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ABSTRACT
Entity linking deals with identifying entities from a knowledge
base in a given piece of text and has become a fundamental
building block for web search engines, enabling numerous
downstream improvements from better document ranking to
enhanced search results pages. A key problem in the context
of web search queries is that this process needs to run under
severe time constraints as it has to be performed before any
actual retrieval takes place, typically within milliseconds.

In this paper we propose a probabilistic model that lever-
ages user-generated information on the web to link queries
to entities in a knowledge base. There are three key ingredi-
ents that make the algorithm fast and space-efficient. First,
the linking process ignores any dependencies between the
different entity candidates, which allows for a O(k2) imple-
mentation in the number of query terms. Second, we leverage
hashing and compression techniques to reduce the memory
footprint. Finally, to equip the algorithm with contextual
knowledge without sacrificing speed, we factor the distance
between distributional semantics of the query words and
entities into the model.

We show that our solution significantly outperforms several
state-of-the-art baselines by more than 14% while being able
to process queries in sub-millisecond times—at least two
orders of magnitude faster than existing systems.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing

General Terms
Experimentation, Measurement
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1. INTRODUCTION
Commercial web search engines are presenting increasingly

advanced and rich user experiences that include displays of
answers, facts, entities, and other structured results. Such web
search user experiences are centered around understanding
and displaying information pertinent to entities present in or
meant by the query, since users increasingly expect to find the
actual answers and/or entities that satisfy their information
need, rather than merely the documents that mention them.
One critical step in this process is understanding the entities
that are mentioned in queries and linking them to a reference
Knowledge Base (KB). Such linking has to be performed on
a very limited time and space budget as it needs to happen
before any actual search process commences.

Linking free text to entities—often referred to as entity
linking—typically comprises three steps: (i) identifying can-
didate mentions, i.e., which part(s) of the text to link, (ii)
identifying candidate entities for each mention, and (iii) dis-
ambiguating the candidate entities based on some notion of
context and coherence [14]. Recent research has made exten-
sive use of open KBs or entity repositories such as Freebase,
IMDB, Wikipedia, as well as private or proprietary ones [5].
Most linking methods from the literature, however, assume
that the input text is relatively clean and grammatically
correct and that it provides sufficient context [7, 11]. Queries,
on the other hand, are short, noisy, and full of shorthand and
other ungrammatical text, and provide very limited context
for the words they contain. Hence, it is not obvious that
automatic entity linking methods that have been shown to
work well on news articles or web pages perform equally well
on this domain. Moreover, the efficiency aspects of linking
systems are not a focal point in the literature. Entity link-
ing for web search queries poses some interesting technical
challenges due to the sheer volume of the data, its dynamic
nature, the creative language usage, and the required tradeoff
between speed and disambiguation quality. Entity linking
for queries has not received considerable attention in the
literature, except for type spotting for named entity recogni-
tion [13], linking queries to semantic web concepts [19], and
providing a full structured representation of the query [34].

In this paper we propose a new probabilistic model and
algorithm for entity linking in web search queries that ex-
tracts a large number of candidate aliases for entities from
click-through information and anchor text. In order to keep
these large amounts of data manageable, we compress all
candidates using state-of-the-art hashing and bit encoding
techniques. Our algorithm is able to swiftly detect the entities
in the query because we drop all the dependence assumptions



from potential candidate entities. In practice, this means that
the model might not able to distinguish between situations
such as “brad pitt seven” and “brad pitt olympics” if they are
not present in our alias set1 However, we are able to impose
contextual knowledge by introducing a new contextual rele-
vance model that uses learned representations of query words
and entities, and it is able to quickly compute a relevance
measure between a string of text and an entity. This way, the
algorithm is able to link entities with just a forward-backward
scanning procedure that can be implemented efficiently using
dynamic programming in O(k2), where k is the number of
query terms.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews some works related to ours. Section 3 intro-
duces the probabilistic model, along with the contextual
model. Section 4 presents experiments and results comparing
our approaches with state of the art baselines in terms of
linking quality and speed. The paper concludes in Section 5.

2. RELATED WORK
Automatically generating links to a knowledge base is one

way of providing semantics to digital items. Entity linking
has become an ubiquitous way to add semantics to different
media types, most notably in text [22, 25] and across different
genres, such as news, archives, or tweets [6, 8, 20]. The com-
prehensiveness, popularity, and free access to Wikipedia has
made it a rich source and the most popular target knowledge
base for entity linking.

Many methods for entity linking are heavily inspired by
those from the field of word sense disambiguation [27]. The
main challenge entity linking systems have to face is ambigu-
ity, i.e., how to distinguish among different entities with the
same label and also a possible lack of specificity, in which
case more generic and possibly less meaningful entities are
identified. These issues are generally addressed by identify-
ing segments, key phrases or weighting terms based on, e.g.,
document-frequency inspired heuristics. For instance, a sim-
ple and frequently taken approach for linking text to concepts
is to perform lexical matching between (parts of the text)
and the titles [9, 21], an approach related to keyword-based
interfaces to databases [36].

Milne and Witten [25] introduced one of the earliest papers
on linking text to Wikipedia, which uses machine learning and
unambiguous candidates for disambiguation. Among those
methods, “commonness” is a popular unsupervised baseline
for either short or long textual fragments [11, 20]. We use it as
a baseline and describe it further in Section 4.3. In this line of
work, Ratinov et al. [33] propose the use of a “local” approach
(e.g., commonness) to generate a disambiguation context and
then apply “global” machine learning for disambiguation. Pilz
and Paaß [30] extended previous bag of word approaches for
disambiguation with Latent Dirichlet Allocation generated
topics, comparing topic distributions of source document with
candidate entities. Recent approaches make extensive use
of topic modeling, for example Houlsby and Ciaramita [16]
perform inference with a variant of LDA in which each topic
corresponds to a Wikipedia article, i.e., an entity. Below
we include the work of Cheng and Roth [7] (which is an
extension of [33]) as a representative baseline of an inference-
based method. This approach tries to embed context and

1Brad Pitt is the name of both a US Celebrity/Actor and a
lesser known Australian boxer.

ensure topical coherence by linking a set of semantically-
related mentions to a set of semantically-related concepts
simultaneously.

The first works geared specifically towards disambiguating
entities in queries focus almost exclusively on Named Entity
Recognition but applied to a domain different than the usual
long text found news and articles [26]. For instance Guo et al.
[13] propose a language model that includes weak supervi-
sion to learn relationships, e.g., lyrics to music. Moving
forward, Pantel et al. [29] predict entity type distributions
in Web search queries via so-called intents (strings that give
contextual clues about the entity type) mined from query
logs. We too make use of query logs for gathering evidence,
although we aim at disambiguation and not type spotting.
Hu et al. [17] propose a similar approach through query in-
tent classification. Sawant and Chakrabarti [34] assume that
entities have already been annotated in text and tackle the
related task of extracting query target types and words that
are type hints. Pound et al. [31, 32] focus on retrieving an
ordered selection of attributes, taken from a static KB, and
ranking syntactic relationships from queries via a collective
assignment problem.

In the case of queries—especially in the context of web
search—one would need to add entity annotations as quickly
as possible in order to be of any use to subsequent processes
such as actual retrieval. Topic modeling approaches which
typically need to perform online parameter estimation are
too time-consuming. Furthermore, they are of little help
when there is limited context such as in the case of queries.
Little work exist on entity linking methods for queries to
date. Meij et al. [19] perform entity linking in the context of
the semantic web and include session history-based features
to provide additional context. Proof of the increasing interest
from industry and academia in query entity linking in the
context of web search, however, is the recent ERD challenge2.
In this paper we use a large (∼2.5K queries) test set from
a commercial web search engine that is easily available for
download.

Other relevant streams of work are related to query log
mining [2], providing a signal orthogonal to that of textual
corpora. For instance, Paşca [28] mined instances of semantic
classes from query logs using information extraction and
Alfonseca et al. [1] mined query logs to find attributes of
entity instances. Once equipped with a reliable entity linking
system, it is possible to provide deeper query analyses of user
patterns and web usage [15].

None of the previous works deals with the problem of
linking entities in the context of web search, i.e, operating in
the shortest amount of time possible with additional storage
constraints, nor they introduce richer semantic contexts as
our approach does.

3. MODELING ENTITY LINKING
For our entity linking model we establish a connection

between entities and their aliases (which are their textual
representations, also known as surface forms) by leveraging
anchor text or user queries leading to a click on the Web page
that represents the entity. In the context of this paper we
focus on using Wikipedia as KB and therefore only consider
anchor text within Wikipedia and clicks from web search re-
sults on Wikipedia results—although it is general enough to

2http://web-ngram.research.microsoft.com/ERD2014/

http://web-ngram.research.microsoft.com/ERD2014/


also accommodate other sources of information. The problem
we address consists of automatically segmenting the query
and simultaneously selecting the right entity for each segment.
Our Fast Entity Linker (FEL) tackles this problem by com-
puting a probabilistic score for each segment-entity pair and
then optimizing the score of the whole query. Note that we do
not employ any supervision and let the model and data oper-
ate in a parameterless fashion; it is however possible to add
an additional layer that makes use of human-labeled training
data in order to enhance the performance of the model. We
leave investigating such an additional step for future work.
In the remainder of this section we detail our specific model,
as well as how we incorporate context through a novel con-
textual relevance model and the efficiency optimizations we
apply, including advanced compression techniques.

3.1 Fast Entity Linker
We begin by introducing our model, which we describe

using the following random variables, assuming as an event
space S × E where S is the set of all sequences and E the
set of all entities known to the system:

s is a sequence of terms t ∈ s
s represents a segmentation (sequence of sequences

of terms) where s ∈ s is drawn from the set S
e represents a set of entities e ∈ e, where each e is

drawn from the set E
as indicates if s is an alias
as,e indicates if s is an alias pointing (linking/clicked)

to e
c indicates which collection acts as a source of

information query log or Wikipedia (cq or cw)
n(s, c) is the count of s in c
n(e, c) is the count of e in c

Let q be the input query, which we represent with the set
Sq of all possible segmentations of its tokens t1 · · · tk. The
algorithm will return the set of entities e, along with their
scores, that maximizes

argmax
e∈E

logP (e|q) =

argmax
e∈E,s∈Sq

∑
e∈e,s∈s

logP (e|s) . (1)

In Eq. 1 we assume independence of the entities given a query
segment. Each individual entity/segment probability is then
estimated as:

P (e|s) =
∑

c∈{cq,cw}

P (c|s)P (e|c, s)

=
∑

c∈{cq,cw}

P (c|s)
∑

as={0,1}

P (as|c, s)P (e|as, c, s)

=
∑

c∈{cq,cw}

P (c|s)
[
P (as = 0|c, s)P (e|as = 0, c, s)

+ P (as = 1|c, s)P (e|as = 1, c, s))

]
. (2)

The maximum likelihood probabilities are the following (note
that in this case P (e|as = 0, c, s) = 0 and therefore the right
hand side of the summation cancels out):

P (c|s) =
n(s, c)∑
c′ n(s, c′)

(3)

P (as = 1|c, s) =

∑
s:as=1 n(s, c)

n(s, c)
(4)

P (e|as = 1, c, s) =

∑
s:as,e=1 n(s, c)∑
s:as=1 n(s, c)

. (5)

Those maximum likelihood probabilities can be smoothed ap-
propriately using an entity prior. Using add-one and Dirichlet
priors smoothing the probabilities results in:

P (e|c) =
n(e, c) + 1

|E|+
∑

e∈E n(e, c)
(6)

P (e|as, c, s) =

∑
s:as,e=1 n(s, c) + µc · p(e|c)
µc +

∑
s:as=1 n(s, c)

. (7)

In this case P (e|c) = P (e|as = 0, c, s), and P (as = 0|c, s) =
1−P (as = 1|c, s). Similarly, we smooth P (c|s) using Laplace
smoothing (add-one smoothing).

Note that some terms might not be covered by any seg-
ment s and therefore not link to any entity. To handle these
segments, we define a special entity not_linked and set
P (not_linked|s) = ` where ` is a global hyperparameter
that can tuned to set the propensity of the algorithm to link
segments.

An alternative to Eq. 1 would be to select the segmentation
that optimizes the score of the top ranked entity:

argmax
e∈E,s∈Sq

max
e∈e,s∈s

P (e|s). (8)

Both Eq. 1 and Eq. 8 are instances of the same general
segmentation problem, defined as follows. Given a sequence
of terms t = t1 · · · tk, denote any segment of the sequence
with

[titi+1 . . . ti+j−1],∀i, j ≥ 0. (9)

Let γ(s) be any scoring function that maps segments to
real numbers, then the maximum score of a segmentation is
defined as follows:

m(t1, t2, . . . , tk) =

max

(
φ (m(t1),m(t2, . . . , tk)) , φ (γ([t1t2]),m(t3 . . . tk))

, . . . , φ (γ([t1 . . . , tk−1]) ,m(tk)), γ([t1 . . . tk])

)
, (10)

wherem(t1) = γ([t1]) and φ(a, b) is an associative aggregation
function, such as φ(a, b) = a + b in the case of Eq. 1 and
φ(a, b) = max(a, b) in the case of Eq. 8. Since the scoring
function s(·) only depends on the given segment and not on
the others, the segmentation with maximum score can be
computed in O(k2) time using dynamic programming.

We instantiate the problem above would be the following
scoring function

γ(s) = highestscore(s, q) = max
e∈E

logP (e|s, q), (11)

that, given a segment s of the query and a context q (the
query itself), returns the highest score among the entities
associated with the alias s; when the segment does not match
any alias, and hence it has no associated entities, it returns
a value that is an identity for the aggregation function φ(·, ·);
it also returns an identity if the segment is empty. In the
basic FEL model the context is ignored, so P (e|s, q) is just



Algorithm 1 Entity-linking algorithm

Require: A user query q, a function highestscore(·), and
an aggregation function φ(·, ·).

1: p← tokenize(q)
2: l← length(p)
3: maxscore[]← new array[l + 1]
4: previous[]← new array[l + 1]
5: for i = 0 to l do
6: for j = 0 to i do
7: score← φ(maxscore[j],highestscore(p[j : i], q))
8: if score > maxscore[i] then
9: maxscore[i]← score

10: previous[i]← j
11: end if
12: end for
13: end for
14: return maxscore[l]

P (e|s). Algorithm 1 details our full algorithm. Note that it
makes O(k2) calls to the highestscore function, which is
acceptable since the number of terms in a query is usually
very small.

3.2 Modeling Context
In our algorithm above, the probability of an entity given

an alias is computed independently of the other aliases that
match the query or the surrounding words. As we pointed
out, this is a design choice to enable a fast linking algorithm.
However, the context of the alias can help to disambiguate the
candidate entities. For example, a user submitting the query
“Hollywood lyrics” is probably interested in the song rather
than the geographical location; if the only matching alias is
Hollywood, the algorithm will not be able to disambiguate
between candidates.

To exploit the contextual information in the remainder of
the query we introduce a contextual relevance model, that
is, we estimate the probability that the entity e is relevant
to the context t, in this case the whole query. This prob-
ability can be incorporated into our model by factoring it
into the highestscore function. To this aim, we need to
compute P (e|s, q) where s is the string segment and q is the

context t1 · · · tk. Then P (e|s, q) = P (e)P (s,q|e)
P (s,q)

and, assuming

independence between q and s and conditional independence

given e, we get P (e|s, q) = P (e)
P (q)P (s)

· P (q|e)P (s|e), which is

equal to P (e|s)P (q|e)
P (q)

. The first factor is estimated as in Eq. 2.

To estimate the second factor efficiently we again assume

conditional independence on e and write it as
∏

i
P (ti|e)
P (q)

. We

are thus interested in estimating P (t|e), i.e. the probability
that the term t is relevant to the entity e.

We estimate P (t|e) using a multiset Re of words t that
are known to be relevant to e; in our experiments, we use
the words in the first section of the Wikipedia article on e.
A simple approach would be to just count the number of

occurrences of t, P (t|e) = |{t∈Re}|
|Re| , which would make the

model a multi-class Naive Bayes classifier. This approach has
two problems, however. First, the number of parameters (that
is, the collection of multisets Re), is essentially as large as
the collection of texts. Second, it does not take into account
the semantic similarity of words, namely that if a word t1
is relevant to an entity e and t2 is close in meaning to t1,

it is likely that t2 is relevant to e as well. We therefore use
continuous representations of words, specifically the word2vec
embeddings [24]. These embeddings map words to vectors
of real numbers so that words that are close in meaning
are mapped to vectors close in cosine distance. The vectors
are computed in a completely unsupervised fashion text by
exploiting the distributional semantics hypothesis. That is,
words that co-occur often with the same words are close in
meaning. We denote as vt ∈ RD the vector that represents
the word t. We use these word vectors to model P (t|e) as a
binary logistic regression classifier, that is, we map each entity
e to a vector ve ∈ RD+1 and define P (t|e) = σ([vt 1] · ve),
where σ(x) = 1

1+e−x . Since we need to compute the product

of the probabilities P (ti|e) in order to score each entity e
with a query, the overall complexity is O(kD) operations.
Below we refer to this method as LR.

Each classifier ve is trained with L2-regularized logistic
regression to distinguish the multiset Re (the positive exam-
ples) from the unigram distribution from the whole collection
(the negative examples). Since this would require training
on a set of examples as large as the dictionary, we use a
method known as negative sampling [23]: we sample ρ words
from the unigram distribution as negative examples, so that
the overall number of examples is bounded by O(|Re|). The
vector ve, then, is computed as the maximum of the function∑
t∈Re

log σ([vt 1] · ve) +
∑
t∈Ne

log σ(−[vt 1] · ve)− λ‖ve‖22, (12)

where Ne is the multiset of ρ|Re| negative samples and λ is
the regularization parameter. In Section 4.2 we detail how
to tune ρ and λ in an unsupervised manner.

Note that the whole model consists of one vector of D
numbers for each word in the dictionary and one vector
of D + 1 numbers for each entity in the knowledge base.
Even using a 32-bit floating point number representation,
the space occupancy would be 4(E(D + 1) + WD), where
E is the number of entities and W the number of words,
regardless of the size of the sets Re. In Section 3.3.2 we
describe a method to reduce this even further.

An alternative approach to model the relevance of e for a
query is to define the entity vector ve as the centroid of the
vectors representing the words in Re, that is

ve =
1

|Re|
∑
t∈Re

vt, (13)

and similarly the query vector vq as the centroid of the
vectors of the words of the query, that is vq = 1

k

∑
i vti , and

defining the relevance as the cosine cos(vq, ve). Aggregating
the vectors of bags of words by taking their centroid is a
widely used approach with continuous word representations,
due to an increased efficiency [24].

The main advantage is higher efficiency when scoring a
query against a set of entities; since the vector vq is computed
only once, scoring an entity requires only O(D) operations, as
opposed to O(kD) for LR. Since the number of query terms
is always small in practice, the difference is almost negligible.
On the other hand, the cosine distance cannot be interpreted
as a probability and it provides no measure of confidence. A
simple way to verify this is to visualize the multisets Re as
clusters in the high-dimensional space: their centroids are
a good indication of the location of the clusters, but they
contain no information about their spread. For example, if
a query vector is equidistant from a very broad cluster and



a very tight cluster, the broad cluster should have higher
confidence, but the centroid method cannot distinguish the
two. In fact, as we will see below, Centroid is outperformed
by LR in both a benchmark task and in the actual entity
linking task.

3.3 Optimizations
In this section we detail the three types of optimizations

we employ, including early stopping and two kinds of com-
pression.

3.3.1 Early Stopping
With the added contextual scoring highestscore(p[i :

j], q) must now return, among all the entities that match

the alias p[i : j], the one that maximizes P (e|s)P (q|e)
P (q)

, so the

probability must be computed for each entity. First, note that
we can remove the denominator P (q) from the computation,
since it does not depend on the entity. Then, the score to
compute becomes P (e|s)P (q|e). The first component is the
basic FEL score, the second is the contextual relevance. The
contextual relevance might take longer to compute than the
FEL score, because it involves retrieving the entity vectors
from the model data structure and computing several vector-
vector products. However, we are only interested in retrieving
the highest-scored entity. We can significantly reduce the
number of score computations by early-stopping the process
in a safe way. We do this by noting that P (q|e) is at most
1; hence, if e∗ is the top-scoring entity and e a candidate
entity, if P (e|s) < P (e∗|s)P (q|e∗) then a fortiori the full
score of e cannot be higher than that of e∗. With this in
mind, we can process the entities sorted by decreasing score
P (e|s) and stop computing the contextual relevance score as
soon as P (e|s) is smaller than the full score of the current
top-scoring entity. This technique reduces the overall runtime
of the algorithm by a factor of 5.

3.3.2 Compressing the Vectors
We now turn to the data structure used to store the word

and entity vectors. The data structure represents a general
mapping from strings to vectors, which we can split in two
parts: a mapping from n strings to numeric identifiers in [0, n),
and the actual vectors, which is convenient to see as a matrix
V ∈ Rn×D, whose rows are the vectors. The mapping can
be easily represented with a minimal perfect hash function,
which computes the identifier of a string in constant time and
guarantees that no collisions can occur between strings of the
key set. Such a function can however return arbitrary values
on other strings; to make the collision probability negligible
a constant-sized signature is associated to each string, so
that it can be checked whether the string being looked up
was present in the key set. This data structure is commonly
referred to as a signed minimal perfect hash function for
which we use the Sux4J implementation.3

To store the matrix V we adopt standard techniques from
vector quantization and signal compression (for reference see
[12]) and quantize the entries of the matrix with an uniform
dead-zone quantizer, that is, an element x is quantized as
sgn(x)b|x|/qc for a given quantization parameter q. We use
the same q for all the elements in the matrix, and choose the
largest value that yields a target error bound; specifically, we
target a relative error in L2 norm of the vectors of 0.1, which

3http://sux.dsi.unimi.it/

Number Size

Alias strings 114M 7.24 bytes/alias
Entity strings 4.6M 25.22 bytes/alias
Entity values (rows 5,6) 9.2M 3.72 bits/value
Alias values (rows 1-4, 7, 8) 912M 5.32 bits/value

Table 2: Size of compressed features and strings.

produced no measurable loss in accuracy of the vectors in
our experiments. The integers obtained from quantization
are then encoded with Golomb codes; since the columns of
the matrix might have different statistics, we use a differ-
ent Golomb modulus for each column. We concatenate the
encodings of each vector into a single bit stream, and store
their starting positions in an Elias-Fano monotone sequence
data structure that allows to retrieve them in constant time.

To further improve the compression of the word vectors
we note that transforming them with any operation that
preserves the mutual cosine distances does not affect their
quality. We can therefore apply the orthogonal Karhunen–
Loève transform [12] to the vectors before compressing them,
without having to apply the inverse transform at decoding
time. The transform improves the compression by about 10%
without affecting the overall accuracy. It is however not pos-
sible to apply the same technique to the entity vectors, since
it would not preserve the scalar products against the word
vectors unless the inverse transform is applied in decoding,
which would be prohibitively slow.

Overall, the compressed vector representations take 3.44
bits per entry for the word vectors, 3.42 for the Centroid
vectors, and 3.83 for the LR, which is almost 10 times smaller
than using 32-bit floating points numbers.

3.3.3 Compressing the Features
We also generate a compressed data structure to hold the

information about aliases and entities. The numerical features
required by the model are summarized in Table 1. The data
structure is a hash table represented as follows. Each key of
the table corresponds to a different alias and the values are
split into two parts: entity-independent features (rows 1-4)
stored as a monotone sequence of integers, and a sequence of
N entity-dependent features (rows 5-8), one per candidate
entity. For compactness, entities in the table are represented
with a numerical id although we hold a separate identifier
to string map stored as a front-coded list. We store integer
values using Elias-Fano monotone sequences [10]. However,
and given that the number of entities is several orders of
magnitude smaller than the number of aliases, we store the
alias-independent features (rows 5,6) in its own Elias-Fano
list, indexed by entity id. The alias strings are perfectly-
hashed in a similar fashion to the word vectors and we hold
an additional (compressed) list of cut pointers indicating the
boundaries of the per alias information in the compressed
list of values. The size of the different components of the
hash table is detailed in Table 2.

Note that once the scoring function is fixed it would be
sufficient to store just the mapping from aliases to (entity,
score) pairs; however, this would require to recompute the
data structure if the score function needs to be modified. In
this case we favor flexibility over space, since the savings
would be very small and the time to compute the scores is
negligible.

http://sux.dsi.unimi.it/


Features included for every alias

1 Number of times the alias was submitted as a query n(s, cq)
2 Number of times the alias resulted in a click

∑
s:as=1 n(s, cq)

3 Number of times the alias was found in Wikipedia’s text n(s, cw)
4 Number of times the alias was present inside anchor text

∑
s:as=1 n(s, cw)

Features included for every entity

5 Number of times the entity’s Wikipedia page was clicked after a query was submitted n(e, cq)
6 Number of times the entity’s Wikipedia page was linked n(e, cq)

Alias and entity features

7 Number of times the alias resulted in a click in the entity’s Wikipedia page e,
∑

s:as,e=1 n(s, cq).

8 Number of times the alias occurred in an anchor pointing to the entity’s Wikipedia page e,
∑

s:as,e=1 n(s, cw)

Table 1: Features in the data structure.

4. RESULTS AND DISCUSSION
This section describes the experiments we performed to

assess effectiveness and efficiency of our entity linking model
for web search queries. Prior to that, we describe the queries
and data used for evaluation and detail the baselines we
compare our methods against. Additionally, we describe a
procedure for automatically tuning the hyperparameters of
the context model and a comparison between the performance
of Centroid and LR vectors, independent of the linking task.

4.1 Data
All the experiments use Wikipedia as a knowledge base

and Yahoo’s Webscope4 search query log to entities, which
is a publicly available editorial set that contains annotations
for 2583 queries distributed across 980 user sessions. The
dataset contains manually identified links to entities in the
form of Wikipedia articles and provides the means to train,
test, and benchmark such systems using manually created,
gold standard data. In order to build our data structures,
we use Yahoo query logs spanning 18 months, and all of
Wikipedia’s anchor text extracted from a Wikipedia dump
dated May 2014. The contextual vectors described in Section
3.2 are built using the same Wikipedia version. Note that
for our current experiments all our data is using Wikipedia
as a knowledge base, although it would easily be possible
to extract information from user actions on other domains.
The only requirement is that the entities’ web pages are
consolidated. One could, e.g., collect information about ac-
tors and movies by looking at clicks landing on imdb.com

web pages. The final structure contains 4.6M entities, which
comprises the set of those Wikipedia entries that correspond
to articles proper, i.e., category, help, and discussion pages
are discarded. After some basic normalization (punctuation
stripping and case folding) the number of aliases mined from
the anchor text and query logs totals 113M. It is interesting
to examine the distribution of the number of entities that
are potential targets for a given alias. Figure 1 displays the
frequencies of the number of entities per alias for the whole
entity-alias set. For instance, there are about 108 aliases that
only point to one entity. The figure indicates a heavy-tailed
distribution. However, this distribution is different if we take
a look at how the number of candidate entities per alias dif-
fers across queries. Over a sample of 1M random queries the

4http://webscope.sandbox.yahoo.com/

k Centroid LR

5 7.857 7.386
10 5.711 5.385
15 4.575 4.363
20 3.931 3.883

Table 3: Accuracy for the retrieval task.

average number of entities per alias is 93.85 with a standard
deviation of 335.284, which implies there is a large set of
entities to disambiguate and the size of this set can vary
greatly from query to query. If we break down this average
and deviation by alias length (Figure 2), we observe that it
drops dramatically when the length of the alias query seg-
ment referring to the entity is greater than 1. In practice this
means that unigram aliases are more difficult to disambiguate
even though they have a considerably higher frequency and
that the linker has to somehow balance the tradeoff between
longer aliases with a more precise meaning and more frequent
smaller but ambiguous words. Conversely, Figure 3 plots the
different number of aliases that are associated with entities,
which is another heavy-tailed distribution. The majority of
the aliases (86%) point to a single entity.

The features compressed in the data structure are described
in Table 1. All the features are integer values and stored
in a contiguous block of memory as described in the next
section. Per-entity features are also kept in contiguous blocks
of memory and referenced appropriately from aliases features
using the entity id, in order to avoid wasting storage unnec-
essarily. It is finally worth to remark that our models are
almost parameter free—there is a smoothing parameter µ per
input source (query logs, anchor text) and a regularization
parameter for the word vectors. We self-tune the regulariza-
tion parameters automatically using the method described
in Section 4.2. The µ parameters have limited impact on the
performance and were set to a fixed value of 10. For ranking
entities we employ Eq. 1 in our linking algorithm.

4.2 Training Entity Vectors
We train the word vectors with the original word2vec

code on a text collection of 3 billion words extracted from
Wikipedia, using the standard vector dimensionality D = 200.
To train the LR entity vectors we use the SciPy implementa-
tion of L-BFGS on the loss function Eq. 12, computing the

imdb.com
http://webscope.sandbox.yahoo.com/
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Figure 3: Distribution of the num-
ber of aliases per entity (logscale).

function and its gradients using Theano [3]. Note that the
task is trivially parallelizable, as every entity vector can be
computed independently. Computing vectors for all the 4.6
million entities in our knowledge base with the chosen hyper-
parameters takes about 12 hours on a machine with 32 cores.
Given the scarcity and sparsity of labeled query examples
we seek an unsupervised way to tune the hyperparameters
λ and ρ (the regularization parameter and the number of
negative samples). To this aim we define an artificial task
which we call the retrieval task, and optimize the parameters
on it. We define the retrieval task as follows. We sample a
set of entities Etrain among those whose multiset Re has at
least 50 words, and extract a subsample Etest ⊂ Etrain. For
each entity e in Etrain we hold out k words from Re and
train the entity vector on the remaining words. Then, for
each entity e in Etest we use the k held out words to score
all the entities in Etrain and compute the rank of e in the
induced ranking. Then, inspired by the standard discount
gains in DCG metrics, we define the accuracy as the average
logarithm of the ranks.

We observe that as the number of negative samples ρ
increases the accuracy improves but the training time grows
linearly; we find a satisfactory trade-off at ρ = 20, where the
accuracy reaches a plateau. With respect to the regularization
parameter, instead, we find a maximum at λ = 10. In Table 3
we report the accuracy numbers for Centroid and LR trained
with the above hyperparameters, for different values of k,
using 50K entities for Etrain and 5, 000 entities for Etest. Note
that LR outperforms Centroid in all cases.

4.3 Entity Linking
We now compare the performance of our FEL models

against several baselines: state-of-the-art systems (Wikifier
and TAGME), a retrieval approach based on language models,
and commonness. This latter method is a popular unsuper-
vised baseline and has been shown to perform quite well on
various kinds of input texts (tweets, news items, etc.) [11, 20].
It is defined as

cmns(e, s) =
|Le,s|∑
e′ |Le′,s|

, (14)

where e is an entity, s a sequence of terms and Le,s the
set of all links within Wikipedia with anchor text s that
target the page that represents e. In order to process the

queries using this method, we split each query into every
single term n-gram starting from the longest possible, i.e.,
the whole query. Then we try to match each n-gram with
anchor texts as found in Wikipedia. In the case an anchor
text is found we score the entities based on cmns and ignore
the smaller, constituent n-grams. Otherwise we recurse and
try to match the (n-1)-grams. Information retrieval-based
approaches (denoted LM) make use of a Wikipedia index
and can rank the pages using their content. We indexed each
Wikipedia article using different fields (title, content, anchors,
first paragraph, redirects, and categories) and implemented
the method by Kim and Croft [18] for ranking the different
pages. This method computes a per-field weighting term
based on the query. In effect, it determines the likelihood
that a term is generated by a certain document field, based
on all the documents in the collection. It then uses this
likelihood to create a per-field-weighted query using Dirichlet
priors smoothing. We note the performance of this method on
its own is quite poor. We therefore enhanced it using a query-
independent feature and rerank the obtained search results
by the amount of clicks on a Wikipedia page as document
prior (LM-Click). The method denoted Bing is a reference
baseline that issues the query through the Bing search API
and returns the first Wikipedia page as a result. This is a
strong baseline in that commercial Web search engines use
supervised, machine learned ranking models incorporating a
large number of features, including features derived from the
text of entity pages, the hyperlink graph and user interactions
(click logs).

Ferragina and Scaiella [11] propose a method called TAGME
with an explicit focus on short texts. They use a voting
scheme in conjunction with heavy pruning of n-grams unre-
lated to the input text. This results in a fast method that
is especially suitable for short text. As such we include the
results of querying the TAGME REST API as a baseline.

Ratinov et al. [33] propose the use of a “local” approach
(e.g., commonness) to generate a disambiguation context
and then apply “global” machine learning for disambigua-
tion. Wikifier5 is an implementation of this state-of-the-art
system which combines Wikipedia pages, gazetteers, and
Wordnet. We denote our Fast Entity Linker as FEL, and the

5http://cogcomp.cs.illinois.edu/page/demo_view/
Wikifier

http://cogcomp.cs.illinois.edu/page/demo_view/Wikifier
http://cogcomp.cs.illinois.edu/page/demo_view/Wikifier


P@1 MRR MAP R-Prec

LM 0.0394 0.1386 0.1053 0.0365
LM-Click 0.4882 0.5799 0.4264 0.3835
Bing 0.6349 0.7018 0.5388 0.5223
Wikifier 0.2983 0.3201 0.2030 0.2086
TAGME 0.6682 0.7043 0.5458 0.5462
Commonness 0.7336 0.7798 0.6418 0.6464
FEL 0.7669 0.8092 0.6528 0.6575
FEL+Centroid 0.8035 0.8366 0.6728 0.6765
FEL+LR 0.8352 0.8684 0.6912 0.6883

Table 4: Performance of the different linking meth-
ods on the Webscope dataset . FEL outperforms sig-
nificantly all the baselines (t-test, p<0.01, P@1) ex-
cept for commonness. FEL+Centroid outperforms
significantly all the baselines and FEL, and FEL+LR
is significantly better than the rest.

two methods that use contextual vectors are FEL+Centroid
and FEL+LR to indicate the different ways the vectors are
learned.

4.3.1 Results
We evaluate the different systems using early precision

metrics, i.e, Precision at rank 1 (P@1), Mean Reciprocal
Rank (MRR), R-Precision (R-Prec) and also Mean Aver-
age Precision (MAP). We remark that our methods return
the ranked list of entities that maximize the likelihood of a
query segmentation; because this segmentation potentially
contains several entities, we return one entity per identified
query chunk (as a ranked list). In this respect, recall oriented
metrics would promote methods that return multiple inter-
pretations for the same query span (this would be partially
the case for MAP). We report on statistical significance using
a two-sided t-test with p < 0.01.

Table 4 shows the main entity linking results. With re-
spect to the baselines, Wikifier was designed primarily for
entity linking on longer texts and underperforms heavily
with respect to the rest of the methods. TAGME is specifi-
cally designed for short texts and performs better, although
both commonness and FEL outperform it by a large margin.
Retrieval-based approaches are not competitive on their own.
Retrieving entities using the Bing search API, which pre-
sumably uses a large amount of available signals for ranking,
is the first competitive baseline, along with commonness.
Somehow surprisingly, in our dataset this baseline outper-
formed every other baseline by a large margin. FEL clearly
and significantly outperforms all the baselines, except for
commonness. FEL+Centroid, however, significantly outper-
forms all the baselines as well as FEL, and FEL+LR is in
turn significantly better than all other methods.

4.4 Runtime Performance
We now turn into comparing the execution times of dif-

ferent systems. All the experiments were conducted on a
standard MacBook Pro, with 2.7 GHz Intel Core i7 cpu and
16GB of RAM. Timings were measured on a random sample
of 1M queries and each experiment was repeated 5 times;
below we report the average numbers. A natural candidate
for a fast baseline would be an index-based structure that
can perform quick look-ups of aliases with entity candidate
information. In the open source domain, arguably the fastest

System Average time Data size

Wikifier 44.32 ms 6.8G
Retrieval (And) 13.63 ms 2.5G
Retrieval (Or) 210.13 ms 2.5G
FEL 0.14 ms 1.8G
FEL+Centroid 0.27 ms 2.3G
FEL+LR 0.40 ms 2.3G

Table 5: Entity linking efficiency. For FEL and
FEL+{Centroid,LR} we include the size of all the
compressed data structures. For Retrieval we in-
clude the size of the indexes without positional in-
formation, and for Wikifier the size of the indexes
and gazetteers.

inverted file-based system would be MG4J,6 which in its
most recent version has an index built around the idea of
quasi-succinct monotone sequences [35]. We rank entities
using a standard BM25 scorer over the title and body fields.
We also compare with Wikifier, which uses Lucene indexes
and several gazetteers as its basic data-structures. Wikipedia
MG4J’s indexes occupy approximately 2GB of compressed
data (over 6GB including positional information), whereas
Wikifier’s gazetteers and indexes add up to over 6GB.

The results for the efficiency experiments are shown in
Table 5. FEL outperforms the Wikifier approach 300-fold.
When we compare FEL and FEL+Context, we observe that
factoring the contextual vectors into the ranking adds an
overhead of 0.13 ms in the case of Centroid and 0.26 ms in the
case of LR. MG4J in AND mode—while being remarkably
fast for a stand-alone index-based system—has a very low
recall and it is not a viable solution for entity linking. In con-
trast, MG4J in OR mode is 4 orders of magnitude slower than
FEL. We highlight that the vectors decompression procedure
is responsible for the biggest part of the runtime overhead.
The dynamic pruning procedure described in Section 3.3.1
alleviates this problem by a factor of 5, yielding average query
times below half a millisecond. Without early termination,
the contextual algorithm has an overhead of about 2 ms over
FEL.

4.5 Error Analysis
We now illustrate some of the caveats and advantages of

the proposed methods. Our FEL model makes mistakes of
different kinds. A fraction of these errors come from typos
in the queries that are not accounted for in the aliases that
we use. When we incorporate a proprietary query spelling
corrector before linking, the performance of our methods is
increased by approximately 3% (MAP increases to 0.7000,
P@1 to 0.8610). Examples of other kinds of errors are il-
lustrated in Table 6. Some of them have to do with overly
popular candidates, or whenever there are two concepts that
are too similar (Crossbreed versus Dog_Type) and the pro-
vided context is not enough to discriminate among them. On
the other hand, too much context might promote entities
that are too specific, such as in the case of the Sheraton
Hotel in Kansas. Table 7 displays some queries that were im-
proved from the context-agnostic FEL when using FEL+LR.
In those cases, the semantic descriptions taken from the
abstracts of the entity pages are a signal strong enough to

6http://mg4j.di.unimi.it

http://mg4j.di.unimi.it


Query Answer Correct Answer Type of Error

designer dogs types Dog_type Crossbreed Parallel concept
clinton falls asleep Clinton_Falls_Township Bill_Clinton Wrong segmentation
candidate killed in storm Storm_(Marvel_Comics) Storm Candidate too popular
france world cup 98 reaction FIFA_World_Cup FIFA_World_Cup_1998 Not enough context
2005 presidential election in Egypt Elections_in_Egypt 2005_Elections_in_Egypt Not enough context
kansas city hotels airport Sheraton_Kansas_City_Hotel Kansas_City Too much context

Table 6: Different examples of mistakes made by the context aware system along with their types, top linked
entity displayed.

Query FEL answer FEL+Context

install roof insulation Insolation Building_insulation

inventor of gunpowder Gunpowder History_of_gunpowder

us political map Map Red_states_and_blue_states

dj jobs Jobs_(film) Disc_jockey

buy used car parts online Automobile Used_car

what is the longest running tv show Television The_Simpsons

Table 7: Example queries that were corrected from the base system FEL when the contextual vectors were
incorporated into the model, top linked entity displayed.

boost entity candidates that are more related to the query,
e.g., History_of_gunpowder versus Gunpowder.

5. CONCLUSIONS
In this paper we have described a probabilistic model for

entity linking on web search queries. This task already poses
numerous challenges by itself but a major limitation in the
context of web search is that we are heavily constrained from
a runtime perspective, imposing time and space requirements
whilst maintaining accuracy. Our method leverages informa-
tion from query logs and anchor texts to automatically obtain
a large number of aliases for the entities in a knowledge base
and uses a probabilistic model to rank entities in query seg-
ments. Our model uses dynamic programming to generate
the best entity segmentation and, in order to add information
about the query context into the ranking, we devise a novel
way of aggregating vectors that encode word distributional
semantics. This new contextual vector model significantly
outperforms various state-of-the-art baselines from the liter-
ature on a public test set comprised of 2.5K queries, while
being able to provide sub-millisecond response times—several
orders of magnitude faster than entity linking systems from
the literature.

Furthermore, all the data structures used by our system
are compressed using state-of-the-art hashing, quantization,
and integer encoding techniques. This yields a final data-pack
storing hundreds of millions of aliases for all 4.6M Wikipedia
entities using less than 2GB of storage. We also note that
the size of the word vector representations can be reduced
by an order of magnitude without any execution overhead.

For future work, we would like to test the scalability of
the system when considering hundreds of millions of entities
and billions of aliases. This might require to employ static
pruning algorithms to reduce the size of the compressed data
structures [4]. Additionally, we generated the contextual vec-
tors using Wikipedia but we could expand the input sources
to accommodate for other types of data, such as queries or
news, which could incorporate more interesting contextual

relations that fall outside of encyclopedic knowledge (e.g.,
trends, gossip, etc.). Another interesting line of work could
involve incorporating session-level features into the entity
linking process in order to make use of a richer source of con-
textual information. Finally, we believe that our contextual
entity models are general enough to be of value in different
types of applications that make use of word aggregation
distributional similarities.
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