
The Wavelet Trie: Maintaining an
Indexed Sequence of Strings in Compressed Space

Roberto Grossi and Giuseppe Ottaviano
Università di Pisa

Abstract

We study the problem of maintaining sequences of strings under insertion/deletion and indexed queries in compressed space.
We introduce a new data structure, the Wavelet Trie, that supports efficient operations in space close to the information-theoretic lower bound.

Rank/Select Sequences

Let S = 〈s0, . . . , sn−1〉 sequence of symbols from alphabet Sset.
I Access(i): access the i-th symbol si
I Rank(s, pos): count the number of occurrences of s before position pos
I Select(s, idx): find the position of the idx-th occurrence of s
Can use Rank to count the number of occurrences of a symbol in an
interval of the sequence, Select to iterate all the occurrences of a symbol.
Example: S = a

0
b
1
r
2
a
3
c
4
a
5
d
6
a
7
b
8
r
9

a
10
, Sset = {a, b, c, d, r}.

I Access(0) = a
I Rank(a, 3) = 1
I Rank(a, 4) = 2
I Select(a, 2) = 5

“Easy” for the binary case, Sset = {0, 1}. Sequences from a binary
alphabet are called bitvectors.

Dynamic sequences

A data structure for storing sequences is dynamic if it supports the following
operations:

I Insert(s, pos): insert the symbol s immediately before spos
I Delete(pos): delete the symbol at position pos
We define Append as a special case of Insert:

I Append(s): append the symbol s at the end of the sequence
We call a data structure that only supports Append append-only.
Example scenarios: logging, time series, column-oriented databases, . . .

Wavelet Trees

Wavelet Trees reduce queries on alphabet Sset to queries on bitvectors.
Example for Sset = {a, b, c, d, r}, S = abracadabra:

abracadabra
00101010010

abaaaba
0100010

a

{a}

b

{b}

{a, b}

rcdr
1011

c

{c}

rdr
101

d

{d}

r

{r}

{d, r}

{c, d, r}

I Balanced tree built on Sset
I Each node splits the alphabet into

two subsets
I At each node, sequence split into

two subsequences
I At each node, 0s in correspondence

with left subsequence, 1s with
right subsequence

I Support Access and Rank by
performing Rank operations
top-down on bitvectors, Select by
bottom-up Select

By using dynamic bitvectors on the nodes, Insert and Delete can be
supported, but the alphabet Sset must be set a priori.
This limitation prevents the use of dynamic Wavelet Trees for large
alphabets and database applications.

The Wavelet Trie

We consider the problem of sequences of binary strings, i.e. Sset ⊂ {0, 1}∗.
No loss of generality: non-binary strings, integers, . . . can be binarized.
Example: S = 〈0001

0
, 0011

1
, 0100

2
, 00100

3
, 0100

4
, 00100

5
, 0100

6
〉.

I Rank(0100, 2) = 0
I Rank(0100, 3) = 1
I Select(0100, 2) = 6
We introduce the Wavelet Trie on S :

α : 0
β : 0010101

α : ε
β : 0111

α : 1 α : ε
β : 100

α : ε α : 00

α : 00

I Tree structure is the Patricia Trie
on Sset, each node corresponds to a
subsequence with a common prefix

I α is the longest common prefix of
the subsequence

I Each subsequence is partitioned
based on the first bit after α

I Bitvector β discriminates between
left and right subsequence

I Same operations as Wavelet Tree

New prefix operations

The Wavelet Trie enables two new operations:
I RankPrefix(p, pos): count the strings prefixed by p before position

pos
I SelectPrefix(p, idx): find the position of idx-th string prefixed by p
Example application: S is a sequence of URLs, find the number of URLs
from a given hostname in a given range, or enumerate them.

String set updating

The Patricia trie structure enables updates to the alphabet Sset. When an
unseen string is inserted, an existing node is split. The new node is given a
constant bitvector.
For example, Insert(. . . γ1λ, pos) performs the following operations:

α : ...
β : 10110...

α : γ0δ
β : 0111...

α : ...
β : 10110...

α : γ
β : 0000 . . .

α : δ
β : 0111...

α : λ

α : ...
β : 101010...

α : γ
β : 01000...

α : δ
β : 0111...

α : λ

Delete is symmetric. To support efficient bitvector initialization with a
constant sequence, we introduce new dynamic compressed bitvector data
structures.
This yields the first dynamic compressed sequence data structure that
efficiently supports a dynamic alphabet.

Time and space

Query Append Insert Delete Space (in bits)
Static O(|s|+ hs) – – – LB+o(h̃n)
Append-only O(|s|+ hs) O(|s|+ hs) – – LB+PT+o(h̃n)
Fully-dynamic O(|s|+ hs log n) O(|s|+ hs log n) O(|s|+ hs log n) O(|s|+ hs log n)† LB+PT+O(nH0)

I Sequence of n strings 〈s0, . . . , sn−1〉, hs: number of nodes traversed in the trie for string s, h̃: average height
I LB: information theoretic lower bound LT+nH0, where LT is the lower bound for the set of strings Sset
I PT: space for dynamic Patricia trie on the set of strings Sset

Symposium on Principles of Database Systems (PODS) 2012

