Extending the verification approach to finite failure

 $\bullet\,$ a new method which uses different semantics and specifications

Motivations I

- Assume that the semantics of a program P is defined as least fixpoint of a continuous operator T.
 - Let **S** be an interpretation which specifies the expected program semantics.
 - the program is partially correct w.r.t. T iff $lfp(T) \subseteq S$.
 - a sufficient partial correctness condition is $T(S) \subseteq S$.
- Several verification methods, based on semantics modeling different observable properties of logic programming as
 - the ground success set [Shapiro82],
 - the correct answers [Ferrand87],
 - computed answers and their abstractions [Comini et al.99]
- In [Levi et al.98] it has been showed that all the existing methods can be reconstructed as an instance of a general verification technique where the property one wants to verify is simply an abstract semantics on a suitable abstract domain.
- There is one interesting property, finite failure, which is not an abstraction of none of the semantics used above.

Motivations II

- Which semantics for finite failure?
 - The ground finite failure set FF_P is not correct w.r.t. finite failure.
 - The non ground finite failure set NGFF_P is correct, fully abstract, w.r.t. finite failure and it is AND- compositional [Gori et al.97].
- The problem: there exist no fixpoint characterization of NGFF_P.
- The idea: use abstract interpretation to derive such fixpoint semantics.
 - start from a concrete traces semantics, which extends with infinite computations the concrete semantics of the Abstract Interpretation Framework [Comini et al.99]
 - define an abstract domain \mathcal{S} , chosen so as to model finite failure and to make the abstract operator $\mathsf{T}_{\mathsf{P}}^{\mathsf{ff}}$ precise
 - the corresponding abstract fixpoint semantics $lfp(T_p^{ff})$ is the Non-Ground Finite Failure set
 - it correctly models finite failure and is AND-compositional
- we can use the standard condition $T_p^{ff}(S) \sqsubseteq S$ as a sufficient condition for the correctness w.r.t. finite failure
- we can define stronger conditions using Ferrand's approach, based on two specifications

The Semantic Domain

Let P be a program and R be the set of atoms which finitely fail in P. Then

- R is a downward closed set, i.e., if $A \in R \Rightarrow A\vartheta \in R$.
- The key point: R enjoys a kind of "upward closure" property. Example

Assume $\{p(a), p(f(a)), p(f(f(X))), p(f(f(a))), \ldots\} \in \mathbb{R}$. Which behavior for p(X)?

- $\begin{array}{l} -\textit{Suppose} \ p(X) \ \textit{has a successful derivation}. \\ p(X) \xrightarrow{\sigma_1} G_1 \xrightarrow{\sigma_2}, \ldots, G_{n-1} \xrightarrow{\sigma_n} \square \\ \textit{Let} \ \vartheta = \sigma_1 \cdot \ldots \cdot \sigma_n. \\ \forall p(t) \in R, \ \not\exists \delta = \text{mgu}(p(t), p(X)\vartheta), \ \textit{otherwise} \ p(t) \delta \end{array}$
- $\begin{array}{l} -\textit{Suppose} \ p(X) \ \textit{has an infinite derivation}. \\ p(X) \xrightarrow[c_1]{\sigma_1} G_1 \xrightarrow[c_2]{\sigma_2}, \ldots, G_{n-1} \xrightarrow[c_n]{\sigma_n} \ldots \\ \textit{Let} \ \vartheta_i = \sigma_1 \cdot \ldots \cdot \sigma_i. \\ \forall p(t) \in R, \ \forall i \ \not\exists \delta_i = mgu(p(t), p(X)\vartheta_i), \ \textit{otherwise} \ p(t)\delta_i \end{array}$

 $\downarrow \! \downarrow$

$$\begin{split} & \textit{if } \forall \textit{ possible sequences } \vartheta_1 :: \ldots :: \vartheta_n :: \ldots p(X) \vartheta_i \leq p(X) \vartheta_{i+1} \\ & \exists p(t) \in R, \textit{ s.t. } \forall i \; \exists \delta_i = mgu(p(t), p(X) \vartheta_i), \\ & \textit{then} \\ & p(X) \in R. \end{split}$$

The Semantics Domain II

$$\begin{split} up_{p(x)}^{ff}(R) &= R \cup \{p(x)\vartheta \mid \text{ for all (possibly infinite) sequences} \\ \vartheta_1 :: \dots :: \vartheta_n :: \dots, p(x)\vartheta_i \leq p(x)\vartheta_{i+1} \\ \exists p(t) \in R \text{ s.t.} \\ \forall \text{ i, } p(t) \text{ unifies with } p(x)\vartheta\vartheta_i \end{split} \}. \end{split}$$

 $\cup_{p(x)} \mathfrak{up}_{p(x)}^{ff}$ is a closure operator.

 \mathcal{S} is the domain of downward closed sets of atoms, which are also closed w.r.t. $\cup_{p(x)} \mathfrak{up}_{p(x)}^{ff}$.

 (\mathcal{S},\subseteq) is a complete lattice,

- the least upper bound of $R_1, R_2 \in \mathcal{S}$ is $\cup_{p(x)} up_{p(x)}^{ff}(R_1 \cup R_2)$
- the greatest lower bound of $R_1, R_2 \in \mathcal{S}$ is $(R_1 \cap R_2)$

The Fixpoint Semantics

$$\begin{split} T_P^{ff}(I) = & \{ \ p(\tilde{t}) \mid \text{for every clause defining the procedure } p, \\ p(t) : -B \in P \\ p(\tilde{t}) \in \text{up}_{p(x)}^{ff}(\text{Nunif}_{p(x)}(p(t)) \cup \\ & \{ p(t) \tilde{\vartheta} \mid \tilde{\vartheta} \text{ is a relevant for } p(t), \\ B\tilde{\vartheta} \in \text{up}_B^{ff}(\{B\sigma \mid B = B_1, \dots, B_n \ \exists B_i \sigma \in I \}) \}) \end{split}$$

• T_p^{ff} is continuous $\Rightarrow lfp(T_p^{ff}) = \mathfrak{up}_{p(\mathbf{x})}^{ff}(\cup_{i<\omega}T_p^{ff}\uparrow i)$

$$\begin{split} \textbf{Example} & p \\ q(\alpha) : -p(X) \\ p(f(X)) : -p(X) \\ T_{P}^{ff} \uparrow 1 = \{ & q(f(X)), q(f(f(X))), \dots \\ & q(f(\alpha)), q(f(f(\alpha))), \dots \\ & p(\alpha) & \} \\ T_{P}^{ff} \uparrow 2 = & T_{P}^{ff} \uparrow 1 \cup \{ p(f(\alpha)) \} \\ \vdots & & \\ T_{P}^{ff} \uparrow \omega = & T_{P}^{ff} \uparrow 2 \cup \{ p(f(f(\alpha))), p(f(f(f(\alpha)))), \dots \} \\ p(X) \not\in up_{p(X)}^{ff} (T_{P}^{ff} \uparrow \omega) \ \textit{since} \\ \exists \vartheta_1 = \{ X/f(Y) \} :: \vartheta_2 = \{ X/f(f(Y)) \} :: \vartheta_3 = \{ X/f(f(f(Y))) \} :: \dots, \\ \textit{and} \ \forall p(t) \in T_{P}^{ff} \uparrow \omega \ \forall i \ \not\exists \delta_i = mgu(p(t), p(X)\vartheta_i). \end{split}$$

Ferrand's approach

- \bullet Ferrand in [Ferrand93] uses the standard ground consequence operator T_P
- The specifications are
 - -S, intended $lfp(T_P)$
 - -S', intended $gfp(T_P)$
- $lfp(T_P) \subseteq S$. The standard sufficient condition for partial correctness $T_P(S) \subseteq S$ allows us to reason about the ground success set
- $\bullet \ S' \subseteq \mathfrak{gfp}(T_P).$ The new sufficient condition $S' \subseteq T_P(S')$ is somewhat related to missing answers

Verification conditions based on T_P^{ff}

- \bullet T_p^{ff} is not co-continuous
 - this is also the case for Ferrand's T_P
- ullet we replace $gfp(T_P^{ff})$ by $T_P^{ff}\downarrow \omega$
 - we have proved that $T_P^{ff} \downarrow \omega$ is the complement of the set of (possibly non-ground) atoms which have a successful derivation
- the standard verification condition
 - S is the intended set of (possibly non-ground) atoms which have a finite failure
 - $correctness \\ lfp(T_P^{ff}) \subseteq S$
 - sufficient condition for correctness $T_P^{ff}(S)\subseteq S$
- the new verification condition
 - S' is the intended set of (possibly non-ground) atoms which do not have a successful derivation
 - correctness

$$S' \subseteq T_P^{ff} \downarrow \omega \Rightarrow \quad H_\nu \backslash T_P^{ff} \downarrow \omega \subseteq H_\nu \backslash S'$$

- sufficient condition for correctness $S' \subseteq T_P^{ff}(S')$

Towards effective verification conditions

- the sufficient conditions $T_P^{ff}(S) \subseteq S$ and $S' \subseteq T_P^{ff}(S')$ are not effective because
 - $-T_P^{ff}$ is not finitary
 - both S and S' are infinite sets
- ullet the analysis and verification of properties of finite failure, can be based on effective approximations of the operator T_P^{ff}
- since we have two semantics and two specifications, we can use two different (related) abstractions
 - an upward approximation (of the least fixpoint semantics)
 - a downward approximation (of $T_P^{ff} \downarrow \omega$)

The depth-k domain

• we define the function **depth** on terms, atoms and goal of a program.

$$|t| = \left\{ \begin{array}{ll} 1 & t \text{ is a constant or a variable} \\ max\{|t_1|,\dots,|t_n|\}+1 & \text{if } t = f(t_1,\dots,t_n) \end{array} \right.$$

The downward approximation

- $< \alpha^{bl}, \gamma^{bl} >$ is a reversed Galois insertion, i.e., $\alpha^{bl}(\cap X_i) = \cap(\alpha^{bl}(X_i)).$
- \bullet We can define the optimal abstract fixpoint operator $T_P^{\mathsf{ff}^{\mathsf{bl}}}$ on $D^{\mathsf{bl}}.$

Example

P

$$q(a) : -p(X)$$

 $p(f(X)) : -p(X)$

for
$$k = 3$$
,

$$\begin{split} & lfp(T_P^{ff^{bl}}) = \{q(f(f(X))), q(f(\alpha)), q(f(X)), q(f(\alpha)), p(\alpha), p(f(\alpha)), p(f(\alpha))\} \\ & \gamma^{bl}(lfp(T_P^{ff^{bl}})) \subseteq lfp(T_P^{ff}) \end{split}$$

The upward approximation

- $\bullet < \alpha^{up}, \gamma^{up} >$ is a Galois insertion.
- \bullet We can define the optimal abstract fixpoint operator $T_P^{ff^{up}}$ on $D^{up}.$

Example

$$\begin{array}{c} P \\ q(\alpha):-p(X) \\ p(f(X)):-p(X) \end{array}$$

$$for \ k=3, \\ lfp(T_P^{ff^{up}}) = \{ \begin{array}{c} q(f(f(K))), q(f(X))\{X/f(X)\}, q(f(f(\alpha))), q(f(X)), q(f(\alpha)), \\ p(\alpha), p(f(\alpha)), p(f(f(\alpha))), p(f(f(K))) \} \end{array} \\ \\ lfp(T_P^{ff}) \subseteq \gamma^{up}(lfp(T_P^{ff^{up}})) \end{array}$$

depth – k correctness and sufficient conditions

- the two abstractions are used to get finite approximations of the Non-Ground Finite Failure set and of the complement of the success set.
- the specifications
 - $-S_{\alpha^{\text{up}}}$ is the α^{up} abstraction of the intended Non-Ground Finite Failure set.
 - $-S'_{\alpha^{bl}}$ is the α^{bl} abstraction of the intended set of atoms which either finitely fail or (universally) do not terminate.
 - * the complement of the set of atoms (of depth $\leq k$) which have a successful derivation.
- a program P is depth k correct if

$$c_1 \ \alpha^{up}(lfp(T_p^{ff})) \subseteq S_{\alpha^{up}}.$$
 $c_2 \ S'_{\alpha^{bl}} \subseteq \alpha^{bl}(T_p^{ff} \downarrow \omega).$

 \bullet sufficient conditions for the depth -k correctness

$$sc_1 T_P^{ff^{up}}(S_{\alpha^{up}}) \subseteq S_{\alpha^{up}}.$$

$$\mathbf{sc_2} \mathsf{S}'_{\alpha^{\mathrm{bl}}} \subseteq \mathsf{T}^{\mathrm{ff^{\mathrm{bl}}}}_{\mathsf{P}}(\mathsf{S}'_{\alpha^{\mathrm{bl}}}).$$

Examples I

• Example 1

```
\begin{split} P_1: & \text{ append}([\ ],X,X):-\text{list}([X]) \text{ } \textit{instead of } \text{append}([\ ],X,X):-\text{list}(X) \\ & \text{ append}([X|Y],Z,T):-\text{append}(Y,Z,[X|T]). \\ & \text{list}([\ ]). \\ & \text{list}([X|Y]):-\text{list}(Y). \end{split}
```

- The program is *not* correct w.r.t. the intended depth-k success set.

We can detect this error.

append([], a, a) $\in S'_{\alpha^{bl}}$ yet append([], a, a) $\notin T^{ff^{bl}}_{P_1}(S'_{\alpha^{bl}})$. Therefore $\mathbf{sc_2}$ does not hold.

• Example 2

$$P_2$$
: append([X|Y], Z, T): -append(Y, Z, [X|T]). list([]). list([X|Y]): -list(Y).

- The program is *not* correct w.r.t. the intended depth-k finite failure set.

We can detect this error.

append([], [a], [a])
$$\in \mathsf{T}_{\mathsf{P}_2}^{\mathsf{ff}^{\mathsf{up}}}(\mathsf{S}_{\alpha^{\mathsf{up}}})$$
, yet append([], [a], [a]) $\notin \mathsf{S}_{\alpha^{\mathsf{up}}}$.

Therefore \mathbf{sc}_1 does not hold.

Examples II

• Example 3

```
\begin{split} P_3: & \text{ append}([\ ],X,X):-list(X). \\ & \text{ append}([X|Y],Z,T):-append(Y,Z,[X|T]). \\ & \text{ list}([\ ]). \\ & \text{ list}([X|Y]):-list(Y). \end{split}
```

 $-sc_1$ holds.

The program is correct w.r.t. the intended depth-k finite failure set.

 $-\;s\,c_2\;\mathrm{holds}.$

The program is correct w.r.t. the intended depth-k successful set.

Future Work

• how to extend the approach to other abstract domains which might be useful for reasoning about finite failure (e.g. assertions).