
1

HOW TO TRANSFORM
AN ANALYZER

INTO A VERIFIER

PART 2

LOGIC PROGRAMMING

2

LOGIC PROGRAMMING

• condition 2 FαP(S) ≤ S
is very easy to define if the
analyzer is denotational (bottom-up)

• FαP is the abstract version of the
traditional TP (immediate
consequences operator)
• compositional (for a single

clause)

• there exist different denotational
semantics, modeling different
observables
• computed answers, call patterns, …

• most existing analyzers for LP are
operational (top-down)
• not adequate to be transformed

into verifiers based on condition 2

3

A TYPE ANALYZER
FOR LOGIC PROGRAMS

• developed by Codish & Lagoon
http://www.cs.bgu.ac.il/~mcodish/Software/aci-
types-poly.tgz

• types (abstract terms)

• set expressions defined by a set
constructor +

• associative, commutative and
idempotent

• terms built from num/0, nil/0,
list/1 and variables

• some abstractions

α([X,Y]) = list(X) + list(Y) + nil
α([X|Y]) = list(X) + Y

4

THE VERIFIER

• developed using the abstract
operations of the analyzer

http://www.dimi.uniud.it/~comini/Projects/PolyTypes
Verifier/

• the abstract semantics models call
patterns in addition to computed
answers

• as a consequence, the specification
(for a procedure) is a pair of
abstract atoms (precondition,
postcondition)

• the verification method resulting
from the application of condition 2
can be read as

• the postcondition holds whenever
the precondition does and all the
procedure calls satisfy their
precondition

5

AN EXAMPLE

• the verifier

verifyIOcall/3: clause * I-spec * O-spec

• a clause for the queens program
?- verifyIOcall (
 (queens(X,Y) :- perm(X,Y), safe(Y)),

[queens(nil + list(num), T), queens(nil, T),
 perm(nil + list(num), T), perm(nil, T),
 safe(nil + list(num)), safe(nil)] ,

 [queens(nil, nil),
 queens(nil + list(num), nil + list(num)),
 perm(nil, nil),
 perm(nil + list(num), nil + list(num)),
 safe(nil + list(num)), safe(nil)]).
No.1 : yes

• if we change the order of atoms in
the clause body (same specifications)

?- verifyIOcall (
 (queens(X,Y) :- safe(Y), perm(X,Y)),

[…] ,
 […]).
Clause may be wrong because call safe(U) (atom
number 1 of body) is not in the call-specification.

