Analisi dei Dati

∽°

Lezione 9 - Preprocessing dei dati

Motivazioni

- I dati nel mondo reale sono sporchi
 - incompleti: mancano valori per gli attributi, mancano attributi importanti, solo valori aggregati
 - rumorosi: contengono errori e/o outliers
 - inconsistenti: contengono codici o nomi diversi per gli stessi dati
- Senza dati di qualità non c'è analisi di qualità
 - decisioni di qualita` debbono essere basate su dati di qualità
 - il data warehouse richiede una integrazione consistente di dati di qualità

Attività principali di pre-processing

- pulizia dei dati (data cleaning)
 - aggiunta di valori mancanti, aggiustamento dei dati rumorosi, identificazione e eliminazione degli outliers, soluzione delle inconsistenze
- Integrazione dei dati
 - integrazione di database, cubi e files
- Trasformazione dei dati
 - normalizzazione e aggregazione
- Riduzione dei dati
 - riduzione del volume dei dati mantenendo la qualità dell'analisi
- Discretizzazione dei dati

Pulizia dei dati (data cleaning)

- aggiunta dei dati mancanti
- identificazione degli outliers e riduzione dei dati rumorosi
- correzione dei dati inconsistenti

Dati mancanti

- I dati non sono sempre disponibili
 - molte tuple non hanno valori registrati per alcuni attributi, p.e. il reddito dei clienti nei dati delle vendite
- La mancanza dei dati puo`essere dovuta a:
 - malfunzionamento dei sistemi di acquisizione
 - cancellazione dovuta a inconsistenza con dati già registrati
 - dati non inseriti per incomprensione
 - certi dati possono non essere considerati importanti al momento dell'inserimento
 - mancanza di registrazione dei cambiamenti nei dati
- Ci può essere necessità di inferire i dati mancanti

Trattamento dei dati mancanti

- ingnorare la tupla;
- aggiungere il valore mancante manualmente
- usare globalmente una costante per i valori mancanti: p.e. "non disponibile"
- usare il valor medio dell'attributo
- usare il valore più probabile dopo aver applicato una tecnica di inferenza (Bayesiana o albero di decisione)

Dati con rumore

- Rumore: errore o varianza random sui valori di una variabile
- Valori scorretti di un attributo possono essere dovuti a:
 - strumenti difettosi di raccolta dati
 - problemi di immissione dei dati
 - problemi di trasmissione dei dati
 - limitazioni tecnologiche
 - inconsistenze nelle convenzioni di rappresentazione
- Ulteriori problemi che richiedono pulizia dei dati
 - record duplicati
 - dati incompleti
 - dati inconsistenti

Trattamento del rumore dei dati

- Binning (partizionamento):
 - si ordinano i dati e si partizionano in bins (gruppi) di uguale dimensione)
 - si riducono le differenze (smoothing) all'interno dei bins o per valori medi, o per valori mediani, o per i valori min e max, ecc.
- Clustering
 - con algoritmi di clustering si individuano e rimouvono gli outliers
- Combinazione di ispezione automatica e manuale
 - determinare automaticamente i valori sospetti e farli controllare da un esperto
- Analisi di regressione
 - determina gli outliers e consente di avvicinarli alla curva (fitting sulla curva)

Esempio di Binning

- supponiamo di avere la seguente lista di prezzi: 4,8,9,15,21,21,24,25,26,28,29,34
- Partizionamento in bins di uguale dimensione:
 - Bin 1:4,8,9,15
 - Bin 2:21,21,24,25
 - Bin 3: 26,28,29,34
- Smoothing usando la media:
 - Bin I:9,9,9,9
 - Bin 2: 23,23,23,23
 - Bin 3: 29,29,29,29
- Smoothing usando gli estremi dell'intervallo
 - Bin 1:4,4,4,15
 - Bin 2:21,21,25,25
 - Bin 3: 26, 26, 26, 34

Funzione SE (o IF)

- Specifica un test logico da eseguire e ritorna uno dei valori in base al risultato del test
- Sintassi: SE(Test; ThenValue; ElseValue)
 - Test è un valore o un'espressione qualsiasi che può dare come risultato VERO o FALSO.
 - ThenValue (facoltativo) è il valore restituito se il test logico è VERO.
 - ElseValue (facoltativo) è il valore restituito se il test logico è FALSO.

Esercitazione (I)

- Usando il file HOMEDATA
 - Modificare i valori dei prezzi delle case in base a tre valori di soglia scelti in modo tale che ogni intervallo abbia la stessa ampiezza
 - Le etichette da utilizzare per i tre intervalli sono:
 - price_low
 - price_medium
 - price_high

Esercitazione (2)

- Ordinare i valori di Price, determinare il minimo (54000) e il massimo (215000) valore e suddividere il range totale (161000) in tre parti (53666)
- I valori soglia per i tre intervalli sono dunque:
 - 107666
 - 161333
 - 215000

Esercitazione (3)

- Aggiungiamo una colonna a destra e mettiamo come titolo, ad esempio, "Price label"
- I valori di questa nuova colonna saranno le tre label stabilite per i tre intervalli
- Confrontiamo ogni valore di Price con le tre soglie e, utilizzando la funzione SE (IF) inseriamo il valore opportuno

📖 🚚 🖊 🌾			70	¢	.000	.000	9	₹.		• 🔟	•	D-C
---------	--	--	----	---	------	------	---	----	--	-----	---	-----

				_
G	Н	I	J	
er Pending	Annual Tax	Price Label		
	223			
	426			
	459			
	342			
	475			
	225			
	622			

Esercitazione (4)

- I valori da confrontare sono tre, seguiremo il seguente algoritmo
 - SE valore < I soglia
 - ALLORA "Price_low"
 - ALTRIMENTI
 - SE valore < II soglia
 - ALLORA "Price_medium"
 - ALTRIMENTI "Price_high"
- Utilizzeremo due funzioni SE annidate

- Per comodità inseriamo le tre soglie sul foglio nelle celle A122:A124
- SE(A2<=\$A\$122;"Price_low"; SE(A2<=\$A\$123;"Price_medi um";"Price_High"))

Esercitazione (5)

- Estendiamo la formula a tutte le celle della colonna "Price Label"
- Nota: I il riferimento alle celle delle soglie è effettuato utilizzando il simbolo "\$" nelle coordinate (es. \$A\$122); in caso contrario, durante l'estensione della formula il riferimento sarebbe modificato in maniera progressiva: A123, A124,A125, ecc.
- Nota2: dato che avevamo ordinato i valori in senso crescente, le label risultanti sono anche esse ordinate. Sfruttiamo questa osservazione per commentare una strategia diversa di labeling

	: YP	Alldi	•	10	- 0		= = =		do. 000. 🗘 o	8 × = ×= ⊡ .
	12:111	8		= [=SE(A2<=\$/	4 \$1 22;"Price_	low";SE(A2<=	\$A\$123;"Price_med	lium";"Price_Hi	gh"))
ſ		Α	В	С	D	E	F	G	Н	I
	76	105.000	1.680	13	4	Yes	No	No	875	Price_low
	77	107.000	1.464	22	2	No	No	No	376	Price_low
I	78	108.000	2.200	26	4	Yes	No	No	1.076	Price_medium
I	79	110.000	1.657	20	4	Yes	No	No	865	Price_medium
	80	110.900	1.740	4	3	No	No	No	816	Price_medium
	81	111.000	1.630	15	3	Yes	No	Yes	867	Price_medium
	82	112 500	1 710	16	1	Vec	Vec	No	800	Price medium

Esercitazione (I)

- Usando il file HOMEDATA
 - Modificare i valori dei prezzi delle case in base a tre valori di soglia scelti in modo tale che ogni intervallo abbia la stessa ampiezza
 - Le etichette da utilizzare per i tre intervalli sono:
 - price_low
 - price_medium
 - price_high

Esercitazione (2)

- Come prima:
 - Ordinare i valori di Price, determinare il minimo (54000) e il massimo (215000) valore e suddividere il range totale (161000) in tre parti (53666)
 - I valori soglia per i tre intervalli sono dunque:
 - 107666
 - 161333
 - 215000

Esercitazione (3)

- Aggiungere la colonna "Price Label"
- Nella prima cella inserire la stringa "Price_low"

12		🔹 🏂 🗵 🗉	= [Price_low					
	А	В	С	D	E	F	G	Н	I
1	Price	Square Feet	Age	Features	NE Sector	Corner Lot	Offer Pending	Annual Tax	Price Label
2	54.000	1.142	21	0	No	No	No	223	Price low
3	58.000	1.051	15	2	No	No	No	426	
4	60.000	1.198	14	4	No	No	No	459	
5	61.900	837	10	2	Yes	No	No	342	

- Scorriamo i valori della colonna "Price" fino a trovare un valore che supera la prima soglia (107666)
 - In corrispondenza di questo valore (il primo valore dell'intervallo successivo), inseriamo la stringa "Price_medium" nella colonna di destra

	178		🔹 🏂 🗵 :	= [P	rice_mediu	ım				
Γ		Α	В	С	D	E	F	G	Н	I
	76	105.000	1.680	13	4	Yes	No	No	875	
ſ	77	107.000	1.464	22	2	No	No	No	376	
	78	108.000	2.200	26	4	Yes	No	No	1.076	Price medium
	79	110.000	1.657	20	4	Yes	No	No	865	
	80	110 900	1 740	4	3	No	No	No	816	

Esercitazione (4)

- Cerchiamo la riga corrispondente alla seconda soglia (161333)
- Inseriamo la label "Price_high" in corrispondenza

1108	108 \checkmark $\mathcal{F}_{\mathbf{x}} \Sigma = Price_high $										
	Α	В	С	D	E	F	G	Н	I		
106	158.000	2.563	14	2	No	Yes	No	1.189			
107	159.900	2.440	19	5	Yes	Yes	No	1.265			
108	169.500	2.931	28	3	Yes	No	Yes	1.142	Price high		
109	180.000	2.774	2	4	Yes	No	No	1.765			
110	184.400	2.250	40	6	No	Yes	No	915			

• Partendo dalla prima cella in alto, estendiamo il contenuto della cella (l'angolo in basso a destra della cella) verso il basso, fino a trovare la prima label in corrispondeza del cambio di classe

	12:173		💌 🕂 🗡 🛛	=	Price_low					
ſ		Α	В	С	D	E	F	G	Н	I
	70	102.000	1.478	53	3	Yes	No	Yes	626	Price low
	71	103.000	1.540	6	2	No	No	Yes	826	Price low
	72	104.500	1.630	6	4	No	No	No	750	Price low
	73	104.900	1.900	34	3	Yes	No	No	690	Price low
	74	105.000	1.620	6	4	No	No	No	800	
	75	105.000	1.920	8	4	No	No	No	944	
	76	105.000	1.680	13	4	Yes	No	No	875	
	77	107.000	1.464	22	2	No	No	No	376	
	78	108.000	2.200	26	4	Yes	No	No	1.076	Price_medium
		110 000	1 057			2.7			0.05	

Esercitazione (5)

- Ripetiamo l'estensione del contenuto anche per gli altri due intervalli
- Per l'ultimo intervallo arriviamo fino all'ultima riga

	Α	В	С	D	E	F	G	Н	I
100	135.000	2.253	23	4	Yes	Yes	No	939	Price_medium
101	137.500	1.837	4	5	Yes	No	No	1.191	Price_medium
102	144.900	1.710	1	3	Yes	Yes	No	1.010	Price_medium
103	145.000	2.150	10	4	Yes	No	No	1.050	Price_medium
104	155.300	2.200	28	4	Yes	No	No	1.035	l I
105	156.000	1.920	1	5	Yes	Yes	No	1.161	
106	158.000	2.563	14	2	No	Yes	No	1.189	
107	159.900	2.440	19	5	Yes	Yes	No	1.265	
108	169.500	2.931	28	3	Yes	No	Yes	1.142	Price high
109	180.000	2.774	2	4	Yes	No	No	1.765	
440	404 400	0.050	40	· ·		14	B.1	045	

1108:	1114	🔹 🏂 🗵 🗉	= F	Price_high						
	Α	В	С	D	E	F	G	Н	I	
112	199.900	2.580	4	4	Yes	Yes	No	1.732	Price high	
113	205.000	2.650	13	7	Yes	Yes	No	1.639	Price high	
114	208.000	2.600	10	4	Yes	Yes	No	1.088	Price high	
115	210.000	2.116	25	3	No	Yes	No	1.209		ſ
116	215.000	2.921	3	6	Yes	Yes	No	1.635		[
117	215.000	2.848	4	6	Yes	Yes	No	1.487		
118	215.000	2.664	6	5	Yes	Yes	No	1.193		
119										
120										