
Deciding Membership in a Class of Polyhedra
Salvatore Ruggieri1

Abstract. Parameterized linear systems allow for modelling and
reasoning over classes of polyhedra. Collections of squares, rectan-
gles, polytopes, and so on can readily be defined by means of linear
systems with parameters in constant terms. In this paper, we consider
the membership problem of deciding whether a given polyhedron be-
longs to the class defined by a parameterized linear system. As an ex-
ample, we are interested in questions such as: “does a given polytope
belong to the class of hypercubes?” We show that the membership
problem is NP-complete, even when restricting to the 2-dimensional
plane. Despite the negative result, the constructive proof allows us to
devise a concise decision procedure using constraint logic program-
ming over the reals, namely CLP(R), which searches for a character-
ization of all instances of a parameterized system that are equivalent
to a given polyhedron.

1 Introduction
Linear systems of inequalities over real numbers are basic tools for
representing and reasoning over polyhedral sets. They have been ex-
tensively adopted in several fields of artificial intelligence, including
geometric reasoning [1], constraint (logic) programming [9], robot
motion planning [8], computer vision [2], resource planning [23],
pattern recognition and classification [18], expert systems [13], and
many others. The intuitive meaning of a linear system A · x ≤ b is
the polyhedral set of its solutions. As an example, the points belong-
ing to a rectangle of length 2 and height 3 can be described as the
solutions (x1 x2) of the inequalities 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3. Con-
sider now the simple, yet intriguing, problem of defining a class of
polyhedral sets. Recalling the previous example, the class of points
belonging to a rectangle of length a and height b greater or equal
than a can be described as the solutions (x1 x2) of the inequalities
0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b, a ≤ b, where a and b are parameters.
A minimalist approach at extending the expressive power of linear
systems consists then of admitting parameters among the constant
terms. A parameterized linear system over the reals is a system of
linear inequalities A · x ≤ b + M · r where variables in r are pa-
rameters. The intended meaning of a parameterized linear system
is then a class of polyhedra over variables in x, each obtained by
instantiating the parameters r. In the previous example, a class of
rectangles with one vertex at the origin and the sides parallel to the
axes was defined. Notice that translations can be readily expressed,
e.g., a ≤ x1 ≤ b, c ≤ x2 ≤ d denotes rectangles with a vertex at
a generic point (a b). However, rotations cannot be expressed, since
it would require parameters to appear as coefficients of variables. In
this sense, the extension is “minimalist”.

Parameterized linear systems trace back to the late 60’s in the con-
text of (multi-)parametric linear programming, where the objective
is to optimize a parameterized linear function over the solutions of

1 Università di Pisa, Italy, email: ruggieri@di.unipi.it

a parameterized linear system. It has a solid theoretical basis and
a wide range of applications [6, 11, 14], including hybrid paramet-
ric/stochastic programming, process planning under uncertainty, ma-
terial design under uncertainty, model based control, multi-processor
scheduling. Besides linear programming problems, parameterized
linear systems have been adopted for symbolic dependence analysis
in computing a parallel schedule [12], fracture mechanics and en-
gineering [19], hardware verification [3], and type systems for con-
straint programming [16].

In this paper, we investigate the decision problem of checking
whether the sets of solutions of a given linear system belongs to the
class of polyhedra defined by a parameterized linear system. Stated
otherwise, we consider deciding whether the set of solutions of a lin-
ear system can be obtained by instantiating parameters in a given
parameterized linear system. More interestingly, we aim at deriv-
ing all or any of such parameter instances. Example questions of the
type above include: “Does this linear system denotes an axis-parallel
square?” and “Which parameter instances do yield the same set of
solutions of this linear system?” We show that the membership de-
cision problem is NP-complete, even when restricting to polytopes
over the two dimensional plane. The proof that the problem is in
NP is constructive. A concise decision procedure is devised using
constraint logic programming over the reals, namely CLP(R), which
enumerates all instances of the parameterized linear system that are
equivalent to the polyhedron of a given linear system.

The rest of this paper is organized as follows. First, we recall
in Section 2 some basic notation and results on linear system and
polyhedra. After defining the decision problem in Section 3, we first
tackle the sub-problem of inclusion in Section 4, and then the full
decision problem in Section 5. A CLP(R) implementation of the de-
cision procedure is presented in Section 6. Finally, we summarize the
contributions of the paper in the conclusions.

2 Background

We adhere to standard notation of linear algebra [17]. R is the set of
real numbers. Small bold letters (a, b, . . .) denote column vectors,
while capital bold letters (A, B, . . .) denote matrices. 0 (resp., 1) is a
column vector with all elements equal to 0 (resp., 1). The transposed
vector of a is denoted by aT . The inner product is denoted by aT ·b.
A · x ≤ b denotes a system of linear inequalities over the variables
in x, also called a linear system. We assume that the dimensions of
vectors and matrices in inner products and linear systems are of the
appropriate size. A polyhedron is the set of solution points of a linear
system: Sol(A · x ≤ b) = {x0 ∈ R|x| | A · x0 ≤ b}. Polyhedra
are convex sets. A linear program:

max cT · x
A · x ≤ b

x+ y ≤ c

x ≤ a

y ≤ b
a = b = c = 1 a = b = 1, c = 2

Figure 1. A parameterized linear system and two of its instances.

is the problem of finding max{cT · x0 | x0 ∈ Sol(A · x ≤ b)}. If
the polyhedron Sol(A · x ≤ b) is empty, the problem is said to be
infeasible. If the linear function cT · x is unbounded, the problem is
said to be unbounded.

An equivalent formulation of linear systems is provided in terms
of logic formulas over the reals. A primitive linear constraint is an
expression a1 x1 + . . . an xn ≤ a0, where a0, . . . , an are constants
in R and x1, . . . , xn are variables. We will also use the inner product
form by rewriting it as cT ·x ≤ d. A linear constraint c is a conjunc-
tion of primitive constraints. Conjunction is syntactically represented
either by “∧” or by a comma. Inequalities cT · x ≥ d and equalities
cT · x = d can be reduced to linear constraints. Any linear system
can be represented as a linear constraint and vice-versa. So, we will
use the two notions interchangeably throughout the paper.

Consider two linear systems P1 : A · x ≤ b and P2 : C · x ≤ d.
The problem of checking whether every solution of P1 is a solution
of P2, namely whether Sol(P1) ⊆ Sol(P2), can also be expressed
as the first-order sentence ∀x [P1 → P2]. This decision problem can
be solved in polynomial time [20]. It suffices to show that for every
primitive constraint cTi · x ≤ di in P2 (where ci is the vector cor-
responding to the ith row of C), the following linear programming
problem is either infeasible or its solution is bounded by di:

max cTi · x
A · x ≤ b

The conclusion follows from the fact that linear programming prob-
lems are solvable in polynomial time [10] and there is a finite number
of primitive constraints in P2. Formally, the following result holds.

Theorem 1 ([20]) The decision problem for the class of formulas
∀x [Ax ≤ b→ C · x ≤ d] is in P.

A parameterized linear system (or, equivalently, a parameterized
linear constraint) over the reals is a system of linear inequalities
A · x ≤ b + M · r where variables in r are parameters. We will
use meta-variables a, b, c, for parameters and x, y, z for variables.
The intended meaning of a parameterized linear system is then a col-
lection of linear systems over variables in x, each obtained by in-
stantiating the parameters r. The notion of parameterized polyhedra
from [12] models the solutions of parameterized linear systems.

Definition 2.1 A parameterized polyhedron is a collection of poly-
hedra defined by fixing the value of parameters in a parameterized
linear system: Sol(A·x ≤ b+M · r, r0) = {x0 ∈ R|x| |A·x0 ≤
b+M · r0}, where r0 ∈ R|r| is an instance of the parameters r.

The Sol() function now returns the set of solution points of a pa-
rameterized linear system for a specific assignment to parameters.

Example 2.1 Figure 1 shows the parameterized linear system C ·
x ≤ d + M · r defined as 0 ≤ x ≤ a, 0 ≤ y ≤ b, x + y ≤ c,
where x, y are variables and a, b, c are parameters. Several types
of polytopes can be obtained as special cases: rectangled-isosceles
triangles by setting a, b, c to a same value (1 in the figure), squares
by setting a, b to a same value v, and c ≥ 2v (v = 1 in the figure),
rectangles by setting c ≥ a + b, and, in addition, some classes of
right trapezoids, and some classes of irregular pentagons.

The expressive power of parameterized linear system is, however,
limited by the fact that parameters can only appear in constant terms.
As an example, the class of rectangled triangles cannot be defined
because it would require inequalities with parameters appearing as
coefficients of variables. For instance, the inequality dx + y ≤ c
in the place of x + y ≤ c in Figure 1 would allow for defining
hypotenuses with any angle of inclination.

3 Problem Statement
The membership problem we are interested in consists of deciding
whether the polyhedron of a given linear system A·x ≤ b belongs to
the class of polyhedra defined by a given parameterized linear system
C · x ≤ d+M · r. A formal statement follows.

Membership problem. Given a linear system A · x ≤ b and a
parameterized linear system C ·x ≤ d+M ·r, decide whether there
exists r0 such that:

Sol(A · x ≤ b) = Sol(C · x ≤ d+M · r, r0) (1)

The problem can be readily re-stated as to decide whether the fol-
lowing first order logic formula holds over the domain of the reals:

∃r ∀x [A · x ≤ b↔ C · x ≤ d+M · r] (2)

Quantified logic formulas over the reals can be solved by quantifier
elimination methods [4, 15, 21]. In this paper, however, we are in-
terested in characterizing the exact computational complexity of the
class of formulas (2). In addition to the decision problem, we are also
interested in the search problem of characterizing which parameter
instances r0 satisfy condition (1).

4 Deciding Inclusion
Let us start considering the “→” side of formula (2):

∃r ∀x [A · x ≤ b→ C · x ≤ d+M · r] (3)

This implication can be read as whether there exist parameter values
r0 such that Sol(A·x ≤ b) ⊆ Sol(C·x ≤ d+M·r, r0), namely a
form of inclusion of polyhedra. [5, Theorem 4.1] firstly showed that
(3) can be checked in polynomial time. For completeness, we report
here a (slightly revised) proof that will be used later on for deriving
a CLP(R) implementation of the decision procedure.

Theorem 2 ([5]) The problem of deciding whether (3) holds is in P.

Proof. Let P1 denote A · x ≤ b and P2 denote C · x ≤ d+M · r.
The satisfiability of P1 (i.e., whether Sol(P1) 6= ∅) can be checked
in polynomial time [10]. If P1 is unsatisfiable, (3) is always true. As-
sume now it is satisfiable. We build a linear program on r as follows.
For every row cTi · x ≤ di +mT

i · r in P2, let ki be the solution of
the linear program:

max cTi · x
A · x ≤ b

P1

P2

ki > di +mi · r1

ki = di +mi · r2

ki < di +mi · r3

Figure 2. Intersecting (r1), incident (r2), and external (r3) hyperplanes at
the variation of parameters in r (see the proof of Theorem 2 for the notation).

If the linear program is unbounded, there cannot be any variable in-
stance r0 of r such that cTi · x ≤ di + mT

i · r0 for all x such that
A · x ≤ b. Thus, (3) is false. Assume now that all ki’s are finite and
let k be the vector of all ki’s. We claim that ∀x [A · x ≤ b →
C · x ≤ d+M · r0] holds iff:

k ≤ d+M · r0 (4)

Intuitively, this means that each hyperplane of C ·x ≤ d+M · r0 is
either incident to some extreme point of Sol(A · x ≤ b) or external
to Sol(A · x ≤ b), e.g., see Figure 2.

Let us show the claim.
If part. Let r0 be such that k ≤ d+M · r0. Since by construction

of k, we have that ∀x [A·x ≤ b→ C·x ≤ k] holds, by transitivity
the following holds ∀x [A · x ≤ b→ C · x ≤ d+M · r0].

Only-if part. Consider a row cTi · x ≤ di + mT
i · r of P2. By

hypothesis, we have ∀x [A · x ≤ b → cTi · x ≤ di + mT
i · r0],

which implies:

max{cTi · x |A · x ≤ b} = ki ≤ di +mT
i · r0

By definition of k, we conclude k ≤ d+M · r0.
As a consequence of our claim, the set of r’s that make the exis-

tential quantification (3) hold is characterized by the solutions of:

k ≤ d+M · r (5)

Hence, (3) holds iff the linear system (5) is satisfiable. Since calcu-
lating k and checking satisfiability of (5) are solvable in polynomial
time, we conclude that checking (3) is a problem in P. 2

Notice that the proof provides a constructive way of determining
the parameter instance r0 for which Sol(A ·x ≤ b) ⊆ Sol(C ·x ≤
d+M · r, r0) holds.

Example 4.1 Consider the the parameterized linear system 0 ≤
x ≤ a, 0 ≤ y ≤ b, x + y ≤ c from Example 2.1. Let us apply
the procedure of the theorem to the linear system P = A · x ≤ b
defined as 0 ≤ x, 0 ≤ y, x + y ≤ 1. First of all, we compute
k = (k1 k2 k3 k4 k5) where:

k1 = max{−x | P} k2 = max{−y | P}
k3 = max{x | P} k4 = max{y | P} k5 = max{x+ y | P}

It turns out that k1 = 0, k2 = 0, k3 = 1, k4 = 1, k5 = 1. The
instances of the parameterized linear system that include Sol(P)

are then characterized by the solutions of the following linear system
over the parameters:

0 ≤ 0, 0 ≤ 0, 1 ≤ a, 1 ≤ b, 1 ≤ c

Notice that not all of them lead to the polyhedron Sol(P). As shown
in Figure 1, a = b = c = 1 leads to Sol(P), but a = b = 1, c = 2
leads to a stricly larger polyhedron.

5 Deciding Equivalence
Consider now our main problem (2). By moving from inclusion to
equivalence, the problem becomes NP-hard.

Theorem 3 The problem of deciding whether (2) holds is NP-hard.

Proof. Let us reduce the 3SAT problem, which is NP-complete, to
formulas (2). Let φ = ∧i=1...nφi be a boolean formula in conjunc-
tive normal form, with φi being a disjunction of at most 3 literals
over the boolean variables a1, . . . , ak. We build a formula (2) as
follows. Let x1, . . . , xn be variables, one for each clause in φ; and
r1, . . . , rk be parameters, one for each boolean variable in φ. The
system A · x ≤ b is 0 ≤ x1 ≤ 1, . . . , 0 ≤ xn ≤ 1 – namely a
hypercube. The parameterized system C ·x ≤ d+M ·r is the set of
inequalities 0 ≤ xi ≤ 1+ rm for every positive literal am appearing
in a clause φi; and 0 ≤ xi ≤ 2 − rm for every negated literal am
appearing in a clause φi. We claim that φ is satisfiable iff (2) holds.

If part. Assume that ∀x [A · x ≤ b ↔ C · x ≤ d + M · r]
holds for parameter r = (r1 . . . rk). We define an assignment to
boolean variables as follows: we set am to true if parameter rm is
0, and am to false otherwise. Consider now a clause φi. Since the
corresponding inequalities in the RHS of the implication must lead
to 0 ≤ xi ≤ 1, there exists a bound, 1 + rm or 2 − rm, equal to
1, and all other bounds greater or equal to 1. If 1 + rm = 1 then
rm = 0; if 2− rm = 1 then rm = 1. In the former case, there exists
a positive literal am in φi which evaluates to true (since rm = 0); in
the latter case, there exists a negative literal am in φi which, again,
evaluates to true (since rm 6= 0). Therefore, every φi is satisfied by
our assignment, which then makes φ satisfiable.

Only-if part. Assume φ satisfiable by some assignment. We fix
the value of a parameter rm to 0 if the boolean variable am is true
in the assignment, and to 1 otherwise. The formula ∀x [A · x ≤
b ↔ C · x ≤ d + M · r] holds iff every xi is constrained to 0 ≤
xi ≤ 1 in the RHS for i = 1, . . . , n. Since φi is true, we have that
there exists at least a literal in φi, say am (resp., am), that evaluates
to true. Hence, 0 ≤ xi ≤ 1 + rm (resp., 0 ≤ xi ≤ 2 − rm)
evaluates to 0 ≤ xi ≤ 1. The literals in φi that evaluate to false lead
to inequalities 0 ≤ xi ≤ 2, hence they do not affect the upper bound
of xi. Summarizing, every variable xi in the RHS is constrained to
range over 0 ≤ xi ≤ 1, hence the LHS and the RHS denote the same
polyhedron. Therefore, (2) holds. 2

Notice that the proof actually shows that deciding whether a hy-
percube belongs to the class defined by a parameterized linear system
is an NP-hard problem.

Example 5.1 Consider the formula φ = (a1∨a2∨a3)∧ (a1∨a2).
Using the reduction from the proof of Theorem 2, φ is satisfiable iff
the following formula holds:

∃r1, r2, r3 ∀x1 ∀x2

0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

}
↔


0 ≤ x1, 0 ≤ x2
x1 ≤ 1 + r1, x1 ≤ 2− r2,
x1 ≤ 1 + r3
x2 ≤ 2− r1, x2 ≤ 1 + r2

Boolean variables a1, a2, a3 are mapped into parameters r1, r2, r3
with the intuitive reading that ai is true iff ri = 0. The RHS param-
eterized system denotes the unit square, i.e., the polyhedron of the
LHS system, iff x1 and x2 have at least an upper bound of 1 and all
other upper bounds greater or equal than 1. For x1, this means that
at least one among 1+r1, 2−r2 and 1+r3 must be 1. Thus, r1 = 0
or r2 = 1 or r3 = 0 must holds, which means that at least one
among a1, a2 and a3 must be true. This is precisely the semantics of
disjunction.

Let us concentrate now on showing that the problem is in NP.
First, we recall from [7] the notions of redundant inequalities and
irredundant linear systems. We write A · x ≤ b \ {cT · x ≤ d} to
denote the linear system obtained by removing the inequality cT ·x ≤
d from A · x ≤ b.

Definition 5.1 An inequality cT · x ≤ d from a system A · x ≤ b is
called redundant if Sol(A·x ≤ b) = Sol(A·x ≤ b\{cT ·x ≤ d}).

A subset Â · x ≤ b̂ of A · x ≤ b is called minimal if it contains
no redundant inequality and Sol(Â · x ≤ b̂) = Sol(A · x ≤ b).

Intuitively, redundant inequalities can be removed from a linear
system without altering its set of solutions. Notice that deciding
whether an inequality is redundant is a polynomial time problem.
In fact, it boils down to checking that ∀x [A · x ≤ b \ {cT · x ≤
d} → cT · x ≤ d holds, which is a problem in P by Theorem 1.
Therefore, checking that a given subset Â · x ≤ b̂ is minimal is in P
as well – as it consists of checking that all inequalities in it are irre-
dundant and that ∀x [Â · x ≤ b̂ → A · x ≤ b] holds. Also, notice
that a linear system may contain one or more minimal subsets.

Let us show now that our main problem is NP-complete.

Theorem 4 The problem of deciding whether (2) holds is NP-
complete.

Proof. We only have to show that the problem is in NP.
Let k be defined as in the proof of Theorem 2. We claim that
∀x [A · x ≤ b ↔ C · x ≤ d + M · r0] holds iff there exists
a minimal subset Ĉ · x ≤ k̂ of C · x ≤ k such that:

k ≤ d+M · r0 (6)

k̂ ≥ d̂+ M̂ · r0 (7)

and the following holds:

∀x [C · x ≤ k→ A · x ≤ b] (8)

where the system in (7) denotes the subset of inequalities of k ≥
d + M · r0 corresponding to the rows of C · x ≤ k that are in
Ĉ · x ≤ k̂.

If part. As shown in the proof of Theorem 2, (6) implies ∀x [A ·
x ≤ b→ C · x ≤ d+M · r0]. Let us show the “←” side. Assume
C · x ≤ d + M · r0. Since Ĉ · x ≤ d̂ + M̂ · r is a subset of
inequalities of C · x ≤ d+M · r, we have that Ĉ ·x ≤ d̂+M̂ · r0
holds as well. Then, by (7), we have that Ĉ · x ≤ k̂ holds as well.
Since Ĉ · x ≤ k̂ is an irredundant subset of C · x ≤ k, we have that
also C · x ≤ k holds. By (8), we conclude A · x ≤ b.

Only-if part. Assume that ∀x [A ·x ≤ b↔ C ·x ≤ d+M · r0]
holds. As shown in the proof of Theorem 2, ∀x [A · x ≤ b →
C · x ≤ d +M · r0] implies (6). A fortiori, our hypothesis implies
(6) as well. Also, we claim that:

∀x [Ĉ · x ≤ k̂↔ C · x ≤ k↔ A · x ≤ b] (9)

holds for any minimal subset Ĉ · x ≤ k̂ of C · x ≤ k. The ←
implications are immediate by definition of k. Consider the → im-
plications. Suppose Ĉ·x ≤ k̂ holds. By re-introducing the redundant
inequalities, we have that C · x ≤ k holds as well. By (6), we then
have C · x ≤ d + M · r0, which, by our hypothesis, allows us to
conclude A · x ≤ b. An immediate consequence of (9) is that (8)
holds. Finally, let us show (7). Let P = C · x ≤ d + M · r0, and
P̂ = Ĉ · x ≤ d̂ + M̂ · r0 be any minimal subset of P . For ev-
ery cTi · x ≤ di + mT

i · r0 in P̂ , we have that there exists x0 in
Sol(P̂) = Sol(P) such that cTi · x0 = di + mT

i · r0 – otherwise,
the inequality would be redundant and then P̂ would not be a min-
imal subset. Since by hypothesis Sol(P) = Sol(A · x ≤ b), by
definition of ki we have then ki ≥ cTi · x0 = di + mT

i · r0. Sum-
marizing, k̂ ≥ d̂+ M̂ · r0, i.e., (7). However, we still have to show
that Ĉ · x ≤ k̂ is a minimal subset of C · x ≤ k. We observe that
k̂ ≥ d̂+ M̂ · r0 and (6) imply k̂ = d̂+ M̂ · r0, and then P̂ is equal
to Ĉ · x ≤ k̂. Therefore, Ĉ · x ≤ k̂ is a minimal subset of P . Since
Sol(P) = Sol(C · x ≤ k) (by 9 and our hypothesis), Ĉ · x ≤ k̂ is
a minimal subset of C · x ≤ k as well.

Summarizing, we can devise a procedure that first computes k,
which takes polynomial time, and then non-deterministically gener-
ates a subset Ĉ · x ≤ k̂ of C · x ≤ k and checks that it is minimal
and that the following conditions hold:

k ≤ d+M · r, k̂ ≥ d̂+ M̂ · r is satisfiable

∀x [C · x ≤ k→ A · x ≤ b] holds.

Since minimality checking and the two conditions above are polyno-
mial time problems, the devised procedure is in NP. 2

Despite the negative result, the proof provides us with a construc-
tive procedure for deciding equivalence.

Example 5.2 Consider again Examples 2.1 and 4.1. We have al-
ready computed k = (0 0 1 1 1). Therefore C · x ≤ k is:

0 ≤ x, 0 ≤ y, x ≤ 1, y ≤ 1, x+ y ≤ 1

It is readily checked that ∀x [C · x ≤ k→ A · x ≤ b] holds, since
A ·x ≤ b is 0 ≤ x, 0 ≤ y, x+y ≤ 1. Also, condition k ≤ d+M ·r
has been already computed:

1 ≤ a, 1 ≤ b, 1 ≤ c (10)

We are left with finding out a minimal subset of C · x ≤ k. Inequali-
ties x ≤ 1 and y ≤ 1 are clearly redundant (see Figure 1). Therefore,
Ĉ · x ≤ k̂ defined as:

0 ≤ x, 0 ≤ y, x+ y ≤ 1

is minimal – and, actually, it is the unique minimal subset. The system
k̂ ≥ d̂+ M̂ · r from the proof of Theorem 4 is then:

0 ≥ 0, 0 ≥ 0, 1 ≥ c

which, together with (10) leads to conclude that the parameterized
linear system is equivalent to A · x ≤ b if and only if:

1 ≤ a, 1 ≤ b, c = 1

We now show that the hardness result holds even when restricting
to the 2-dimensional plane. In the following, we make use of a system
in 2 variables with n irredundant inequalities of the formαix+βiy ≤
γi, for some constants αi, βi, γi with i = 1 . . . n. An example of
such a system is the one with solution points belonging to a regular
n-gon (see Figure 3).

− cos(π/4)−1
sin(π/4)

x+ y ≤ 1

Figure 3. The regular 8-gon, an equiangular and equilateral polygon
inscribed in the unit circle.

Theorem 5 The problem of deciding whether (2) holds is NP-
complete even when restricting to 2 variables.

Proof. The reduction of the 3SAT problem in the proof of Theorem 3
can be re-stated using only 2 variables as follows. The system A·x ≤
b is any system in 2 variables with n irredundant inequalities of the
form αix + βiy ≤ γi, with i = 1 . . . n. The parameterized system
C·x ≤ d+M·r includes, for i = 1 . . . n: an inequality αix+βiy ≤
γi+rm for every positive literal am appearing in a clause φi; and an
inequality αix+ βiy ≤ γi + (1− rm) for every negated literal am
appearing in a clause φi. The assumption that the n inequalities are
irredundant allows us to conclude that some γi+rm or γi+(1−rm)
must be equal to γi in any parameter instance that leads to the LHS
polyhedron. The rest of the proof mimics the proof of Theorem 3. 2

From the proof of Theorem 4, it is readily checked that a sufficient
condition for concluding (2) is to check that k = d + M · r is
satisfiable, and ∀x [C · x ≤ k → A · x ≤ b] holds, where k is
defined as in the proof of the theorem. Since satisfiability of linear
systems of equations is a problem in P and since checking the ∀
formula above is also in P (by Theorem 1), the condition above can
be checked in polynomial time.

Example 5.3 Consider the parameterized linear system C · x ≤
d+M · r denoting axis-parallel hypercubes:

ri ≤ xi ≤ si, for i = 1 . . . n

Since every inequality is irredundant, the only minimal subset of
C · x ≤ k is itself. As a consequence, the sufficient condition above
is also necessary. Thus, we are in the position to conclude that de-
ciding whether a linear system denotes an axis-parallel hypercube is
a problem in P.

More generally, since the decision procedure consists of a search
in the lattice of minimal subsets of a linear system, the membership
problem for a sub-class of parameterized linear systems is in P if, for
such a sub-class, the size of the lattice above can be polynomially
bounded.

6 Decision Procedures in CLP(R)
The Constraint Logic Programming (CLP) Scheme defines a family
of languages, CLP(C), that are parametric in the constraint domain
C. We consider here CLP(R), namely the constraint domain of linear
inequalities over the reals [9]. CLP systems supporting CLP(R) in-
clude ECLiPSe, SICStus Prolog, SWI-Prolog, and many others. The
decision procedures for inclusion (Theorem 2) and equivalence (The-
orem 4) can be concisely coded in CLP(R).

:− use module(library(clpr)).

dec inc(P, ParP) :−
4 copy term(P−ParP, CopyP−CopyParP),

tell cs(CopyP),
6 max(CopyParP, ParP, Leq),

tell cs(Leq).

max([], [], []).
10 max([E =< |Ps], [=< P1|P1s], [K=<P1|Ls]) :−

sup(E, K),
12 max(Ps, P1s, Ls).

14 tell cs([]).
tell cs([C|Cs]) :−

16 {C},
tell cs(Cs).

Figure 4. Inclusion decision procedure in SWI-Prolog.

Figure 4 shows the core implementation of the inclusion proce-
dure. The code runs under SWI-Prolog [22]. Systems of linear in-
equalities are represented as lists of inequalities. The top-level pred-
icate dec inc/2 is given a linear system P (i.e., A · x ≤ b) and a
parameterized linear system ParP (i.e., C ·x ≤ d+M ·r). It makes
a copy of its arguments (using the built-in copy term/2). Then the
inequalities in CopyP are asserted. The predicate tell cs/1 adds
to the constraint store all inequalities passed as an argument. Then
the predicate max/3 computes the maximum2 values of the copy of
C · x over the constraint store (where the copy of A · x ≤ b has
been already asserted), which means calculating k. max/3 assumes
in the second argument C · x ≤ d+M · r and then it returns in the
third argument k ≤ d + M · r . Finally, the clause of dec inc/2
asserts the inequalities k ≤ d+M · r , thus constraining the values
of r to those for which inclusion holds.

Let P be [0 =< X, 0 =< Y, X+Y =< 1], and ParP
be [-X =< 0, X =< A, -Y =< 0, Y =< B, X+Y =<
C] the systems from Example 4.1. Here it is the answer of a query
checking inclusion:

?- dec inc(P, ParP).
{A>=1}, {B>=1}, {C>=1}.

Figure 5 shows the core implementation of the equivalence pro-
cedure. The top-level predicate dec eq/2 is given, again, a linear
system P and a parameterized linear system ParP . It makes a copy
of its arguments, then asserts the copy of the linear system CopyP
and call a revised max/4 predicate. As in the inclusion procedure,
such predicate computes k ≤ d + M · r (as the fourth argument).
In addition, it also computes C · x ≤ k as the third argument. In
order to do this, it needs as input both CopyP (as first argument)
and ParP (as second argument). After the call to max/4, the clause
defining dec eq/2 asserts the inequalities k ≤ d+M · r, as in the
inclusion procedure, then it checks that ∀x [C ·x ≤ k→ A ·x ≤ b]
by calling entails/2. Such a predicate implements the procedure
of Theorem 1 on a copy of its arguments: first, it asserts the LHS
system of the implication, then it checks that the RHS system of the
implication holds in the current constraint store by resorting to the
SWI Prolog built-in entailed/1. The last condition to be checked
from the proof of Theorem 4 requires to compute minimal subsets of
C · x ≤ k. This is done by the minimal/4 predicate, which scans
inequalities in C · x ≤ k accumulating a subset in its first argument.

2 The call of sup/2 at line 11 fails if the expression E has no supremum in
the current constraint store. In such a case, the overall call to dec inc/2
fails, which is consistent with the fact that the inclusion does not hold.

:− use module(library(clpr)).

dec eq(P, ParP) :−
4 copy term(P−ParP, CopyP−CopyParP),

tell cs(CopyP),
6 max(CopyParP, ParP, CxK, Leq),

tell cs(Leq),
8 entails(CxK, P),

minimal([], CxK, Leq, Eq),
10 tell cs(Eq).

12 minimal(Sub, [], [], []) :−
irredundant([], Sub).

14 minimal(Sub, [C|Ps], [K=<P|Leq], [K=P|Eq]) :−
\+ entails(Sub, C),

16 minimal([C|Sub], Ps, Leq, Eq).
minimal(Sub, [C|Ps], [|Leq], Eq) :−

18 append(Sub, Ps, Rest),
entails(Rest, [C]),

20 minimal(Sub, Ps, Leq, Eq).

22 irredundant(, []).
irredundant(Ss, [C|Cs]) :−

24 append(Ss, Cs, All),
\+ entails(All, [C]),

26 irredundant([C|Ss], Cs).

28 entails(S, C) :−
copy term(S−C, S1−C1),

30 tell cs(S1),
is entailed(C1).

is entailed([]).
34 is entailed([C|Cs]) :−

entailed(C),
36 is entailed(Cs).

38 max([], [], [], []).
max([E =< |Ps], [E1 =< P1|P1s], [E1 =< K|Ls], [K=<P1|Es]) :−

40 sup(E, K),
max(Ps, P1s, Ls, Es).

Figure 5. Equality decision procedure in SWI-Prolog.

Clauses at lines 14 and 17 implement the non-deterministic choice
of including or not an inequality C in the subset. The clause at line 12
checks that the selected subset includes only irredundant inequalities
by means of the irredundant/2 predicate. minimal/4 returns
in the fourth argument the set of equalities k̂ = d̂ + M̂ · r. These
are asserted by the dec eq/3 clause in order to check whether they
hold, and for which values of parameters in r.

Let P be [0 =< X, 0 =< Y, X+Y =< 1], and ParP
be [-X =< 0, X =< A, -Y =< 0, Y =< B, X+Y =<
C] the systems from Example 5.2. Here it is the answer of a query
checking equivalence:

?- dec eq(P, ParP).
{A>=1}, {B>=1}, {C=1}.

7 Conclusion

Parameterized linear systems represent a “minimalist” extension of
the expressive power of linear systems. It allows for defining classes
of polyhedra by admitting parameters in the constant terms of in-
equalities. In this paper, we have investigated the problem of decid-
ing whether the polyhedron of solutions of a linear system belongs
to the class defined by a parameterized linear system. It allows us to
code questions such as: (1) “does a hypercube belongs to the poly-
hedra defined by a parameterized linear system?”; or, (2) “does a
regular n-gon belong to the polyhedra defined by a parameterized
linear system over 2 variables?”; or, (3) “does a linear system de-
note a hypercube?”. We have shown that the membership problem is

NP-complete. More precisely, answering questions (1) and (2) is NP-
complete. Our proof is constructive, providing us with an algorithm
which, basically, consists of searching in a lattice of minimal subsets
of a linear system. When such a lattice is polynomially bounded, the
problem is in P – this is the case, for instance, of answering question
(3). A concise implementation of the procedure has been devised in
constraint logic programming over the reals.

REFERENCES
[1] D. S. Arnon, ‘Geometric reasoning with logic and algebra’, Artificial

Intelligence, 37(1-3), 37–60, (1988).
[2] B. G. Baumgart, ‘A polyhedron representation for computer vision’, in

AFIPS National Computer Conference, volume 44 of AFIPS Confer-
ence Proceedings, pp. 589–596. AFIPS Press, (1975).

[3] D. Cachera and K. Morin-Allory, ‘Verification of safety properties for
parameterized regular systems’, ACM Transactions on Embedded Com-
puting Systems, 4(2), 228–266, (2005).

[4] A. Dolzmann, T. Sturm, and V. Weispfenning, ‘Real quantifier elim-
ination in practice’, in Algorithmic Algebra and Number Theory, ed.,
B. H. Matzat et al., 221–248, Springer, (1998).

[5] P. Eirinakis, S. Ruggieri, K. Subramani, and P. Wojciechowski, ‘Com-
putational complexities of inclusion queries over polyhedral sets’, in
International Symposium on Artificial Intelligence and Mathematics,
Fort Lauderdale, FL, (2012).

[6] T. Gal, Postoptimal Analyses, Parametric Programming, and Related
Topics, de Gruyter and Co., Berlin, Germany, 2nd edn., 1995.

[7] H. J. Greenberg, ‘Consistency, redundancy, and implied equalities in
linear systems’, Annals of Mathematics and Artificial Intelligence,
17(1-2), 37–83, (1996).

[8] Y. K. Hwang and N. Ahuja, ‘Gross motion planning a survey’, ACM
Computing Surveys, 24, 219–291, (1992).

[9] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap, ‘The CLP(R) language
and system’, ACM Transactions on Programming Languages and Sys-
tems, 14(3), 339–395, (1992).

[10] L. G. Khachiyan, ‘A polynomial algorithm in linear programming’,
Doklady Akademiia Nauk SSSR, 224, 1093–1096, (1979). English
Translation: Soviet Mathematics Doklady, Volume 20, pp. 1093–1096.

[11] M. Kvasnica, Real-Time Model Predictive Control via Multi-
Parametric Programming: Theory and Tools, VDM Verlag, 2009.

[12] V. Loechner and D. K. Wilde, ‘Parameterized polyhedra and their ver-
tices’, Int. Journal of Parallel Programming, 25, 525–549, (1997).

[13] R. D. McBride and D. E. O’Leary, ‘The use of mathematical program-
ming with artificial intelligence and expert systems’, European Journal
of Operational Research, 70(1), 1–15, (1993).

[14] E. N. Pistikopoulos, M. Georgiadis, and V. Dua, Multi-parametric pro-
gramming: Theory, algorithms and applications, volume 1-2 of Process
systems engineering series, Wiley-VCH, Weinheim, 2007.

[15] S. Ratschan, ‘Efficient solving of quantified inequality constraints over
the real numbers’, ACM Transactions on Computational Logic, 7(4),
723–748, (2006).

[16] S. Ruggieri and F. Mesnard, ‘Typing linear constraints’, ACM Transac-
tions on Programming Languages and Systems, 32(6), (2010).

[17] A. Schrijver, Theory of Linear and Integer Programming, John Wiley
and Sons, New York, NY, 1987.

[18] S. Smaoui, H. Chabchoub, and B. Aouni, ‘Mathematical program-
ming approaches to classification problems’, Adv. Operations Research,
2009, Article ID 252989, (2009).

[19] C. Solares and E. W. V. Chaves, ‘Feasibility conditions in engineering
problems involving a parametric system of linear inequalities’, in Ad-
vances in Mathematical and Statistical Modeling, Statistics for Industry
and Technology, 331–340, Birkhuser Boston, (2008).

[20] K. Subramani, ‘On the complexity of selected satisfiability and equiva-
lence queries over boolean formulas and inclusion queries over hulls’,
Journal of Applied Mathematics and Decision Sciences (JAMDS),
2009, Article ID 845804, (2009).

[21] V. Weispfenning, ‘The complexity of linear problems in fields’, Journal
of Symbolic Computation, 4(1-2), 3–27, (1988).

[22] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, ‘SWI-Prolog’,
Theory and Practice of Logic Programming, 12, 67–96, (2012).

[23] Steven A. Wolfman and Daniel S. Weld, ‘Combining linear program-
ming and satisfiability solving for resource planning’, The Knowledge
Engineering Review, 16(01), 85–99, (2001).

