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Tries are popular data structures for storing a set of strings, where common prefixes are represented by
common root-to-node paths. More than 50 years of usage have produced many variants and implementations
to overcome some of their limitations. We explore new succinct representations of path-decomposed tries and
experimentally evaluate the corresponding reduction in space usage and memory latency, comparing with
the state of the art. We study the following applications: compressed string dictionary and monotone minimal
perfect hash for strings.

In compressed string dictionary, we obtain data structures that outperform other state-of-the-art com-
pressed dictionaries in space efficiency while obtaining predictable query times that are competitive with
data structures preferred by the practitioners. On real-world datasets, our compressed tries obtain the small-
est space (except for one case) and have the fastest lookup times, whereas access times are within 20% slower
than the best-known solutions.

In monotone minimal perfect hash for strings, our compressed tries perform several times faster than
other trie-based monotone perfect hash functions while occupying nearly the same space. On real-world
datasets, our tries are approximately 2 to 5 times faster than previous solutions, with a space occupancy less
than 10% larger.
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1. INTRODUCTION

Tries are widely used data structures that turn a string set into a digital search tree.
Several operations can be supported, such as mapping the strings to integers, retrieving
a string from the trie, performing prefix searches, and many others. Thanks to their
simplicity and functionality, they have enjoyed a remarkable popularity in a number
of fields—computational biology, data compression, data mining, information retrieval,
natural language processing, network routing, pattern matching, text processing, and
Web applications, to name a few—motivating the significant effort spent in the variety
of their implementations over the past 50 years [Knuth 1998].
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However, their simplicity comes at a cost: as most tree structures, they generally
suffer poor locality of reference due to pointer chasing. This effect is amplified when
using space-efficient representations of tries, where performing any basic navigational
operation, such as visiting a child, requires accessing possibly several directories,
usually with unpredictable memory access patterns. Tries are particularly affected,
as they are unbalanced structures: the height can be in the order of the number of
strings in the set. Furthermore, space savings are achieved only by exploiting the
common prefixes in the string set, although it is not clear how to compress their nodes
and their labels without incurring an unreasonable overhead in the running time.

In this article, we experiment with how path decompositions of tries help on both
of the issues mentioned previously, inspired by the work presented in Ferragina et al.
[2008]. By using a centroid path decomposition, the height is guaranteed to be loga-
rithmic in the number of strings, reducing dramatically the number of cache misses in
a traversal; in addition, for any path decomposition, the labels can be laid out in a way
that enables efficient compression and decompression of a label in a sequential fashion.

We keep two main goals in mind: reduce the space requirement, and guarantee fast
query times using algorithms that exploit the memory hierarchy. In our algorithm
engineering design, we follow some guidelines. First, proposed algorithms and data
structures should be as simple as possible to ensure reproducibility of the results,
whereas the performance should be similar to or better than what is available in the
state of the art. Second, the proposed techniques should as much as possible lay on a
theoretical ground. Third, the theoretical complexity of some operations is allowed to
be worse than that known for the best solutions when there is a clear experimental
benefit,1 since we seek the best performance in practice.

The literature about space-efficient and cache-efficient tries is vast. Several papers
address the issue of a cache-friendly access to a set of strings supporting prefix search
[Acharya et al. 1999; Bender et al. 2006; Brodal and Fagerberg 2006; Ferragina and
Grossi 1999], but they do not deal with space issues except Bender et al. [2006], which
introduces an elegant variant of front coding. Other papers aiming at succinct labeled
trees and compressed data structures for strings [Arroyuelo et al. 2010; Belazzougui
et al. 2011; Benoit et al. 2005; Blandford and Blelloch 2008; Ferragina et al. 2009;
Munro and Raman 2001; Sadakane and Navarro 2010], support powerful operations—
such as substring queries—and are very good in compressing data, but they do not
exploit the memory hierarchy. Few papers [Chiu et al. 2010; Ferragina et al. 2008]
combine (nearly) optimal information theoretic bounds for space occupancy with good
cache-efficient bounds, but no experimental analysis is performed. More references on
compressed string dictionaries can be found in Brisaboa et al. [2011].

The article is organized as follows. After describing some of the known tools to
represent sequences and trees succinctly, we apply our path decomposition ideas to
string dictionaries in Section 3 and to monotone perfect hash functions (hollow tries) in
Section 4, showing that it is possible to improve their performance with a very small
space overhead. In Section 5, we present some optimizations to the range min-max
tree [Sadakane and Navarro 2010; Arroyuelo et al. 2010] that we use to support fast
operations on balanced parentheses, improving both in space and time on the exist-
ing implementations [Arroyuelo et al. 2010]. Our experimental results are discussed in
Section 6, where our implementations compare very favorably to some of the best imple-
mentations. We provide the source code at http://github.com/ot/path_decomposed_tries
for the reader interested in further comparisons.

1For example, it is folklore that a sequential scan of a small sorted set of keys is faster than a binary
search, because the former method is very friendly with branch prediction and cache prefetching of modern
machines.
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2. BACKGROUND AND TOOLS

2.1. Basic Tools

In the following, we make extensive use of compacted tries and basic succinct data
structures, which we shortly summarize in this section.

Compacted tries. To fix the notation, we quickly recall the definition of compacted
tries. We build recursively the trie in the following way:

—The compacted trie of a single string is a node whose label is the string.
—Given a nonempty string set S, the root of the tree is labeled with the longest common

prefix α (possibly empty) of the strings in S. For each character b such that the set
Sb = {β|αbβ ∈ S} is nonempty, the compacted trie built on Sb is attached to the root as
a child. The edge is labeled with the branching character b. The number of characters
in the label α is called the skip and denoted with δ.

Unless otherwise specified, we will use trie to indicate a compacted trie in the rest of
the article.

Rank and select operations. Given a bit vector X with n bits, we can define the
following operations: Rankb(i) returns the number of occurrences of bit b ∈ {0,1} in the
first i positions in X; Selectb(i) returns the position of the i-th occurrence of bit b in X.
These operations can be supported in constant time by adding o(n) bits of redundancy
to the bit vector [Clark 1998; Jacobson 1989].

Elias-Fano encoding. The Elias-Fano representation [Elias 1974; Fano 1971] is an
encoding scheme to represent a nondecreasing sequence of mintegers in [0, n) occupying
2m+m�log n

m�+o(m) bits while supporting constant-time access to the i-th integer. The
scheme is very simple and elegant, and efficient implementations are described in
Grossi and Vitter [2005], Okanohara and Sadakane [2007], and Vigna [2008].

Balanced parentheses. In a sequence of n balanced parentheses (BP), each open
parenthesis ( can be associated to its mate ). Operations FindClose and FindOpen
can be defined, which find the position of the mate of respectively an open or close
parenthesis. The sequence can be represented as a bit vector, where 1 represents
( and 0 represents ), and by adding o(n) bits of redundancy it is possible to support
the previously defined operations in constant or nearly constant time [Jacobson 1989;
Munro and Raman 2001]. A tree T can be recursively encoded as a sequence of balanced
parentheses BP(T ) by encoding a leaf node as () and a node with children T1, . . . , Tk as
(BP(T1) · · · BP(Tk) ). Note that each node is represented by a pair of parentheses, so a
tree with mnodes can be represented with 2mparentheses. Several traversal operations
can be implemented using the preceding FindClose and FindOpen operations.

2.2. Representing Binary Trees

We define a binary tree as a tree where each node is either an internal node that has
exactly two children or a leaf . It follows immediately that a binary tree with n internal
nodes has n + 1 leaves. An example of binary trees is given by binary compacted tries.
Note that there is another popular definition of binary trees, such as is used in Munro
and Raman [2001], where each node is allowed to have at most two children, but a
distinction is made between degree-1 nodes based on whether their child is left or
right. The two definitions are equivalent if we consider the internal nodes in the first
definition to be the nodes in the second definition, and the leaves to be the absent
children. Hence, a tree with 2n + 1 nodes in the first definition is a tree with n nodes
in the second. Choosing between the two definitions usually depends on whether the
leaves have some significance for the application.
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A simple way to represent a binary tree would be to see it as a generic tree and encode
it with BP, taking 4n + o(n) bits for a tree with 2n + 1 nodes. However, it is possible to
do better: as noted in Munro and Raman [2001], binary trees with 2n+ 1 nodes can be
bijectively mapped to general trees of n nodes, by considering the n internal nodes as
the first-child next-sibling representation of a tree of n nodes; operations on the binary
tree can be performed directly on the obtained tree. Such a tree can be encoded with
BP, occupying just 2n + o(n) bits. This technique is used, for example, for hollow tries
in Belazzougui et al. [2011]. Given a tree T , we call such encoding FCNS(T ).

We show here how the same representation can be obtained directly from the tree,
without the conceptual step through the first-child next-sibling mapping. This makes
reasoning about the operations considerably simpler. Furthermore, with this deriva-
tion, the leaves have an explicit correspondence with positions in the parentheses
sequence.

Definition 2.1. Let T be a binary tree. We define its depth-first binary sequence
representation DFBS(T ) recursively:

—If T is a leaf, DFBS(T ) = ).
—If T is a node with subtrees Tleft and Tright, DFBS(T ) = (DFBS(Tleft) DFBS(Tright).

Although in FCNS only internal nodes are mapped to (s, in this representation all 2n+1
nodes in depth-first order are in explicit correspondence to the 2n + 1 parentheses in
the sequence, with (s corresponding to internal nodes and )s corresponding to leaves.
This property is especially useful if satellite data need to be associated to the leaves.

The following lemma proves that the obtained sequence is isomorphic to FCNS(T ).

LEMMA 2.2. For any binary tree T , it holds that DFBS(T ) = FCNS(T ) ).

PROOF. If T is a leaf, FCNS(T ) is the empty sequence and DFBS(T ) is the sin-
gle parenthesis ), so the lemma follows trivially. Otherwise, let T1, T2, . . . , Ti be the
subtrees hanging off the right-most root-to-leaf path in T ; then, by definition,

FCNS(T ) = (FCNS(T1))(FCNS(T2)) . . . (FCNS(Ti)).

By induction, we can rewrite it in the following way:

FCNS(T ) = (DFBS(T1)(DFBS(T2) . . . (DFBS(Ti).

Note that T1 is just Tleft, whereas DFBS(Tright) = (DFBS(T2) . . . (DFBS(Ti)), where
the last ) is given by the final leaf in the right-most root-to-leaf path. Hence,

DFBS(T ) = (DFBS(T1)(DFBS(T2) . . . (DFBS(Ti)) = FCNS(T )),

proving the inductive step.

The preceding lemma implies that (DFBS(T ) is a sequence of balanced parentheses.
To make the construction self-contained, we prove it directly in the following lemma.
The proof will also make clear how to perform navigational operations.

LEMMA 2.3. The sequence (DFBS(T ) is a sequence of balanced parentheses.

PROOF. If T is a leaf, then (DFBS(T ) = (). Otherwise, let (DFBS(T ) =
((DFBS(Tleft) DFBS(Tright). By induction, both (DFBS(Tleft) and (DFBS(Tright) are se-
quences of balanced parentheses. Inserting the first into the second yields a sequence
of balanced parentheses.

Note that internal nodes are of the form (DFBS(Tleft) DFBS(Tright), where Tleft and
Tright are the children. The previous lemma allows us to skip the (DFBS(Tleft) subse-
quence with a single FindClose, and hence the following corollary follows immediately.

ACM Journal of Experimental Algorithmics, Vol. 19, No. 1, Article 1.8, Publication date: October 2014.



Fast Compressed Tries through Path Decompositions 1.8:5

COROLLARY 2.4. If position i in DFBS(T ) corresponds to an internal node, then
LeftChild(i) = i + 1 and RightChild(i) = FindClose(i) + 1.

The DFBS encoding is discussed also by Jansson et al. [2012], but without mention-
ing that it is possible to perform traversal operations on it. They obtain the n-bit bound
instead using a compressed version of DFUDS, which is more powerful but also signif-
icantly more complex. Davoodi et al. [2012] note that the encoding yields a sequence of
balanced parentheses, but they do not mention the equivalence with FCNS.

Using this encoding, it is also possible to generate random binary trees of a given
size in a very intuitive way: to generate a tree of size 2n + 1, choose an odd number m
between 1 and 2n − 1 from some distribution to be the size of the left subtree. Then,
recursively generate trees of sizes m and 2n − m, obtaining the sequences α and β.
The resulting tree is (αβ. We use this technique to benchmark BP implementations in
Section 5.1.

2.3. The Succinct Library

We implemented the data structures described earlier in the Succinct C++ library
[SUCCINCT 2012]. The library is tested under Linux, Mac OS X, and Microsoft Win-
dows, and released with a permissive license, in the hope that it will be useful both in
research and applications.

Although similar in functionality to other existing libraries [LIBCDS 2011; SDSL
2010; SUX4J 2011], we made some radically different architectural choices. The most
prominent is that data structures serialized to disk are not deserialized into memory
but rather are memory mapped; although being slightly less flexible, memory mapping
has several advantages over loading. For example, for short-running processes, it is
often not necessary to load the full data structure in memory; instead, the kernel will
load only the relevant pages. If such pages were accessed recently, they are likely to be
still in the kernel’s page cache, thus making the startup even faster. If several processes
access the same structure, the memory pages that hold it are shared among all of the
processes; with loading, instead, each process keeps its own copy of the data. Last, if
the system runs out of memory, it can just unmap unused pages; with loading, it has
to swap them to disk, thus increasing the I/O pressure.

We chose to avoid dynamic polymorphism and make extensive use of C++ templates
instead. This allowed us to write idiomatic and modular C++ code without the overhead
of virtual functions. Manual inspection of the generated code confirmed that, thanks
to the ability to inline functions, there is virtually no abstraction penalty on all of the
compilers on which we tested the code.

The library also implements the range min tree described in Section 5; as shown in
Section 5.1, at the time of this writing, this implementation is the fastest among the
publicly available range min-max–based BP data structures.

3. STRING DICTIONARIES

In this section, we describe an implementation of string dictionaries using path-
decomposed tries. A string dictionary is a data structure on a string set S ⊂ �∗ that
supports the following operations:

—Lookup(s) returns −1 if s �∈ S or a unique identifier in [0, |S|) otherwise.
—Access(i) retrieves the string with identifier i; note that Access(Lookup(s)) = s if

s ∈ S.

Path decomposition. Our string dictionaries, inspired by the approach described in
Ferragina et al. [2008], are based on path decompositions of the trie built on S (re-
call that we use trie to indicate compacted trie in the rest of the article). A path
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Fig. 1. Path decomposition of a trie. The αi denote the labels of the trie nodes, and ci and bi denote the
branching characters (depending on whether they are on the path or not).

decomposition T c of a trie T is a tree where each node in T c represents a path in T .
It is defined recursively in the following way: a root-to-leaf path in T is chosen and
represented by the root node in T c. The same procedure is applied recursively to the
subtries hanging off the chosen path, and the obtained trees become the children of the
root, labeled with their corresponding branching character. Note that in the preceding
procedure, the order of the decomposed subtries as children of the root is arbitrary.
Unlike Ferragina et al. [2008], who arrange the subtries in lexicographic order, we ar-
range them in bottom-to-top left-to-right order; when using our succinct representation,
this simplifies the traversal. Figure 1 shows a root-to-leaf path in T and its resulting
node in T c.

There is a one-to-one correspondence between the paths of the two trees: root-to-node
paths in T c correspond to root-to-leaf paths in the trie T , and hence to strings in S.
This also implies that T c has exactly |S| nodes, and that the height of T c cannot be
larger than that of T . Different strategies in choosing the paths in the decomposition
give rise to different properties. We describe two such strategies:

—Left-most path: Always choose the left-most child.
—Heavy path: Always choose the heavy child—that is, the one whose subtrie has the

most leaves (arbitrarily breaking ties). This is the strategy adopted in Ferragina
et al. [2008] and borrowed from Sleator and Tarjan [1981].

OBSERVATION 3.1. If the left-most path is used in the path decomposition, the depth-
first order of the nodes in T c is equal to the left-to-right order of their corresponding
leaves in T . Hence, if T is lexicographically ordered, so is T c. We call it a lexicographic
path decomposition.

OBSERVATION 3.2. If the heavy path is used in the path decomposition, the height of
the resulting tree is bounded by O(log |S|). We call such a decomposition a centroid path
decomposition.

The two strategies enable a time/functionality trade-off: a lexicographic path de-
composition guarantees that the indices returned by the Lookup are in lexicographic
order, at the cost of a potentially linear height of the tree (but never higher than the
trie T ). On the other hand, if the order of the indices is irrelevant, the centroid path
decomposition gives logarithmic guarantees.2

2Ferragina et al. [2008] show how to have lexicographic indices in a centroid path-decomposed trie using
secondary support structures and arranging the nodes in a different order. The navigational operations are
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We exploit a crucial property of path decompositions: since each node in T c corre-
sponds to a node-to-leaf path π in T , the concatenation of the labels in π corresponds to
a suffix of a string in S. To simulate a traversal of T using T c, we only need to scan se-
quentially, character-by-character, the label of each node until we find the needed child
node. Hence, any representation of the labels that supports sequential access (simpler
than random access) is sufficient. Besides being cache-friendly, as we will see in the
next section, this allows an efficient compression of the labels.

Tree representation. Each node v in the path-decomposed trie T c is encoded with
three sequences: BPv, Bv, and Lv. Figure 1 shows an example for the root node.

—The bit vector BPv is a run of dv open parentheses followed by a close parenthesis,
where dv is the degree of node v.

—The string Bv is the concatenation of the branching characters bi of node v, written in
reverse order—that is, Bv = bdv

· · · b1. Note that they are in one-to-one correspondence
with the (s in BP.

—The string Lv is the label of node v. We recall that each node in T c represents a path
in T . To encode the path, we augment the alphabet � with |�|−1 special characters,
�′ = � ∪ {1, 2, . . . , |�| − 1}, and alternate the label and the branching character of
each node in the trie path with the number of subtries hanging off that node, encoded
with the new special characters. More precisely, if the path in T corresponding to v
is w1, c1, . . . , wk−1, ck−1, wk where wi are the trie nodes and ci the edge labels, then
L = αw1 d̃w1c1 · · · αwk−1 d̃wk−1ck−1αwk, where αwi is the node label of wi and d̃wi is the
special character that represents dwi − 1 (all degrees in T are at least 2). Note that
Lv is drawn from the larger alphabet �′; we will describe later how to encode it.

The sequences are then concatenated in depth-first order to obtain BP, B, and
L: if v1, . . . , vn are the nodes of T c in depth-first order, then BP = BPv1 · · · BPvn,
B = Bv1 · · · Bvn, and L = Lv1 · · · Lvn. Note that BP represents the topology of T c with the
DFUDS encoding, and hence it is possible to support fast traversal operations on the
tree (we refer the reader to Benoit et al. [2005] for the definition of the DFUDS encod-
ing). Since the labels Lv are variable sized, to enable random access to the beginning
of each label we encode their endpoints in L using an Elias-Fano monotone sequence.
Figure 2 shows an example of the three sequences for both lexicographic and centroid
path decompositions on a small string set.

Trie operations. Lookup is implemented recursively in a top-down fashion, starting
from the root. To search for the string s in node v, we simultaneously scan its label Lv

and s. If the current character in the label is a special character, we add its value to
an accumulator m (initially set to zero). Otherwise, we check if the current character
in the label and the one in s match, in which case we proceed the scan with the next
position in both. If instead they mismatch, the previous character in the label must be
a special character d̃, and otherwise the string s is not in S; in this case, we return
−1 (likewise, if the string exceeds the label). The range between the accumulator m
and m+ d̃ indicates the children of v that correspond to the nodes in T branching from
the prefix of s traversed up to the mismatch. To find the child, it is then sufficient to
find the matching branching character in Bv between in m and m + d̃. Since B is in
correspondence with the open parentheses of BP, by performing a Rank( of the current
position in BP, it is possible to find the starting point of Bv in B; also, because the
characters in that range are sorted, a binary search can be performed. Again, −1 is
returned if no matching character is found. The search proceeds recursively in the

noticeably more complex and require more powerful primitives on the underlying succinct tree, particularly
for Access.
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Fig. 2. Example of a compacted trie and its lexicographic and centroid path decomposition trees for the set
{three, trial, triangle, triangular, trie, triple, triply}. Note that the children in the path decomposition
trees are in bottom-to-top left-to-right order.

found node with the suffix of s, which starts immediately after the mismatch, until the
string is fully traversed. The index of the ) in BP corresponding to the found node is
returned—that is, the depth-first index of that node, which can be found with a Rank)

of the current position in BP. Note that it is possible to avoid all of the Rank calls by
using the standard trick of double-counting—in other words, exploiting the observation
that between any two mates there is an equal number of (s and )s; this implies that
if j = FindClose(i), then Rank)( j) = Rank)(i) + ( j − i − 1)/2, so it is possible to keep
track of the rank during the traversal. Likewise, Rank((i) = i − Rank)(i).

Access is performed similarly but in a bottom-up fashion. The initial position in BP is
obtained by performing a Select) of the node index returned by Lookup. Then the path
is reconstructed by jumping recursively from the leaf thus found in T c to the parent
until the root is reached. During the recursion, we maintain the invariant that, at node
v, the suffix of the string to be returned corresponding to the path below v has already
been decoded. When visiting node v, we know from which child of v we are jumping;
hence, we scan its label Lv from the beginning until the position corresponding to that
child is reached. The nonspecial characters seen during the scan are prepended to the
string to be returned, and the recursion is carried on to the parent.

Time complexity. For the Lookup, for each node in the traversal, we perform a se-
quential scan of the labels and a binary search on the branching character. If the string
has length p, we can never see more than p special characters during the scan. Hence,
if we assume constant-time FindClose and Elias-Fano retrieval, the total number of op-
erations is O(p+h log |�|), whereas the number of random memory accesses is bounded
by O(h), where h is the height of the path decomposition tree. The Access is symmet-
ric, except the binary search is not needed and p ≥ h, so the number of operations is
bounded by O(p), where p is the length of the returned string. Again, the number of
random memory accesses is bounded by O(h).

Labels encoding and compression. As mentioned previously, we need only to sequen-
tially scan the label of each node from the beginning, so we can use any encoding that
supports sequential scan with a constant amount of work per character. In the uncom-
pressed trie, as a baseline, we simply use a vbyte encoding [Williams and Zobel 1999].
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Since most bytes in the datasets do not exceed 127 in value, there is no noticeable space
overhead. For a less sparse alphabet, more sophisticated encodings can be used.

The freedom in choosing the encoding allows us to explore other trade-offs. We take
advantage of this to compress the labels, with an almost negligible overhead in the
operations runtime.

We adopt a simple dictionary compression scheme for the labels: we choose a static
dictionary of variable-sized words (that can be drawn from any alphabet) that will be
stored along with the the tree explicitly, such that the overall size of the dictionary
is bounded by a given parameter (constant) D. The node labels are then parsed into
words of the dictionary, and the words are sorted according to their frequency in the
parsing: a code is assigned to each word in decreasing order of frequency so that more
frequent words have smaller codes. The codes are then encoded using some variable-
length integer encoding; we use vbyte to favor performance. To decompress the label
we scan the codes, and for each code we scan the word in the dictionary; hence, each
character requires a constant amount of work.

We remark that the decompression algorithm is completely agnostic of how the
dictionary was chosen and how the strings are parsed. For example, domain knowledge
about the data could be exploited; in texts, the most frequent words would probably be
a good choice.

Since we are looking for a general-purpose scheme, we adopt a modified version of
the approximate re-pair [Larsson and Moffat 1999] described in Claude and Navarro
[2010]. We initialize the dictionary to the alphabet � and scan the string to find the k
most frequent pairs of codes. Then, we select all pairs whose corresponding substrings
fit in the dictionary and substitute them in the sequence. We then iterate until the dic-
tionary is filled (or there are no more repeated pairs). From this, we simultaneously ob-
tain the dictionary and the parsing. To allow the labels to be accessed independently, we
take care that no pairs are formed on label boundaries, as done in Brisaboa et al. [2011].

Note that whereas re-pair represents the words recursively as pairing rules, our
dictionary stores the words literally, thus losing some space efficiency but fulfilling
our requirement of constant amount of work per decoded character. If we used re-
pair instead, accessing a single character from a recursive rule would have had a cost
dependent on the recursion depth.

Implementation notes. For the BP vector, we use the range min tree described in
Section 5 with a block size of 256 bits. Rank is supported using the rank9 structure
described in Vigna [2008], whereas Select is implemented through a one-level hinted
binary search. The search for the branching character is replaced by a linear search,
which for the cardinalities considered (few tens of distinct symbols) is actually faster
in practice. The dictionary is represented as the concatenation of the words encoded in
16-bit characters to fit the larger alphabet �′ = [0, 511). The dictionary size bound D
is chosen to be 216 so that the word endpoints can be encoded in 16-bit pointers. The
small size of the dictionary also makes it more likely that (at least the most frequently
accessed part of) it is kept in cache.

4. MONOTONE MINIMAL PERFECT HASH FOR STRINGS

Minimal perfect hash functions map a set of strings S bijectively into [0, |S|). Monotone
minimal perfect hash functions [Belazzougui et al. 2009] (or monotone hashes) also
require that the mapping preserves the lexicographic order of the strings (not to be
confused with generic order-preserving hashing, where the order to be preserved is
arbitrary, thus incurring a �(|S| log |S|) space lower bound). We remark that as with
standard minimal hash functions, the Lookup can return any number on strings outside
of S, and hence the data structure does not have to store the string set.
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Fig. 3. Path decomposition of a hollow trie. The δi denote the skips.

The hollow trie [Belazzougui et al. 2011] is a particular instance of monotone hash.
It consists of a binary trie on S, of which only the trie topology and the skips of the
internal nodes are stored. The topology is encoded succinctly with FCNS; through the
equivalence with DFBS described in Section 2.2, it is easy to see that the obtained
sequence of parentheses is the same as the DFUDS encoding of the lexicographic path
decomposition of the trie. To compute the hash value of a string x, a blind search
is performed: the trie is traversed matching only the branching characters (bits, in
this case) of x. If x ∈ S, the leaf reached is the correct one, and its depth-first index is
returned; otherwise, it has the longest prefix match with x, useful in some applications
[Ferragina and Grossi 1999].

The cost of unbalancedness for hollow tries is even larger than that for normal
tries: since the strings over � have to be converted to a binary alphabet, the height is
potentially multiplied by O(log |�|) with respect to that of a trie on �. The experiments
in Belazzougui et al. [2011] show indeed that the data structure has worse performance
than the other monotone hashes, although it is among the most space-efficient.

Path decomposition with lexicographic order. To tackle their unbalancedness, we
apply the centroid path decomposition idea to hollow tries. The construction presented
in Section 3 cannot be used directly, because we want to both preserve the lexicographic
ordering of the strings and guarantee the logarithmic height. However, both the binary
alphabet and the fact that we do not need the Access operation come to the aid. First,
inspired again by Ferragina et al. [2008], we arrange the subtries in lexicographic order.
This means that the subtries on the left of the path are arranged from top to bottom
and precede all those on the right that are arranged from bottom to top. In the path
decomposition tree, we call left children the ones corresponding to subtries hanging off
the left side of the path and right children the ones corresponding to those hanging on
the right side. Figure 3 shows the new ordering.

We now need a small change in the heavy path strategy: instead of breaking ties
arbitrarily, we choose the left child. We call this strategy left-biased heavy path, which
gives the following.

OBSERVATION 4.1. Every node-to-leaf left-biased heavy path in a binary trie ends with
a left turn. Hence, every internal node of the resulting path decomposition has at least
one right child.
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PROOF. Suppose by contradiction that the path leaf is a right child. Then, either its
left sibling is not a leaf, in which case the path is not heavy, or it is a leaf, in which case
the tie would be resolved by choosing the left child.

Tree representation. The bit vector BP is defined as in Section 3. The label associated
with each node is the sequence of skips interleaved with directions taken in the centroid
path, excluding the leaf skip, as in Figure 3. Two aligned bit vectors Lhigh and Llow

are used to represent the labels using an encoding inspired by γ codes [Elias 1975]:
the skips are incremented by one (to exclude 0 from the domain), and their binary
representations (without the leading 1) are interleaved with the path directions and
concatenated in Llow. Lhigh consists of 0 runs of length corresponding to the lengths
of the binary representations of the skips, followed by 1s, so that the endpoints of
(skip, direction) pair encodings in Llow are aligned to the 1s in Lhigh. Thus, a Select
directory on Lhigh enables random access to the (skip, direction) pairs sequence. The
labels of the node are concatenated in depth-first order: the (s in BP are in one-to-one
correspondence with the (skip, direction) pairs.

Trie operations. As in Section 3, a trie traversal is simulated on the path decompo-
sition tree. In the root node, the (skip, direction) pairs sequence is scanned (through
Lhigh and Llow). During the scan the number of left and right children passed by is
kept; when a mismatch in the string is found, the search proceeds in the corresponding
child. Because of the ordering of the children, if the mismatch leads to a left child,
then the child index is the number of left children seen in the scan, whereas if it leads
to a right child, then it is the node degrees minus the number of right children seen
(because the latter are represented from right to left). This correspondence between
(skip, direction) pairs and child nodes (represented by (s in BPv) is shown with dashed
arrows in Figure 3. The search proceeds recursively until the string is fully traversed.

When the search ends, the depth-first order of the node found is not yet the number
that we are looking for: all ancestors where we turned left come before the found node
in depth-first but after it in the lexicographic order. Besides, if the found node is not
a leaf, all strings in the left subtries of the corresponding path are lexicographically
smaller than the current string. It is easy to fix these issues: during the traversal, we
can count the number of left turns and subtract that from the final index. To account
for the left subtries, using Observation 4.1, we can count the number of their leaves by
jumping to the first right child with a FindClose: the number of nodes skipped in the
jump is equal to the number of leaves in the left subtries of the node.

Time complexity. The running time of Lookup can be analyzed with a similar
argument to that of the Lookup of Section 3. During the scan, there cannot be more
skips than the string length; besides, there is no binary search. Hence, the number
of operations is O(min(p, h)), whereas the number of random memory accesses is
bounded by O(h).

Implementation notes. To support the Select on Lhigh, we use a variant of the darray
[Okanohara and Sadakane 2007]. Since the 1s in the sequence are at most 64 bits
apart, we can bound the size of the blocks so that we do not need the overflow vector
(called Sl in Okanohara and Sadakane [2007]).

5. BALANCED PARENTHESES: THE RANGE MIN TREE

In this section, we describe our variant of the data structure to support FindClose and
FindOpen. As it is not restricted to tries, we believe that it is of independent interest.

We begin by discussing the range min-max tree [Sadakane and Navarro 2010], which
is a succinct data structure to support operations on balanced parentheses in O(log n)
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time. It was shown in Arroyuelo et al. [2010] that it is very efficient in practice. Specif-
ically, it is a data structure on {−1, 0,+1} sequences that supports the forward search
FwdSearch(i, x): given a position i and a target value x, return the least position j > i
such that the cumulative sum of the sequence at position j is equal to x.

The application to balanced parentheses is straightforward. If the sequence takes
value +1 on open parentheses on −1 on close parentheses, the cumulative sum of the
sequence at position i is called the excess, and it represents the difference between the
number of open and close parentheses up to the position i.

Then, FindClose(i) = FwdSearch(i, Excess(i)) − 1. In other words, it is the left-most
position j following i such that between i and j there is the same number of open and
close parentheses.

Backward search is defined symmetrically, returning the right-most position preced-
ing i, which has the desired cumulative sum; it can be used likewise to implement
FindOpen.

The data structure is defined as follows. The sequence is divided into blocks of the
same size; for each block, i are stored the minimum mi and the maximum Mi of the
cumulative sum of the sequence (for balanced parentheses, the excess) within the block.
A tree is formed over the blocks, which become the leaves, and each node stores the
minimum and the maximum cumulative sum among the leaves of its subtree.

To perform the forward search, we define the target value y as the cumulative sum of
the sequence at i, plus x; the result of the forward search is of the left-most occurrence
of the target value y following i in the sequence of the cumulative sums. To find its
position, we traverse the tree to find the first block k following i where the value x plus
the cumulative sum of the sequence at i is between mk and Mk. Since the sequence has
values in {−1, 0,+1}, the block k contains all intermediate values between mk and Mk,
and so it must contain y. A linear search is then performed within the block.

We fit the preceding data structure to support only FindOpen and FindClose,
thus reducing both the space requirements and the running times. We list our two
modifications.

Halving the tree space occupancy. We discard the maxima and store only the minima,
and call the resulting tree range min tree. During the block search, we only check that
the target value is greater than the block minimum. The following lemma guarantees
that the forward search is correct. A symmetric argument holds for the backward
search.

LEMMA 5.1. Let j = FwdSearch(i, x) for x ≤ 0. Then, the range min tree block search
finds the block that contains j.

PROOF. Since x ≤ 0 and the sequence has values in {−1, 0,+1}, the values of the
cumulative sums following i and preceding j must all be greater than the cumulative
sum at j. Hence, the left-most block k that has minimum smaller than y must also
contain y.

Discarding the node maxima effectively halves the space occupancy of the tree, com-
pared to the range min-max tree. Although we expected that the reduction in space
would also be beneficial for cache locality, the experiments did not show any measurable
improvement in query times.

Broadword in-block search. The in-block forward and backward search performance
is crucial, as it is the inner loop of the search. In practical implementations [Arroyuelo
et al. 2010; SDSL 2010], it is usually performed byte by byte with a lookup table
that contains the solution for each possible combination of byte and excess (hence,
256 ∗ 8 = 2,048 bytes). This algorithm, which we will call Lookup/Loop in the following,
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involves many branches and accesses to a fairly big lookup tables for each byte. Suppose,
instead, that we know which byte contains the closing parenthesis; we can then use
the lookup table only on that byte.

To find that byte, we can use the same trick as in the range min tree: the first byte
with min-excess smaller than the target excess must contain the closing parenthesis.
This byte can be found by using a precomputed lookup table with the min excess of
every possible byte (hence, 256 bytes) and checking all bytes in the word with a loop
while updating the current excess at each loop iteration by using a second lookup table.
We call this algorithm RangeMin/Loop.

The preceding algorithm still involves some hard-to-predict branches inside the loop.
To get rid of them, we use a hybrid lookup table/broadword approach, which we call
RangeMin/Broadword.

We divide the block into machine words. For each word w, we compute the word
m8 where the i-th byte contains the min excess of the i-th byte in w with inverted
sign, so that it is nonnegative, by using the same precomputed lookup table used in
RangeMin/Loop. At the same time, we compute the byte counts c8 of w, where the i-th
byte contains the number of 1s of the i-th byte of w, using a broadword algorithm
[Knuth 2009].

Using the equality Excess(i) = 2 · Rank((i) − i, we can easily compute the excess for
each byte of w: if ew is the excess at the starting position of w, the word e8 whose i-th
byte contains the excess of the i-th byte of w can be obtained through the following
formula:3

e8 = (ew + ((2 ∗ c8 − 0x...08080808) << 8)) ∗ 0x...01010101.

Now we have all we need: the closing parenthesis is in the byte where the excess
function crosses the target excess—in other words, in the byte whose excess added to the
min excess is smaller than the target. Hence, we are looking for the first byte position
in which e8 is smaller than m8 (recall that the bytes in m8 are negated). This can be done
using the ≤8 operation described in Knuth [2009] to compute a mask l8 = e8 ≤8 m8,
where the i-th byte is 1 if and only if the i-th byte of e8 is smaller than the i-th byte of
m8. If the l8 is zero, the word does not contain the closing parenthesis; otherwise, an
LSB operation quickly returns the index of the byte containing the solution. The same
algorithm can be applied symmetrically for the FindOpen.

Overall, for 64-bit words, we perform eight lookups from a very small table, a few tens
of arithmetic operations, and one single branch (to check whether the word contains
the solution or not). In the following section, we show that RangeMin/Broadword is
significantly faster than Lookup/Loop.

5.1. Range Min Tree Implementations

To evaluate the performance of different BP implementations, we generate a set of
random binary trees of several sizes and measure the average FindClose time while
performing random root-to-leaf traversals, mimicking the typical operations performed
while traversing tries. Both the random trees and the random path directions are equal
across benchmarks of different implementations. Each result is averaged over 20 runs
on different random trees, and the lengths of the random paths sum up to 10 millions
per run. In our range min tree, we use a block size of 512 bits.

3A subtlety is needed here to prove that the search is correct: the excess can be negative, and hence the carry
in the subtraction corrupts the bytes after the first byte that contains the zero. However, this means that
the word contains the solution, and the closing parenthesis is in the byte that precedes the one where the
sampled excess becomes negative.
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Fig. 4. Average FindClose time in nanoseconds for increasing sequence length.

Table I. Average Space Redundancy and FindClose Time in Nanoseconds for Different Implementations

Average FindClose time (ns)
log n Redundancy 12 14 16 18 20 22 24 26 28 30
SDSL [SDSL 2010] 42% 261 341 460 562 624 690 733 785 846 893
ACNS [Arroyuelo et al. 2010] 15% 161 212 277 335 371 416 437 477 529 576
Lookup/Loop 32% 152 186 216 250 272 301 319 345 377 407
RangeMin/Loop 32% 145 178 201 224 236 256 267 290 323 353
RangeMin/Broadword 32% 128 150 171 190 201 218 230 248 276 309

Note: Each implementation was tested on sequences of different lengths, with log n being the logarithm of
the sequence length.

We benchmarked our implementations of Lookup/Loop, RangeMin/Loop, and
RangeMin/Broadword, the implementation of Arroyuelo et al. [2010], which we re-
fer to as ACNS, and the implementation of SDSL [2010], which we refer to as SDSL.
We could not compile ACNS and SDSL under Windows, so these experiments were run
on an Intel Core i5 1.6Ghz running Mac OS X Lion, compiled with the stock compiler
GCC 4.2.1. The results are shown in Figure 4 and Table I.

On the longest sequences, RangeMin/Loop nearly 20% faster than Lookup/Loop,
whereas RangeMin/Broadword is nearly 15% faster than RangeMin/Loop. Overall,
RangeMin/Broadword approximately 30% faster than RangeMin/Loop. We also tested
our implementations with newer versions of GCC and MSVC, and found that the per-
formance difference between RangeMin/Loop and RangeMin/Broadword vanishes, still
being 20% to 30% faster than Lookup/Loop, due to better optimizations. This suggests
that the choice between RangeMin/Loop and RangeMin/Broadword should depend on
the particular compiler/architecture combination, with RangeMin/Broadword being a
safe default.

When compared with other implementations, our implementation with RangeMin/
Broadword is both faster and smaller than SDSL, and faster than ACNS, while occu-
pying slightly more space. It should be noted, however, that the difference in space is
entirely caused by the data structure used to support Rank (and thus Excess): whereas
ACNS uses an implementation with an 8% overhead, we use the broadword data struc-
ture of Vigna [2008], which has a 25% overhead. If we account for this, the space used
by the two implementations for supporting BP operations is roughly the same.
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Table II. Average Height

enwiki-titles aol-queries uk-2002 webbase-2001 synthetic

Compacted trie avg. height 9.8 11.0 16.5 18.1 504.4
Lex. avg. height 8.7 9.9 14.0 15.2 503.5
Centroid avg. height 5.2 5.2 5.9 6.2 2.8
Hollow avg. height 49.7 50.8 55.3 67.3 1,005.3
Centroid hollow avg. height 7.9 8.0 8.4 9.2 2.8

Note: For tries, the average height of the leaves is considered, whereas for path-decomposed tries, all nodes
are considered (see the comments after Observation 3.2).

6. EXPERIMENTAL ANALYSIS

In this section, we discuss a series of experiments that we performed on both real-world
and synthetic data. We performed several tests both to collect statistics that show how
our path decompositions give an algorithmic advantage over standard tries and to
benchmark the implementations comparing them with other practical data structures.

Setting. The experiments were run on a 64-bit 2.53GHz Core i7 processor with 8MB
L3 cache and 24GB RAM, running Windows Server 2008 R2. All of the C++ code was
compiled with MSVC 10, whereas for Java we used the Sun JVM 6.

Datasets. The tests were run on the following datasets:

—enwiki-titles (163MiB, 8.5M strings): All page titles from English Wikipedia.
—aol-queries (224MiB, 10.2M strings): Queries in the AOL 2006 query log [AOL

2006].
—uk-2002 (1.3GiB, 18.5M strings): URLs of a 2002 crawl of the .uk domain [Boldi et al.

2004].
—webbase-2001 (6.6GiB, 114.3M strings): URLs in the Stanford WebBase from LAW

[2011].
—synthetic (1.4GiB, 2.5M strings): Set of strings dic jbtσ1 . . . σk, where i and j range in

[0, 500), t ranges in [0, 10), σi are all distinct (but equal for each string), and k = 100.
The resulting tries are very unbalanced, while at the same time, the strings are
extremely compressible. Furthermore, the constant suffix σ1 . . . σk stresses the linear
search in data structures based on front coding such as HTFC, and the redundancy
is not exploited by front coding and noncompressed tries.

Average height. Table II compares the average height of plain tries with their path
decomposition trees. In all of the real-world datasets, the centroid path decomposi-
tion cause nearly equal to a two to three times reduction in height compared to the
standard compacted trie. The gap is even more dramatic in hollow tries, where the
binarization of the strings causes a blow up in height close to log |�|, whereas the cen-
troid path-decomposed tree height is very small, actually much smaller than log |S|. It
is interesting to note that even if the lexicographic path decomposition is unbalanced,
it still improves on the trie, due to the higher fan-out of the internal nodes.

The synthetic dataset is a pathological case for tries, but the centroid path-
decomposition still maintains an extremely low average height.

String dictionary data structures. We compared the performance of our implementa-
tions of path-decomposed tries to other data structures. Centroid and Centroid compr.
implement the centroid path-decomposed trie described in Section 3, in the versions
without and with labels compression. Likewise, Lex. and Lex. compr. implement the
lexicographic version.

Re-Pair and HTFC are the re-pair and Hu-Tucker compressed front coding, respec-
tively, from Brisaboa et al. [2011]. For HTFC, we chose bucket size 8 as the best
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space/time trade-off. Comparison with front coding is of particular interest, as it is one
of the data structures generally preferred by the practitioners.

TX [TX 2010] is a popular open-source straightforward implementation of a (non-
compacted) trie that uses LOUDS [Jacobson 1989] to represent the tree. We made some
small changes to avoid keeping the whole string set in memory during construction.

To measure the running times, we chose 1 million random (and randomly shuffled)
strings from each dataset for the Lookup and 1 million random indices for the Access.
Each test was averaged on 10 runs. The construction time was averaged on 3 runs.

Re-Pair, HTFC, and TX do not support files bigger than 2GiB, so we could not run
the tests on webbase-2001. Furthermore, Re-Pair did not complete the construction on
synthetic in 6 hours, so we had to kill the process.

String dictionaries results. The results of the tests can be seen in Table III. On all
datasets, our compressed tries obtain the smallest space, except on uk-2002 where they
come a close second. The centroid versions have also the fastest Lookup times, whereas
the Access time is better for Re-Pair and occasionally HTFC, whose time is although
within 20% of that of the centroid trie. TX is consistently the largest and slowest on all
datasets.

Maybe surprisingly, the lexicographic trie is not much slower than the centroid trie
for both Lookup and Access on real-world datasets. However, on the synthetic dataset,
the unbalanced tries are more than 20 times slower than the balanced ones. HTFC
exhibits a less dramatic slowdown but still in the order of 5x on lookup compared to
the centroid trie. Although this behavior does not occur on our real-world datasets,
it shows that no assumptions can be made for unbalanced tries. For example, in an
adversarial environment, an attacker could exploit this weakness to perform a denial
of service attack.

We remark that the labels compression adds an almost negligible overhead in both
Lookup and Access, due to the extremely simple dictionary scheme, while obtaining a
very good compression. Hence, unless the construction time is a concern (in which case
other dictionary selection strategies can also be explored), it is always convenient to
compress the labels.

Monotone hash data structures. For monotone hashes, we compared our data struc-
tures with the implementations in Belazzougui et al. [2011]. Centroid hollow imple-
ments the centroid path-decomposed hollow trie described in Section 4. Hollow is a
reimplementation of the hollow trie of Belazzougui et al. [2011], using a range min tree
in place of a pioneer-based representation and the encoding described in Section 2.2.
Hollow (Sux) and PaCo (Sux) are two implementations from Belazzougui et al. [2011];
the first is the hollow trie, the second a hybrid scheme: a partially compacted trie is
used to partition the keys into buckets, then each bucket is hashed with an MWHC
function. Among the structures in Belazzougui et al. [2011], PaCo gives the best trade-
off between space and lookup time. The implementations are freely available as part
of the Sux project [SUX4J 2011].4

To measure construction time and lookup time, we adopted the same strategy as for
string dictionaries. For Sux, as suggested in Belazzougui et al. [2011], we performed
three runs of lookups before measuring the lookup time to let the JIT warm up and
optimize the generated code.

4To be fair, we need to say that Sux is implemented in Java, whereas our structures are implemented in
C++. However, the recent developments of the Java Virtual Machine have made the abstraction penalty gap
smaller and smaller. Low-level optimized Java (as the one in Sux) can be on par of C++ for some tasks, and
no slower than 50% with respect to C++ for most other tasks. We remark that the hollow trie construction is
actually faster in the Sux version than in ours, although the algorithm is very similar.
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Monotone hash results. Table III shows the results for monotone hashes. On all real-
world datasets, the centroid hollow trie is nearly equal to 2 to 3 times faster than
our implementation of the hollow trie and nearly equal to 5 times faster than the Sux
implementation. The centroid hollow trie is competitive with PaCo on all datasets while
taking less space and with a substantially simpler construction. The synthetic dataset
in particular triggers the pathological behavior on all of the unbalanced structures,
with Hollow, Hollow (Sux) and PaCo being respectively 13, 41, and 5 times slower than
Centroid hollow. Such a large performance gap suggests the same conclusion reached
for string dictionaries: if predictable performance is needed, unbalanced structures
should be avoided.

7. CONCLUSION AND FUTURE WORK

We have presented new succinct representations for tries that guarantee low average
height and enable the compression of the labels. Our experimental analysis has shown
that they obtain the best space occupancy when compared to the state of the art while
maintaining competitive access times. Moreover, they give the most consistent behavior
among different (possibly synthetic) datasets. We have not considered alternatives for
the dictionary selection algorithm in labels compression; any improvement in that
direction would be beneficial to the space occupancy of our tries.

We considered other kinds of path decompositions (longest path, ladder, etc.) as
candidates for improvement; from preliminary experiments, such path decompositions
did not seem to provide promising alternatives on our time/space/functionality trade-
offs while retaining simplicity in the implementation, giving rise to tall decomposition
trees or not preserving the lexicographic order. An alternative strategy, the max-score
path decomposition, was recently shown to enable fast top-k completion queries for
scored string sets [Hsu and Ottaviano 2013].

In principle, it is possible to enforce the lexicographic order on the centroid path
decomposition (as presented theoretically in Ferragina et al. [2008]), but this does not
seem to be of practical value. It is an interesting problem to find a path decomposition
that combines the simplicity and performance of both lexicographic and centroid path
decompositions.
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