Gestione e Analisi dei Dati

Lezione 3

Operatori aggregati

Operatori di tipo insiemistico

Funzioni Aggregative

- Vengono utilizzate con la clausola SELECT
 - COUNT, SUM, MAX, MIN, AVG
 - DISTINCT
- Esempio: contare le facoltà dei professori
 - SELECT COUNT(DISTINCT(facolta))
 FROM Professori
 - Si contano solo le facoltà distinte

Operatori Insiemistici

Funzione

- le tabelle sono collezioni (=insiemi) di ennuple
- è possibile applicare le operazioni consuete sulle collezioni

Operazioni di base

- unione
- intersezione
- differenza

Esempio (I)

 Cognome e nome di tutte le persone (studenti e professori)

```
TABLE Professori (
 cod char(4) PRIMARY KEY,
 Professori.cognome varchar(20) NOT NULL,
 Professori.nome varchar(20) NOT NULL,
 qualifica char(15),
 facolta char(10));
                                                         TABLE Persone (
                                                           cognome varchar(20),
TABLE Studenti (
                                                           nome varchar(20)
 matr integer PRIMARY KEY,
 Studenti.cognome varchar(20) NOT NULL,
 Studenti.nome varchar(20) NOT NULL,
 ciclo char(20),
 anno integer,
 relatore char(4)
  REFERENCES Professori(cod));
```

Esempio (2)

Professori

cod	cognome	nome	qualifica	facolta
FT	Totti	Francesco	ordinatio	Ingegneria
CV	Vieri	Christian	associato	Scienze
ADP	Del Piero	Alessandro	supplente	null

NomiProfessori = $\pi_{\text{cognome, nome (Professori)}}$

cognome	nome
Totti	Francesco
Vieri	Christian
Del Piero	Alessandro

Studenti

matr	cognome	nome	ciclo	anno	relatore
111	Rossi	Mario	laurea tr.	I	null
222	Neri	Paolo	laurea tr.	2	null
333	Rossi	Maria	laurea tr.	1	null
444	Pinco	Palla	laurea tr.	3	FT
777	Bruno	Pasquale	laurea sp.	1	FT
888	Pinco	Pietro	laurea sp.	I	CV

$NomiStudenti = \pi_{cognome, nome (Studenti)}$

cognome	nome
Rossi	Mario
Neri	Paolo
Rossi	Maria
Pinco	Palla
Bruno	Pasquale
Pinco	Pietro

Esempio (3)

NomiProfessori = $\pi_{\text{cognome, nome (Professori)}}$

cognome	nome
Totti	Francesco
Vieri	Christian
Del Piero	Alessandro

 $NomiStudenti = \pi_{cognome, nome (Studenti)}$

cognome	nome
Rossi	Mario
Neri	Paolo
Rossi	Maria
Pinco	Palla
Bruno	Pasquale
Pinco	Pietro

Persone = NomiProfessori **U** NomiStudenti

cognome	nome
Totti	Francesco
Vieri	Christian
Del Piero	Alessandro
Rossi	Mario
Neri	Paolo
Rossi	Maria
Pinco	Palla
Bruno	Pasquale
Pinco	Pietro

Esempio (4)

- In sintesi:
 - NomiProfessori = $\pi_{cognome, nome}$ (Professori)
 - NomiStudenti = $\pi_{cognome, nome}$ (Studenti)
 - Persone = NomiProfessori U NomiStudenti
- Ovvero:
 - Persone = $\pi_{\text{cognome, nome}}$ (Professori) U $\pi_{\text{cognome, nome}}$ (Studenti)

Operatori Insiemistici: Sintassi

- Operatori binari
- Sintassi
 - stessi simboli delle operazioni convenzionali su insiemi
- Unione: R U S
- Intersezione: R∩S
- Differenza: R S

Operatori Insiemistici: Semantica

- Si applicano solo in alcuni casi
 - le tabelle R ed S devono avere lo stesso numero di attributi
 - associazione posizionale: gli attributi devono avere ordinatamente lo stesso tipo
- N.B.: i nomi degli attributi possono essere anche diversi!
- Schema del risultato
 - eredita i nomi degli attributi dalla prima tabella
- Istanza del risultato
 - unione, intersezione o differenza delle ennuple
 - Attenzione
 - semantica della differenza: "tutti gli elementi del primo membro che non appartengono al secondo"
 - esempio: $\{1, 3, 5\} \{3, 7, 9\} = \{1, 5\}$
 - dal risultato degli operatori insiemistici vengono eliminati eventuali duplicati
 - passo finale di eliminazione degli eventuali duplicati prodotti