Extending the verification approach to finite failure

¢ a new method which uses different semantics and specifications

On the verification of finite failure 1

Motivations I

e Assume that the semantics of a program P is defined as least
fixpoint of a continuous operator T.
Let S be an interpretation which specifies the expected pro-
gram semantics.
— the program is partially correct w.r.t. T iff Lfp(T) C S.
— a sufficient partial correctness condition is T(S) C S.
e Several verification methods, based on semantics modeling dif-
ferent observable properties of logic programming as
— the ground success set [Shapiro82],
— the correct answers [Ferrand87],
— computed answers and their abstractions [Comini et al.99)]
o In [Levi et al.98] it has been showed that all the existing meth-
ods can be reconstructed as an instance of a general verification

technicue where the property one wants to verify is simply an
abstract semantics on a suitable abstract domain.

e There is one interesting property, finite failure, which is not an
abstraction of none of the semantics used above.

On the verification of finite failure 2

Motivations 11

o Which semantics for finite failure?

— The ground finite failure set FFp is not correct w.r.t. finite
failure.

— The non ground finite failure set NGFFp is correct, fully
abstract, w.r.t. finite failure and it is AND- compositional

[Gori et al.97].

e The problem: there exist no fixpoint characterization of

NGFFp.

e The idea: use abstract interpretation to derive such fixpoint
semantics.

— start from a concrete traces semantics, which extends with
infinite computations the concrete semantics of the Ab-
stract Interpretation Framework [Comini et al.99]

— define an abstract domain S, chosen so as to model finite
failure and to make the abstract operator T]‘;f precise

— the corresponding abstract fixpoint semantics lfp(TF‘,cf) is
the Non-Ground Finite Failure set

— 1t correctly models finite failure and is AND-compositional

e we can use the standard condition T]‘;‘C(S) C S as a sufficient
condition for the correctness w.r.t. finite failure

e we can define stronger conditions using Ferrand’s approach,
based on two specifications

On the verification of finite failure 3

The Semantic Domain

Let P be a program and R be the set of atoms which finitely fail
in P. Then

e R is a downward closed set, i.c.,if A € R = ADd € R.

o The key point: R enjoys a kind of “upward closure” property.
Example

Assume {p(a), p(f(a)), p(f(f(X))), p(f(f(a))),...} € R.
Which behavior for p(X)?

— Suppose p(X) has a successful derivation.
pX) S G B,..., G =0
Cq (65) Cn

Letd=o01-...- Oon.
Vp(t) € R, Ad =mgu(p(t), p(X)D), otherwise p(t)d

— Suppose p(X) has an infinite deriation.
PX) S G B, ..., G ..
C1 Cy

Cn
Letd;=01-... 0y

Vp(t) € R, Vi Abi = mgu(p(t), p(X)Di). otherwise p(t)d;

Y
if V possible sequences & ... =¥, o ... p(X)% < p(X)Biy
dp(t) € R, s.t. Vi3 = mgu(p(t), p(X)di),
then
p(X) € R.

On the verification of finite failure 4

The Semantics Domain 11

upg(x) (R) =RU{p(x)P| for all (possibly infinite) sequences
Shoos L, px)% <plx)ding
Ip(t) € R s.t.
Vi, p(t) unifies with p(x)d 2

Up(x)u‘pg(x) is a closure operator.

S is the domain of downward closed sets of atoms, which are also
closed w.r.t. Uy (x)u‘pg(x).

(S, C) is a complete lattice,

e the least upper bound of Ry,R; € § is Up(x)upg(x)(R] UR;y)
e the greatest lower bound of Ry, Ry € §'is (R N Ry)

On the verification of finite failure)

The Fixpoint Semantics

T(I) = { p(t) | for every clause defining the procedure p,
p(t):—B€P
p(t) € upll,, (Nunif, (p(t)U
{p(t)d | ¥ is a relevant for p(t),
BS € up ((Bo|B=B,...,B, IBio € I)})

o T is continuous = fp(TS) = upg(x)(UKwT]}cf T1i)

Example
P

q(a) : —p(X)
p(f(X)) : =p(X)
T 11 ={ q(f(X)), q(f(
q(f(a)), q(f(f(a))), ...
pla) \

O
-
—+
—
g
—
—
—

T'12= TI11U{p(f(a))}

T Tw= T 12U{p(f(f(a))), p(f(f(f(a))),...}
p(X) ¢ upg(x)(Tf,ch W) since

I = {X/F(Y)} D = {(X/F(F(Y))} O3 = {(X/F(F(F(Y))} ...,
and Vp(t) € TIF T w Vi A8 = mgu(p(t), p(X)H).

Y

q(a) e Taw +1

On the verification of finite failure

Ferrand’s approach

e Ferrand in [Ferrand93] uses the standard ground consequence
operator Tp

o The specifications are

— S, intended Ufp(Tp)
— S’ intended gfp(Tp)

The standard sufficient condition for partial correctness
Tp(S) C S allows us to reason about the ground success set

o §' C gfp(Tp).
The new sufficient condition S” C Tp(S’) is somewhat related
to missing answers

On the verification of finite failure 7

Verification conditions based on T}

o T;f 1s not co-continuous
— this is also the case for Ferrand’s Tp
o we replace gfp(Ti7) by T{ | w

— we have proved that Tf,cf | w is the complement of the set
of (possibly non-ground) atoms which have a successful
derivation

e the standard verification condition
— S is the intended set of (possibly non-ground) atoms which
have a finite failure
— correctness
Ufp(T3H) € S
— sufficient condition for correctness
TH(S) S
e the new verification condition
— §’1is the intended set of (possibly non-ground) atoms which
do not have a successful derivation

— correctness
S'CTflw= H\T | wCH\S
— sufficient condition for correctness

S’ C T{(S)

On the verification of finite failure 8

Towards effective verification conditions

o the sufficient conditions T{(S) C S and S’ C T{f(S’) are not
effective because

— Tf;f is not finitary
— both S and S’ are infinite sets

e the analysis and verification of properties of finite failure, can
be based on effective approximations of the operator Tf

e since we have two semantics and two specifications, we can use
two different (related) abstractions

— an upward approximation (of the least fixpoint semantics)

— a downward approximation (of T | w)

On the verification of finite failure 9

The depth-k domain

e we define the function depth on terms, atoms and goal of a

program.

1 t is a constant or a variable
= L
max{[ti],..., [t} + 1 if t =f(t;,...,ts)

The downward approximation

o < o’ vy > is a reversed Galois insertion, i.e.,
a® (NX;) = NP (X5)).

o We can define the optimal abstract fixpoint operator T]‘;‘Cb1 on
Db,

Example
q(a): —p(X)
p(f(X)) : =p(X)
for k=3,
p(Ti") = {a(f(f(X))), a(f(f(a))), a(f(X)), a(f(a)), p(a), p(f(a)), P(F(F(a)))}

YU Up(TH™)) C 1fp (T

On the verification of finite failure 10

The upward approximation

o < &"P Yy > is a Galois insertion.

o We can define the optimal abstract fixpoint operator Tf;fup on
DvP.

Example

q(a): —p(X)
p(f(X)) : —p(X)
for k=3,

Up(T3™) ={ alf(f(K))), a(fF(X)X/f
pla), p(fla)), p(f(f(a))), p(F(F(K

Lfp (TS C y*P(Up(TET))

(X)), q(f(f(a))), a(f(X)), q(f(a)),
)}

On the verification of finite failure 11

depth — k correctness and sufficient conditions

e the two abstractions are used to get finite approximations of
the Non-Ground Finite Failure set and of the complement of
the success set.

e the specifications

— S,up 18 the o*P abstraction of the intended Non-Ground
Finite Failure set.

— S(’x o is the o abstraction of the intended set of atoms
which either finitely fail or (universally) do not terminate.

% the complement of the set of atoms (of depth < k)
which have a successful derivation.

e a program P is depth — k correct if
c1 &P (Ifp(T{")) C Sew.
c2 'y C (T3 | w).

e sufficient conditions for the depth — k correctness
sc1 T (Squr) C Squo.

££0!
SC2 S(/xbl CTp (S(/xbl)°

On the verification of finite failure 12

Examples I

¢ Example 1

P append([], X, X): —list([X]) instead of append([],X,X) : —list(X)
append([X|Y], Z, T) : —append(Y, Z, [X|T]).
list([]).
List([X]Y]): —list(Y).

— The program is not correct w.r.t. the intended depth-k success
set.
We can detect this error.
append([],a,a) € Sl, yet append([],a,a) & T;fbl(S(’xm).
Therefore sc; does not hold.

e Example 2

Py : append([X|Y],Z,T): —append(Y, Z, [X|T]).
list([]).
List([X[Y]) : —list(Y).

— The program is not correct w.r.t. the intended depth-k finite fail-
ure set.
We can detect this error.
append([],[al, [al) € T (Sawr), yet
append([], [a], [a]) & Sawr.
Therefore s¢; does not hold.

On the verification of finite failure 13

Examples 11

¢ Example 3

Ps: append([], X, X) : —list(X).
append([X|Y],Z, T) : —append(Y, Z, [X|T]).
list([]).

List([X|Y]) : —list(Y).

— 8¢y holds.

J
The program is correct w.r.t. the intended depth-k finite failure

set.

— 8¢ holds.

4

The program is correct w.r.t. the intended depth-k successful set.

On the verification of finite failure 14

Future Work

e how to extend the approach to other abstract domains which
might be useful for reasoning about finite failure (e.g. asser-
tions).

On the verification of finite failure 15

