The Wavelet Trie: Maintaining an Indexed Sequence of Strings in Compressed Space

Roberto Grossi and Giuseppe Ottaviano
Università di Pisa

Abstract

We study the problem of maintaining sequences of strings under insertion/deletion and indexed queries in compressed space.
We introduce a new data structure, the Wavelet Trie, that supports efficient operations in space close to the information-theoretic lower bound.

Rank/Select Sequences

Let $S=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle$ sequence of symbols from alphabet $S_{\text {set }}$.

- $\operatorname{Access}(i)$: access the \boldsymbol{i}-th symbol s_{i}
- Rank(s, pos): count the number of occurrences of s before position pos
- $\operatorname{Select}(s, \mathbf{i d x})$: find the position of the idx-th occurrence of s

Can use Rank to count the number of occurrences of a symbol in an interval of the sequence, Select to iterate all the occurrences of a symbol.
Example: $\boldsymbol{S}=\underset{012}{\text { abracadabra }} \underset{56}{ }, \boldsymbol{S}_{\text {set }}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{r}\}$.

- $\operatorname{Access}(0)=\mathrm{a}$
- $\operatorname{Rank}(a, 3)=1$
- $\operatorname{Rank}(a, 4)=2$
$-\operatorname{Select}(\mathrm{a}, 2)=5$
"Easy" for the binary case, $S_{\text {set }}=\{0,1\}$. Sequences from a binary alphabet are called bitvectors.

Dynamic sequences

A data structure for storing sequences is dynamic if it supports the following operations:

- Insert(s, pos): insert the symbol s immediately before $s_{\text {pos }}$
- Delete(pos): delete the symbol at position pos

We define Append as a special case of Insert:

- Append (s) : append the symbol s at the end of the sequence We call a data structure that only supports Append append-only. Example scenarios: logging, time series, column-oriented databases,

Wavelet Trees

Wavelet Trees reduce queries on alphabet $S_{\text {set }}$ to queries on bitvectors. Example for $S_{\text {set }}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{r}\}, \boldsymbol{S}=$ abracadabra:

- Balanced tree built on $S_{\text {set }}$
- Each node splits the alphabet into two subsets
- At each node, sequence split into two subsequences
- At each node, Os in correspondence with left subsequence, 1s with right subsequence
- Support Access and Rank by performing Rank operations top-down on bitvectors, Select by bottom-up Select

By using dynamic bitvectors on the nodes, Insert and Delete can be supported, but the alphabet $\boldsymbol{S}_{\text {set }}$ must be set a priori.
This limitation prevents the use of dynamic Wavelet Trees for large alphabets and database applications.

The Wavelet Trie

We consider the problem of sequences of binary strings, i.e. $S_{\text {set }} \subset\{0,1\}^{*}$. No loss of generality: non-binary strings, integers, ... can be binarized. Example: $S=\left\langle 0001,0011,0100,00 \frac{1}{3} 00,0100,00 \frac{1}{5} 00,0100\right\rangle$.
$-\operatorname{Rank}(0100,2)=0$

- $\operatorname{Rank}(0100,3)=1$
- $\operatorname{Select}(0100,2)=6$

We introduce the Wavelet Trie on S :

- Tree structure is the Patricia Trie on $S_{\text {set }}$, each node corresponds to a subsequence with a common prefix
- $\boldsymbol{\alpha}$ is the longest common prefix of the subsequence
- Each subsequence is partitioned based on the first bit after $\boldsymbol{\alpha}$
- Bitvector β discriminates between left and right subsequence
- Same operations as Wavelet Tree

New prefix operations

The Wavelet Trie enables two new operations:

- RankPrefix $(p$, pos $)$: count the strings prefixed by p before position pos
- SelectPrefix $(p, i d x)$: find the position of idx-th string prefixed by p Example application: \boldsymbol{S} is a sequence of URLs, find the number of URLs from a given hostname in a given range, or enumerate them.

String set updating

The Patricia trie structure enables updates to the alphabet $\boldsymbol{S}_{\text {set }}$. When an unseen string is inserted, an existing node is split. The new node is given a constant bitvector.
For example, Insert($\ldots \gamma 1 \boldsymbol{\lambda}$, pos) performs the following operations:

Delete is symmetric. To support efficient bitvector initialization with a constant sequence, we introduce new dynamic compressed bitvector data structures.
This yields the first dynamic compressed sequence data structure that efficiently supports a dynamic alphabet.

Time and space

	Query	Append	Insert	Delete	Space (in bits)
Static	$O\left(\|s\|+h_{s}\right)$	-	-	-	$\mathrm{LB}+\boldsymbol{o}(\tilde{h} n)$
Append-only	$O\left(\|s\|+h_{s}\right)$	$O\left(\|s\|+h_{s}\right)$	-	-	$\mathrm{LB}+\mathrm{PT}+\boldsymbol{o}(\tilde{h} n)$
Fully-dynamic	$O\left(\|s\|+h_{s} \log n\right)$	$O\left(\|s\|+h_{s} \log n\right)$	$O\left(\|s\|+h_{s} \log n\right)$	$O\left(\|s\|+h_{s} \log n\right)^{\dagger} \mathrm{LB}+\mathrm{PT}+\boldsymbol{O}\left(n H_{0}\right)$	

\checkmark Sequence of n strings $\left\langle s_{0}, \ldots, s_{n-1}\right\rangle, h_{s}$: number of nodes traversed in the trie for string s, \tilde{h} : average height

- LB: information theoretic lower bound $\mathrm{LT}+\boldsymbol{n} \boldsymbol{H}_{0}$, where LT is the lower bound for the set of strings $\boldsymbol{S}_{\text {set }}$
- PT: space for dynamic Patricia trie on the set of strings $S_{\text {set }}$

