The Wavelet Trie: Maintaining an
Indexed Sequence of Strings in Compressed Space

Roberto Grossi and Giuseppe Ottaviano

Universita di Pisa

We study the problem of maintaining sequences of strings under insertion/deletion and indexed queries in compressed space.
We introduce a new data structure, the Wavelet Trie, that supports efficient operations in space close to the information-theoretic lower bound.

We consider the problem of sequences of binary strings, i.e. Seee C {0, 1}*.

LetS:<S(),...

» Access(%): access the i-th symbol s;

s Sn_1) sequence of symbols from alphabet S,;.
No loss of generality: non-binary strings, integers, ... can be binarized.

Example: § = (0001, 0011,0100, 00100, 0100, 00100, 0100).
» Rank(0100,2) = 0
» Rank(0100,3) =1
» Select(0100,2) = 6

We introduce the Wavelet Trie on S"

» Rank(s, pos): count the number of occurrences of s before position pos
» Select(s,idx): find the position of the idx-th occurrence of s

Can use Rank to count the number of occurrences of a symbol in an
interval of the sequence, Select to iterate all the occurrences of a symbol.

Example: S = abracadabra, S, = {a,b,c,d,r}.

012345678910’
> Access(0) = a 0 » Tree structure is the Patricia Trie
» Rank(a,3) =1 8 : 0010101 on S, €ach node corresponds to a
» Rank(a,4) = 2 7 subsequence with a common prefix
» Select(a,2) =5 e o : 00 » « is the longest common prefix of
p: o1l the subsequence

“Easy” for the binary case, Sit = {0, 1}. Sequences from a binary
alphabet are called bitvectors.

Qe based on the first bit after
B : 100 . L.
Dynamic sequences "t and vight subseence
left and right subsequence
Qe « : 00 :
A data structure for storing sequences is dynamic if it supports the following > Same operations as Wavelet Tree

4- i » Each subsequence is partitioned
a1

operations:

» Insert(s, pos): insert the symbol s immediately before s;0s

> Delete(pos): delete the symbol at position pos The Wavelet Trie enables two new operations:

We define Append as a special case of Insert: » RankPrefix(p, pos): count the strings prefixed by p before position

pOS
» SelectPrefix(p, idx): find the position of idx-th string prefixed by p

» Append(s): append the symbol s at the end of the sequence

We call a data structure that only supports Append append-only.

Example scenarios: logging, time series, column-oriented databases, . .. Example application: S is a sequence of URLs, find the number of URLs

from a given hostname in a given range, or enumerate them.

Wavelet Trees reduce queries on alphabet S, to queries on bitvectors.

Example for S¢t = {a,b,c,d,r}, S = abracadabra: The Patricia trie structure enables updates to the alphabet S..;.. When an

unseen string is inserted, an existing node is split. The new node is given a
constant bitvector.

» Balanced tree built on S..
» Each node splits the alphabet into

abracadabra
00101010010

For example, Insert(...~y1)\, pos) performs the following operations:

{aay \ c,d,r} two subsets
» At each node, sequence split into a: ... a: ... a: ...
~baaaba cdr two subsequences B :10110. .. B :10110. .. B :101010. ..
0100010 1011 |
» At each node, Os in correspondence ; ; /
with left subsequence, 1s with a:~00 oy oy
: B :0111. .. B : 0000... B : 01000.
right subsequence
101 » Support Access and Rank by ; ;
erforming Rank operations a:o ia : A\ a:o a: A
1d} ir} P & . P B:0111... B:0111...
top-down on bitvectors, Select by

bottom-up Select

Delete is symmetric. To support efficient bitvector initialization with a
constant sequence, we introduce new dynamic compressed bitvector data
structures.

By using dynamic bitvectors on the nodes, Insert and Delete can be
supported, but the alphabet S..; must be set a priori.

This yields the first dynamic compressed sequence data structure that
efficiently supports a dynamic alphabet.

This limitation prevents the use of dynamic Wavelet Trees for large
alphabets and database applications.

Query Append Insert Delete Space (in bits)
Static O(|s| + hs) -~ - - LB —I—O(Bn)
Append-only O(|s| + hs) O(|s| + hs) - LB +PT +o(hn)

Fully-dynamic O(|s| 4+ hslogn) O(|s| + hslogn) O(|s| + hslogn) O(|s| + hs log n)! LB+ PT +0O(nH,)

» Sequence of n strings (Sgy .. .5 Sn_1), hs: number of nodes traversed in the trie for string s, h: average height
» LB: information theoretic lower bound LT +nHj, where LT is the lower bound for the set of strings Sqt
» PT: space for dynamic Patricia trie on the set of strings St

Symposium on Principles of Database Systems (PODS) 2012

