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Abstract. Kohn’s Molecular Interaction Maps (MIMs) are a graphical
notation for describing bioregulatory networks at the molecular level.
Even if the meaning of Kohn’s diagrams can be often easily understood,
in many cases, due to the lack of a precise mathematical semantics,
the notation can be ambiguous. By this paper we achieve two goals.
Firstly, we give a precise meaning to MIMs by their translation into
a formalism, the Stochastic Calculus of Looping Sequences (SCLS+),
with a mathematical semantics. Further, by this translation we provide
MIMs with all the tools developed for SCLS+, namely analysers and
simulators. The ability of SCLS+ to specify compartments allows us to
easily translate MIMs descriptions also when membranes are involved in
the interactions.

1 Introduction

The definition of a diagrammatic graphical language able to describe biochem-
ical networks in a clearly visible and unambiguous way is an important step
towards the understanding of cell regulatory mechanisms. One of the most well
designed and rigidly defined proposals of graphical language are Kohn’s Molecu-
lar Interaction Maps (MIMs) [1, 10, 11]. In these maps, biochemical components
of bioregulatory networks are depicted using a notation similar to the “wiring
diagrams” used in electronics, and various types of interactions that may oc-
cur between the components can be represented. Interactions includes complex
formations, phosphorylations, enzyme catalysis, stimulation and inhibition of
biochemical reactions, DNA transcription, etc.

The use of a single MIM diagram to describe all the many interactions in
a biochemical network allows the tracing of pathways within the network, for
instance with the aid of computer simulation. However, even if the meaning of
MIM symbols is clear and easy to understand, there is a lack of univocal in-
terpretation when more symbols are combined, hence some diagrams cannot be
used directly as an input for a simulation tool. This is confirmed by the dis-
tinction made by Kohn in [10] between heuristic maps, which may have more



than one interpretation, and explicit maps, that are unambiguous. The conclu-
sion of Kohn is that only the latter should be used to perform simulations, by
translating them into a list of chemical reactions.

In this paper we face the problem of allowing the simulation of a set of di-
agrams larger than the explicit ones. In particular, we consider the Stochastic
CLS formalism [2], that is a formal language based on term rewriting for the
description of biochemical systems. We recall its definition by adopting the syn-
tax of CLS+ [15, 16] (we call this variant Stochastic CLS+). We show that, by
translating MIMs into Stochastic CLS+ terms and rewrite rules, we can simulate
more diagrams than the set of explicit ones.

As regards related work, in [4] a simple example of MIM has been modeled
using the Beta–binders formalism [19]. Another example of translation of MIMs
in a formal syntax (concurrent constraint programming) can be found in [3].
Moreover, other graphical languages for biochemical networks have been defined
[12, 18, 20]. Among these, the notation introduced in [12] (which has been com-
pared with MIMs in [13]) seems to be another promising proposal, as it has
been used to model a real complex example of signalling pathway [17] and it
is supported by useful software tools [8]. A different approach to the graphical
description of biochemical networks based on graph rewriting is proposed in [6,
7]. Finally, present work is based on the approach proposed in [14].

2 Stochastic CLS+

In this section we recall the definition of the Stochastic Calculus of Looping
Sequences (SCLS for short) and the syntax of an extention called CLS+, to
define a variant we call Stochastic CLS+. For the sake of brevity we omit some
technical details. Missing details of the calculus can be found in [2, 15, 16].

The Stochastic CLS+ formalism is basically a term rewriting framework in-
cluding some typical features of process calculi for concurrency. A model in the
Stochastic CLS+ is composed by a term describing the inital state of the mod-
eled system, and a finite set of rewrite rules to be applied to terms, describing the
events that may occur in the system. In the definition of Stochastic CLS+ terms,
that follows, we assume an alphabet of elements E ranged over by a, b, c, . . ..

Terms T , branes B and sequences S of the Stochastic CLS+ are given by the
following grammar:

T ::= S
∣∣ (B)L cT

∣∣ T |T B ::= S
∣∣ B |B S ::= ε

∣∣ a
∣∣ S · S

We denote with T , B and S the sets of all terms and all sequences, respec-
tively. Note that E ⊂ S ⊂ B ⊂ T .

A term can be either (i) a sequence of symbols in E with ε as the empty
sequence and · as the sequencing operator, or (ii) a looping sequence (B)L (that is
a parallel composition of sequences, with | as the parallel composition operator)
containing another term T , with c as the containment operator, or (iii) the
parallel composition (the juxtaposition) of two terms.



The calculus comes with structural congruence relations on sequences ≡S

and terms ≡. The former, ≡S , is defined as the least congruence on S for which
(S, ·, ε) is a monoid, while the latter, ≡, is the least congruence, including ≡S ,
closed under (·)L c · and such that (T , | , ε) is a commutative monoid.

A rewrite rule is a pair of terms with variables, called patterns P1, P2 rep-
resenting a portion of the described system before and after the occurrence of
the modeled event. A rewrite rule can be applied to a term T if there exists
a subterm of T which is structurally equivalent to an instantiation of P1, by
replacing the subterm with the corresponding instantiation of P2. Variables V
are of different kinds. Element variables x, y, . . . ∈ X , which can be instantiated
by elements in E , sequence variables x̃, ỹ, . . . ∈ SV, for sequences in S, brane
variables X, Y , . . . ∈ BV for branes in B, and term variables X, Y, . . . ∈ T V for
terms in T . Formally, patterns are defined as follows.

P ::= SP
∣∣ (BP )L cP

∣∣ P |P
∣∣ X BP ::= SP

∣∣ BP |BP
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

We denote by P the set of all Patterns and by Σ the set of all instantiation
functions σ : V 7→ T . Instantiation functions are required to respect the types
of the variables.

Finally, a rewrite rule is a triple (P ′, P ′′, f), where P ′, P ′′ ∈ P and f : Σ 7→
R+, such that P ′ 6≡ ε and V ar(P ′′) ⊆ V ar(P ′).

In what follows, we will use the notation P ′
f7→P ′′ for a rewrite rule (P ′, P ′′, f),

and we will call f the rate function of the rewrite rule. Such a function gives the
rate value of the rule, depending on the actual term used for the instantiation
of the variables in P ′. We say that a rewrite rule (P ′, P ′′, f) is ground if both
P ′ and P ′′ are ground.

Now, a Stochastic CLS+ model consisting of a set of rewrite rules R and
of an initial ground term T0, evolves by means of a sequence of application of
rewrite rules in R to term T0. After each application, a new term is obtained
which describes the state of the system after the occurrence of the event modeled
by the applied rule. At each step, the rule to be applied is randomly chosen with
a probability which depends on an actual application rate. Such an actual rate
is the value obtained by the rate function multiplied by the number of possible
positions in the term where the rule can be applied. The actual application rate
is used also as the parameter of an exponential distribution to determine the
quantity of time spent by the occurrence of the described event.

More precisely, at each step a set of applicable ground rewrite rules AR(R, T )
is computed which contains all the ground rules that can be applied to T and
that are obtained by instantiating variables in the rules in R. In each of these
ground rules we have r = f(σ), where f is the rate function of the rewrite rule
from which it was istantiated by means of an instantiation function σ. By the
finiteness of R and of T we have that AR(R, T ) is a finite set of ground rewrite
rules. For each ground rule R in AR(R, T ) and for each possible term T ′ that can
be obtained by the application R, the number of different application positions
in T where R can be applied producing T ′ is computed. Such a number, called
the application cardinality of R leading from T to T ′, is denoted as AC(R, T, T ′),



and is the number that must be multiplied by the rate constant of R to obtain
the actual application rate.

The semantics of the Stochastic CLS+ can now be given as a labeled transi-
tion system, in which a transition corresponds to the application of a rule and its
label contains a reference to the applied rule and the actual application rate. In
the definition of the semantics we use a notion of context to identify the position
in the term where a rewrite rule is applied.
Formally, Term Contexts CT and Brane Context CB are given by the following
grammar:

CT ::= ¤
∣∣ CT |T

∣∣ T |CT

∣∣ (B)L cCT

CB ::= ¤
∣∣ CB |T

∣∣ T |CB

∣∣ (C′B)L cT
∣∣ (B)L cCB

C′B ::= ¤
∣∣ C′B |T

∣∣ T |C′B
where T ∈ T , B ∈ B and S ∈ S. Context ¤ is called the empty context. CT is
the set of all the Term Contexts and CB is the set of all Brane Contexts.

With C[T ] we denote the term obtained by replacing ¤ with T in C. The
structural congruence relation can be easily extended to contexts, namely C ≡ C ′

if and only if C[ε] ≡ C ′[ε].

Definition 1 (Semantics). Given a finite set of rewrite rules R, the seman-
tics of the Stochastic CLS+ is the least labeled transition relation satisfying the
following inference rules:

R = T ′
r7→ T ′′ ∈ AR(R, C[T ′]) C ∈ CT

C[T ′]
R,r·AC(R,C[T ′],C[T ′′])−−−−−−−−−−−−−−−→ C[T ′′]

R = B′ r7→ B′′ ∈ AR(R, C[B′]) C ∈ CB
C[B′]

R,r·AC(R,C[B′],CB [T ′′])−−−−−−−−−−−−−−−−→ C[T ′′]

The semantics of the calculus is a transition relation describing all the possi-
ble evolutions of the modeled system. From such a relation a Continuous Time
Markov Chain (CTMC) can be easily derived, allowing the verification of prop-
erties of the system. However, since the whole CTMC describing the system has
often a huge number of states, hence its construction is often unfeasible, we can
follow a standard simulation procedure that corresponds to Gillespie’s simula-
tion algorithm [9]. A complete simulator for Stochastic CLS has been already
implemented in F#, based on this simulation strategy [5].

3 Molecular Interaction Maps

In this section we recall the definition of Kohn’s Molecular Interaction Maps
(MIMs) and we show how they can be translated into Stochastic CLS+. We refer
to the definition of MIMs that can be found in [11]. We present both MIMs and
their translation incrementally, by showing first the diagrams for basic molecular
interactions and then their extension with contingency symbols.

A species in a MIM is depicted as a box containing the species name (Fig. 1.a).
In the case of a DNA site, the box is placed over a thick line representing a DNA
strand, and more than one site can be placed over the same line (Fig. 1.c). Also
a bullet (Fig. 1.b) is used to denote a species when it is the result of a reaction,
and to denote different instances of the same species (see the dimer AB:AB in
Fig. 4).
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Fig. 3. Reaction symbols.

Basic Diagrams Basic MIM diagrams are composed by species and DNA
fragments related each other by some reaction symbols. Reaction symbols are
arrows, and they are listed in Fig. 3. In the figure, arrow (a) connects two
species and denotes the reversible binding of them; (b) points to one species and
denotes a covalent modification (phosphorylation, acetylation, etc. . . ), the type
of the modification is usually written at the tail of the arrow; (c) connects two
species and denotes a covalent binding; (d) connects two species and denotes a
stoichiometric conversion, namely the species at the tail of the arrow disappears
while the pointed one appears; (e) is like (d) without the loss of the species
at the tail of the arrow; (f) connects a DNA strand and a species and denotes
DNA transcription; (g) represents the cleavage of a covalent bond; finally, (h) is
connected to a single species and represents its degradation.

Extended Diagrams MIM diagrams can be extended to allow the use of modi-
fiers to reactions: these modifiers are called “Contingencies”. Contingency arrows
start from a species (or a compound of species) and point to reaction, meaning
that the presence (or absence) of the species influences the reaction. This in-
fluence is expressed as a change in the rate at which the reaction can happen.
Contingency arrows are listed in Fig. 2. In the figure, arrow (a) stimulates the
reaction pointed (increase its reaction rate) if the species is present in the en-
vironment; (b) is the necessity contingency and signals that the reaction can
happen only if the species is present (if not present, the reaction rate drops to
zero); inhibition contingency (c) is dual to the necessity one in that the reaction
is allowed only if the species at hand is not present in the environment; finally,
(d) is the catalysis arrow which signal that the reaction have a much higher
reaction rate if the species is present than if it is not.

Example Here we will show a small example of a real life MIM. In Fig.4 one can
see a MIM depicting a process of RNA synthesis inside the cell nucleus, activated
by the presence of a species (B) outside the outer membrane of the cell through
interaction with a membrane channel (group A). Species B can bind to group A
that is present onto the plasma membrane forming group A:B. Two such groups
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Fig. 4. Example of an explicit MIM with rate constants

can bind together, forming compound AB:AB, which allows the phosphorilation
of a third A group which can then migrate inside the nucleus membrane. There,
the group A p can bind to a DNA fragment and together they stimulate the
synthesis of a fragment of RNA.

4 Translating Maps into Stochastic CLS+

In this section we provide a precise semantics for MIMs by its translation into
Stochastic CLS+. Since there is no formal description of MIMs, we introduce
an intermediate encoding of MIMs, that allows us to formally specify the source
of our translation. This intermediate encoding is sufficiently high level to allow
a straightforward construction of the encoding from a diagram. Since we are
interested in the possibility of simulating the MIMs, we need additional infor-
mation about the initial number and position of the molecules of each species.
This information, which is not provided by MIM diagrams, has to be included
in the intermediate encoding.

4.1 Intermediate encoding of MIM

An intermediate encoding is composed of a Membrane Structure, a Set of Species,
and a Set of Reactions. The first specifies the (static) membrane structure, the
second describes position and initial number of the molecules of each species, the
third captures the interaction capabilities of the species and their contingencies.
We assume that membranes are uniquely identified by natural numebers in N.
We represent each different species (simple or compound) that appears in a MIM
diagram as a simple CLS+ sequence S.

Definition 2 (Membrane Structure of a MIM). A Membrane Structure
MS is a set of tuples of the form 〈i, C〉 ∈ N×P(N), where i is the membrane



number, that uniquely identifies it, and C contains the identification numbers of
the membranes which are immediately contained in membrane i.
We denote with MS the set of all possible Membrane Structures.

Definition 3 (Set of Species). A Set of Species SS is a set of tuples of the
form 〈S, (i, j), q〉 ∈ S×(N×{0, 1})×N where each tuple corresponds to a CLS+
sequence S (representing a species), whose position in the membrane hierarchy
is described by (i, j), and whose quantity is q. In particular, i is the membrane id
and j specifies if it is either on the surface of the membrane, if j = 0, or inside
the membrane, if j = 1. We denote by SS the set of all possible Sets of Species.

Definition 4 (Set of Contingencies, CS). A Set of Contingencies CS is a
set of pairs of the form 〈C, k〉 ∈ SS × R, where each pair corresponds to a
contingency symbol, C is the Set of Species that must exist for the contingency
to be verified and k is the reaction rate constant.
We denote with CS the set of all possible Sets of Contingencies.

Definition 5 (Set of Reactions, RS). Given a MIM, its Set of Reactions RS
is a set of tuples of the form 〈CS, R, P 〉 ∈ CS × SS × SS where each tuple
corresponds to a reaction symbol in the MIM. In particular, CS are the contin-
gencies, and R and P specify reactants and products of the reaction, respectively.
We denote with RS the set of all possible Sets of Reactions.

The construction of an intermediate encoding of a MIM diagram is almost
straightforward. First of all, assuming to identify each membrane with a natural
number, and each species with a simple CLS sequence S, we can construct a
Membrane Structure and a Set of Species by inspecting the MIM diagram. Please
note that we have to specify, in the Set of Species, the initial quantity of each
molecular species in each position where they appear. To simplify the translation,
we assume the existance of a dummy outer membrane with id = 0 that contains
the whole system.

For each reaction symbol of the MIM diagram, we create a tuple in the
Set of Reactions specifying the contigency species, the reactants and products.
Reactans specify the species that are needed for the reaction to happen, that are
replaced by the product species once the reaction occurs. This representation is
enough to describe the behaviour of any MIM reaction symbol (fig. 3).

As regards contingecies, the intermediate representation treats the different
MIM symbols available (fig. 2) uniformly, by modeling each contigency as a set
of species whose presence in the environment affects the (constant) basal rate of
the reaction. First of all, the basal reaction rate to use when no contingeny are in-
volved is also represented in the Set of Contingecies, by a tuple of the form 〈∅, k0〉.
We call it neutral contingency, and assume that each reaction has one. To avoid
ambiguity in determining the basal rate of a reaction for which more than one
contingecy is verified, we impose some constraints on the Set of Contingencies.
In particular, we require that, for any two contingecies 〈C1, k1〉, 〈C2, k2〉 ∈ CS
there exists a contingency 〈C1 ∪ C2, k3〉 specifying the rate to use (k3) when all
the species of C1 and C2 are present. In this way, we can determine the basal



reaction rate as the one given by the most specific contingency, i.e. the one for
which biggest set of contingency species are present.

4.2 From the intermediate encoding to Stochastic CLS+

The translation is composed of two parts. The first concerns translation of the
initial state of the MIM system, described by its Membrane Structure and a Set
of Species, into a CLS+ term. The second deals with the interaction symbols,
by translating the Set of Reactions of the MIM into a set of rewrite rules.

Translation of the initial state In the following, we need to extract, from a
Set of Species SS, its subset of species appearing on a precise position, i.e. on the
surface or inside a given membrane. We denote this subset as SSij ∈ SS, where
i is the membrane id and j specifies if we need the elements on the surface of the
membrane, if j = 0, or those inside, if j = 1. Formally, SSij = {〈S, (i, j), q〉 ∈
SS}. Moreover, we denote by membrane(SS) ⊂ N the ids of the membranes
appearing in a given SS, i.e. membrane(SS) = {i ∈ N|〈S, (i, j), q〉 ∈ SS}.

The following definitions formally describe the construction of the initial
CLS+ term corresponding to a MIM.

Definition 6 (Set of species Translation Function, φ). Given a set of
species SS, the function φ : SS → T constructs the corresponding CLS+ term
formed by the parallel composition of all species with their multiplicities, i.e.
φ〈{〈S1, p1, q1〉, . . . , 〈Sn, pn, qn〉}〉 = q1:S1 | · · · | qn:Sn, where n:T stands for
a parallel composition of n times T , that is T | . . . |T of length n (0: T ≡ ε).

Note that the term produced by the function φ is always a brane B since it never
contains a looping sequence operator.

Definition 7 (Term Translation Function, J·K). Given a Membrane Struc-
ture MS ∈ MS and a Set of Species SS ∈ SS, the Term Translation Function
J·K is defined by the following rule schema:

〈jk, Ck〉 ∈ MS J〈jk, Ck〉K 7→ Tk k = 1, . . . , n

J〈i, {j1, . . . , jn}〉K 7→ (i |φ(SSi0))L c (φ(SSi1) |T1 . . . |Tn)

Note that SSi0 is the set of species present on the surface of the membrane
i while SSi1 contains the species inside membrane i.

Definition 8 (Initial Term of a MIM). Given a Molecular Interaction Map,
described by a Membrane Structure MS ∈ MS and a Set of Species SS, the
initial CLS+ term is T0 = J〈0, C〉K, where 〈0, C〉 ∈ MS.

The initial term is constructed by Term Translation Function applied to
the outer membrane with id = 0. This translation computes a CLS+ term,
where each membrane of the MIM is represented by a looping sequence, and
their containment hierarchy is preserved. The species appearing on the surface
and inside the membranes are put in the correct position in the corresponding
looping sequences. Finally, a special symbol i is present on each looping sequence,
denoting the membrane id from which it has been constructed.



Translation of the interactions Given a membrane structure MS and a set
of nodes N , we denote by subtree(MS, N) ∈ MS the smallest subtree of MS
induced by the nodes N , that is the minimal tree containing all the nodes in N .
We also assume the function root : MS → (N × P(N)) that returns the root
node of the membrane structure (where a node is the pair of its id and the set
of ids of the nodes immediately contained in it).

Each reaction of a MIM, represented by an element of a Set of Reactions RS,
is translated into a stochastic CLS+ rewrite rule. This translation is performed
by the reaction translation function, which uses an auxiliary function, the parallel
pattern builder, for constructing the patterns which compose the rewrite rule.

Definition 9 (Parallel Pattern Builder Function, J·Kpp). Given a mem-
brane structure MS, the parallel pattern builder function J·Kpp : (N×P(N))×
(SS × SS) → P ×P is defined as follows:

X0 = new(BV) X1 = new(T V)

〈cj , Cj〉 ∈ MS J〈cj , Cj〉, (SS1, SS2)Kpp 7→ (P1j , P2j) j = 1, 2, . . . , k

φ(SSi0
1 ) = T1i0 φ(SSi1

1 ) = T1i1 φ(SSi0
2 ) = T2i0 φ(SSi1

2 ) = T2i1

J〈i, {c1, c2, . . . ck}〉, (SS1, SS2)Kpp 7→ (

(i |T1i0 |X0)
L c (T1i1 |P11 |P12 | . . . |P1k |X1),

(i |T2i0 |X0)
L c (T2i1 |P21 |P22 | . . . |P2k |X1))

where Xi = new(. . .) means that the term variable Xi has not previously used
in the current application of J·Kpp, Pi ∈ P and Ti ∈ T .

The parallel pattern builder function takes as arguments a root membrane (and
its children), two sets of species (the reactants and the products of a reaction)
and it gives as a result the pair of reactants-products expressed as CLS+ terms.
The J·Kpp function is used in the definition of the function for translating a
reaction into a stochastic CLS+ rewrite rule.

The reaction translation function also uses the following function xc to deal
with contingencies. Function xc is applied to a pattern, obtained by the paral-
lel pattern builder, and a set of species SS, representing the contingencies of
the reaction. It associates, with each term variable X appearing in P , a term
containing the species from SS that can be instantianted in the variable X. In
this way, we can keep track of the variables in which the contigency species can
appear. Formally, function xc : P × SS → P(BV ∪ T V × T ) is defined as:

xc(
(
i |B1 |X1

)L c (P2 |X2), SS) = {〈X1, φ(SSi0)〉, 〈X2, φ(SSi1)〉} ∪ xc(P2, SS)

xc(P1 |P2, SS) = xc(P1, SS) ∪ xc(P2, SS)

xc(T, SS) = ∅

Definition 10 (Reaction Translation Function, J·Kr). Let MS be the Mem-
brane Structure of a MIM. Given a reaction 〈CS,RS, PS〉, the Reaction Trans-



lation Function J·Kr : (CS × SS × SS) → < is defined as follows:

(P1, P2) = Jroot(MS′), (CS, RS, PS)Kpp MS′ = subtree(MS, N)

N = membrane((
⋃n

j=1 Cj) ∪RS ∪ PS) CS = {(C1, k1), (C2, k2), . . . , (Cn, kn)}
xc(P1, Ci) 7→ {〈X1, T

i
1〉, 〈X2, T

i
2〉, . . . , 〈Xm, T i

m〉} i = 1, . . . , n

J〈CS, RS, PS〉Kr = (P1, P2, f)

where P1, P2 are CLS+ patterns, and the rate function f is defined as follows:

f(σ) = basalRate(σ) ·
∏

〈S,(i,j),q〉∈RS

(
q

occ(P1σ, (i, j), S)

)

basalRate(σ) =





k1 if ∃U1, . . . , Um. σ(X1) ≡ T 1
1 |U1 ∧ . . . ∧ σ(Xm) ≡ T 1

m |Um

k2 if ∃U1, . . . , Um. σ(X1) ≡ T 2
1 |U1 ∧ . . . ∧ σ(Xm) ≡ T 2

m |Um

...
...

kn if ∃U1, . . . , Um. σ(X1) ≡ T n
1 |U1 ∧ . . . ∧ σ(Xm) ≡ T n

m |Um

The function f computes the rate of the application of the rewrite rule as the
product of a basal rate and of the number of different reactions represented by
this application. The basal rate is a constant rate that depends on the contin-
gencies. In the definition of basalRate we are assuming that, if more than one
condition is satisfied (i.e. more than one contingency is applicable), then the
most specific one is used. The constraints we imposed on the set of contincencies
(see Sec.4.1) ensure that the definition of basalRate is unambiguous.

The number of different reactions represented by the application of a rewrite
rule takes into account the reactions involving molecules of a same species S.
Considering a single compartment i, j, the reaction can happen among any subset
of molecules of that species S, having the right cardinality. Therefore, for each
reactant species S in each compartment i, j, described by a tuple in RS, the
number of reactions corresponds to the binomial coefficient of q, i.e. the number
of molecules required, and occ(P1σ, (i, j), S), i.e. the number of molecules present
in compartment (i, j) in the actual term P1σ.

Definition 11 (Set of Rewrite Rules of a MIM, RR). Given a Molec-
ular Interaction Map, described by a Membrane Structure MS and whose re-
actions are encoded in the Set of Reactions RS = {R1, . . . , Rn}, the Set of
Rewrite Rules RR ⊂ < of the corresponding Stochastic CLS+ model is RR =
{JR1Kr, JR2Kr, . . . , JRnKr}.

5 Applications

Now we show a small example of the translation process we defined by translating
part of MIM of Fig.4 which showed a process of RNA synthesis. In the first
phase of the process, protein A binds to protein B thus forming the complex
A:B onto the plasma membrane. Then two complexes can form a dimer which
can be phosphorilated. In the following, we show these two reactions translated



as Stochastic CLS+ terms and rewrite rules.
Firstly, we define the membrane structure: MS = {〈0, {1}〉, 〈1, {2}〉, 〈2,∅〉}.
Then we want to formalize the reaction where B binds to A (A | B

k1
k2

AB).

To do so, we need to describe two reaction tuples for this reaction, one for the
complexation and another one for the de-complexation:

R1 = 〈{〈∅, k1〉}, {〈A, (1, 0), 1〉, 〈B, (0, 1), 1〉}, {〈AB, (1, 0), 1〉}〉
R2 = 〈{〈∅, k2〉}, {〈AB, (1, 0), 1〉}, {〈A, (1, 0), 1〉, 〈B, (0, 1), 1〉}〉

As one can see, no contingency influences these reactions, hence the only
one present is the neutral one. We place the product on membrane 1, since the
complex should be still connected to the membrane. The resulting rewrite rules
for these reactions are:

(R1) (0 |X0)
L c (B | (1 |A |X2)

L cX3 |X1)
f17→ (0 |X0)

L c ((1 |AB |X2)
L cX3 |X1)

(R2) (0 |X0)
L c ((1 |AB |X2)

L cX3 |X1)
f27→ (0 |X0)

L c (B | (1 |A |X2)
L cX3 |X1)

where the basalRate of both f1 and f2 have constant results, respectively k1 and
k2.

Now we describe the phosphorylation of the A component allowed by the
presence of the dimer AB:AB onto the plasma membrane. This modification will
be described by a single reaction tuple since it is not reversible. The presence
of a “necessity” contingency pointing to the reaction will be a tuple in the
Set of Contingencies of the Reaction Set. Thus, we will formalize the following

(mutually exclusive) reactions A
k5 pA and AB:AB | A

k′5 AB:AB | pA.
A single reaction tuple will model both reactions:

R3 = 〈{〈∅, k5〉, 〈{〈AB:AB, (0, 1), 1〉}, k′5〉}, {〈A, (1, 0), 1〉}, {〈pA, (1, 0), 1〉}〉
where k5 is equal to zero in our example (since the phosphorylation needs the
presence of AB:AB). The resulting rewrite rule for this reaction tuple is:

(R3) (0 |X0)
L c ((1 |A |X2)

L cX3 |X1)
f7→ (0 |X0)

L c ((1 | pA |X2)
L cX3 |X1)

basalRate(σ) =

{
k′5 if σ(X1) ≡ AB:AB | T

k5 otherwise

6 Conclusions

In this paper we have given a formal definition of the semantics of Kohn’s Molec-
ular Interaction Maps by providing a translation to a variant of the Stochastic
Calculus of Looping Sequences (called Stochastic CLS+). Such a definition allows
understanding and reasoning on Kohn’s maps unambiguosly. Moreover, having
CLS+ executables, this translation provides MIMs with simulators and other
tools and methodologies developed for CLS+. Future works will involve the con-
truction of graphical interfaces allowing the input of Molecular Interaction Maps
and the automatic translation of them in CLS+ terms and rules. This will allow
biologists to use the tools for CLS+ with MIMs as interfaces.
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