type environment
•  τ monotype with variables
•  the expected type σ of the expression can be specified in ML and might be

used by the inference algorithm

 	

 	

H [f ← σ] |- λx.e ⇒ τ τ ≤ σ

H |- (µf.λx.e : σ)⇒ σ

•  the premise of the rule is exactly our condition 2

4

TYPING RULES AND TYPE CHECKING
 the interesting case is the one of recursion

 the typing rule in the Damas-Milner type system, where H is a type

environment and τ is a monotype with variables,

H [f ← τ] |- λx.e ⇒ τ

H |- µf.λx.e ⇒ τ

shows that τ is a fixpoint of the functional associated to the recursive
definition

 the rule does not give hints on how to guess τ for type inference
 the rule can directly be used for type checking, if τ occurs in the program, as
a type specification
 is this rule actually used by the ML’s type checking algorithm?

5

ML’s TYPE CHECKER DOES NOT USE THE RECURSION
TYPING RULE

H [f ← τ] |- λx.e ⇒ τ

H |- (µf.λx.e: τ) ⇒ τ

 a counterexample (example 2 with type specification)

let rec (f:('a -> 'a)->('a -> 'b)-> int -> 'a -> 'b)
= function f1 -> function g -> function n -> function x
-> if n=0 then g(x) else f(f1)(function x -> (function
h -> g(h(x)))) (n-1) x f1;;	

This expression has type ('a -> 'a) -> 'b but is here
used with type 'b	

 the specified type is indeed a fixpoint
 suggests that type checking is performed as type inference + comparison
(sufficient condition 1, early widening)
 same behaviour with the mutual recursion example

6

COMBINING VERIFICATION AND ANALYSIS
H [f ← τ] |- λx.e ⇒ τ

H |- (µf.λx.e: τ) ⇒ τ

 verification of type specifications might help in type inference
 if the specified type is satisfied, then it is the inferred type

 more precise types without better fixpoint approximations (no fixpoint
computation is involved in type checking)

 we can use a weaker rule for type checking
H [f ← σ] |- λx.e ⇒ τ τ ≤ σ

H |- (µf.λx.e : σ)⇒ σ

 the premise of the rule is exactly our condition 2

7

FROM TYPE SYSTEMS TO TYPE INFERENCE
 type systems are very important to handle a large class of properties

 functional and object-oriented programming

 calculi for concurrency and mobility

 the type system directly reflects the property we are interested in

 typing rules are easy to understand
 it is often hard to move from the typing rules to the type inference
algorithm

 systematic techniques are needed

 abstract interpretation provides some of these techniques

