
Porting Decision Tree Algorithms to Multicore
using FastFlow

Marco Aldinucci1, Salvatore Ruggieri2, and Massimo Torquati2

1 Computer Science Department, University of Torino, Italy
aldinuc@di.unito.it

2 Computer Science Department, University of Pisa, Italy
{ruggieri,torquati}@di.unipi.it

Abstract. The whole computer hardware industry embraced multicores.
For these machines, the extreme optimisation of sequential algorithms is
no longer sufficient to squeeze the real machine power, which can be
only exploited via thread-level parallelism. Decision tree algorithms ex-
hibit natural concurrency that makes them suitable to be parallelised.
This paper presents an approach for easy-yet-efficient porting of an im-
plementation of the C4.5 algorithm on multicores. The parallel porting
requires minimal changes to the original sequential code, and it is able
to exploit up to 7× speedup on an Intel dual-quad core machine.

Keywords: parallel classification, C4.5, multicores, structured parallel
programming, streaming.

1 Introduction

Computing hardware has evolved to sustain an insatiable demand for high-end
performances along two basic ways. On the one hand, the increase of clock fre-
quency and the exploitation of instruction-level parallelism boosted the comput-
ing power of the single processor. On the other hand, many processors have been
arranged in multi-processors, multi-computers, and networks of geographically
distributed machines. This latter solution exhibits a superior peak performance,
but it incurs in significant software development costs. In the last two decades,
the parallel computing research community aimed at designing languages and
tools to support the seamless porting of applications and the tuning of per-
formances [3, 13, 21, 22]. These languages, apart from few exceptions that also
focus on code portability [13, 22], require a redesign of the application logic in
an explicitly parallel language or model.

Up to now, clock speed and algorithmic improvements have exhibited a bet-
ter performance/cost trade-off than application redesign, being the possibility
to preserve the existing code its most important component. Data mining is
not an exception in this regard. By surveying the papers in the main scientific
conferences and journals, there is a diminishing number of proposals for parallel
implementations of data mining algorithms in the last few years. After all, only
a small percentage of data analysis projects can afford the cost of buying (and

2 M. Aldinucci, S. Ruggieri, M. Torquati

maintaining) a parallel machine and a data mining software capable of exploit-
ing it. In most cases, data reduction techniques (such as sampling, aggregation,
feature selection) can mitigate the problem while waiting the advancement in
memory and computational power of low-cost workstations.

Nowadays, however, this vision should be reinterpreted. After years of con-
tinual improvement of single core chips trying to increase instruction-level par-
allelism, hardware manufacturers realised that the effort required for further im-
provements is no longer worth the benefits eventually achieved. Microprocessor
vendors have shifted their attention to thread-level parallelism by designing chips
with multiple internal cores, known as Multicore or Chip Multiprocessors [19].
However,this process does not always translate into greater CPU performance:
multicore are small-scale but full-fledged parallel machines and they retain many
of their usage problems. In particular, sequential code will get no performance
benefits from them. A workstation equipped with a quad-core CPU but running
sequential code is wasting 3/4 of its computational power. Developers, including
data miners, are then facing the challenge of achieving a trade-off between per-
formance and human productivity (total cost and time to solution) in developing
and porting applications to multicore. Parallel software engineering engaged this
challenge trying to design tools, in the form of high-level sequential language ex-
tensions and coding patterns, aiming at simplifying the porting of sequential
codes while guaranteeing the efficient exploitation of concurrency [2, 3, 13, 22].

This paper focuses on achieving this trade-off on a case study by adopting a
methodology for the easy-yet-efficient porting of an implementation of the C4.5
decision tree induction algorithm [15] onto multicore machines. We consider the
YaDT (Yet another Decision Tree builder) [17] implementation of C4.5, which is
a from-scratch and efficient C++ version of the well-known Quinlan’s entropy-
based algorithm. YaDT is the result of several data structure re-design and
algorithmic improvements over Efficient C4.5 [16], which is in turn is a patch to
the original C4.5 implementation improving its performance mainly for the cal-
culation of the entropy of continuous attributes. In this respect, we believe that
YaDT is a quite paradigmatic example of sequential, already existing, complex
code of scientific and commercial interest. In addition, YaDT is an example of
extreme algorithmic sequential optimisation, which makes it unpractical to de-
sign further optimisations. Nevertheless, the potential for improvements is vast,
and it resides in the idle core CPUs on the user’s machine.

Our approach for parallelising YaDT is based on the FastFlow programming
framework [1], a recent proposal for parallel programming over multicore plat-
forms that provides a variety of facilities for writing efficient lock-free parallel
patterns, including pipeline parallelism, task parallelism and Divide&Conquer
(D&C) computations. Besides technical features, FastFlow offers an important
methodological approach that will lead us to parallelise YaDT with minimal
changes to the original sequential code, yet achieving up to 7× boost in perfor-
mance on a Intel dual-quad core. MIPS, FLOPS and speedup have not to be the
only metrics in software development. Human productivity, total cost and time
to solution are equally, if not more, important.

Porting Decision Tree Algorithms to Multicore using FastFlow 3

Multi-core and many-core

cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)

Lock-free SPSC queues and general threading model

Arbitrary streaming networks (building blocks)

Lock-free SPSC, SPMC, MPSC, MPMC queues

Streaming networks patterns

Skeletons: Pipeline, farm, D&C, ...

Simulation

 Montecarlo

Accelerator

self-offloading

Autonomic

Behav.Skeletons

Efficient applications for multicore and manycore

Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...

F
a
s
tF
lo
w

Problem Solving
Environment

High-level
programming

Low-level
programming

Run-time
support

Hardware

Applications

E C

P C

Producer Consumerlock-free SPSC queue

SPMC MPSC

Wn

W1

Farm

input
stream

output
stream

E C

Wn

W1

D&C

uses
E

Fig. 1: FastFlow layered architecture with pattern examples.

The rest of the paper is organised as follows. In Sect. 2, the FastFlow pro-
gramming environment is introduced. We recall in Sect. 3 the C4.5 decision tree
construction algorithm, including the main optimisations that lead to YaDT.
Then the parallelisation of YaDT is presented in detail in Sect. 4, followed by ex-
perimental evaluation and discussion in Sect. 5. Finally, we report related works
in Sect. 6, and summarise the contribution of the paper in the conclusions.

2 The FastFlow Parallel Programming Environment

FastFlow is a parallel programming framework aiming to simplify the develop-
ment of efficient applications for multicore platforms, being these applications
either brand new or ports of existing legacy codes. The key vision underneath
FastFlow is that effortless development and efficiency can be both achieved by
raising the level of abstraction in application design, thus providing designers
with a suitable set of parallel programming patterns that can be compiled onto
efficient networks of parallel activities on the target platforms. To fill the ab-
straction gap, as shown in Fig. 1, FastFlow is conceptually designed as a stack
of layers that progressively abstract the shared memory parallelism at the level
of cores up to the definition of useful programming constructs and patterns.

At the lowest tier of the FastFlow system we have the architectures that it
targets: cache-coherent multiprocessors, and in particular commodity homoge-
neous multicore (e.g. Intel core, AMD K10, etc.).

The second tier provides mechanisms to define simple streaming networks
whose run-time support is implemented through correct and efficient lock-free
Single-Producer-Single-Consumer (SPSC) queues. This kind of queues do not
requires any lock or memory barrier,1 and thus they constitute a solid ground
for a low-latency synchronisation mechanism for multicore. These synchronisa-
tions, which are asynchronous and non-blocking, do not induce any additional

1 for Total Store Order processors, such as Intel core, AMD 10.

4 M. Aldinucci, S. Ruggieri, M. Torquati

cache invalidation as it happens in mutual exclusion primitives (e.g. locks and
interlocked operations), and thus do not add any extra overhead.

The third tier generalises one-to-one to one-to-many (SPMC), many-to-one
(MPSC), and many-to-many (MPMC) synchronisations and data flows, which
are implemented using only SPSC queues and arbiter threads. This abstraction
is designed in such a way that arbitrary networks of activities can be expressed
while maintaining the high efficiency of synchronisations.

The next layer up, i.e., high-level programming, provides a programming
framework based on parallelism exploitation patterns (a.k.a. skeletons [5]). They
are usually categorised in three main classes: Task, Data, and Stream Paral-
lelism. FastFlow specifically focuses on Stream Parallelism, and in particular
provides: farm, farm-with-feedback (i.e. Divide&Conquer), pipeline, and their
arbitrary nesting and composition. These high-level skeletons are actually facto-
ries for parametric patterns of concurrent activities, which can be instantiated
with sequential code (within white circles in Fig. 1) or other skeletons, then
cross-optimised and compiled together with lower FastFlow tiers. The skele-
ton disciplines concurrency exploitation within the generated parallel code: the
programmer is not required to explicitly interweave the business code with con-
currency related primitives.

We refer to [1] for implementation details. FastFlow is open source available
at http://sourceforge.net/projects/mc-fastflow/ under LGPLv3 license.

3 Decision Trees: From C4.5 to YaDT

A decision tree is a classifier induced by supervised learning from a relation T
called the training set. Tuples in T are called cases. An attribute C of the relation
is called the class, while the remaining ones A1, . . . , Am are called the predictive
attributes. The domain of an attribute dom(Ai) can be discrete, namely a finite
set of values, or continuous, namely the set of real numbers. Also, the special
value unknown is allowed in dom(Ai) to denote unspecified or unknown values.
The domain of the class dom(C) = {c1, . . . , cNC} is discrete and it does not
include the unknown value.

A decision tree is a tree data structure consisting of decision nodes and leaves.
A leaf specifies a class value. A decision node specifies a test over one of the
predictive attributes, which is called the attribute selected at the node. For each
possible outcome of the test, a child node is present. A test on a discrete attribute
A has h possible outcomes A = d1, . . . , A = dh, where d1, . . . dh are the known
values in dom(A). A test on a continuous attribute has 2 possible outcomes,
A ≤ t and A > t, where t is a threshold value determined at the node.

3.1 The C4.5 Tree-Induction Algorithm

The C4.5 decision tree induction algorithm [15] is a constant reference in the
development and analysis of novel proposals of classification models [12]. The

Porting Decision Tree Algorithms to Multicore using FastFlow 5

core2 algorithm constructs the decision tree top-down. Each node is associated
with a set of weighted cases, where weights are used to take into account unknown
attribute values. At the beginning, only the root is present, with associated the
whole training set T . At each node a D&C algorithm is adopted to select an
attribute for splitting. We refer the reader to the method node::split in Fig. 2
from the YaDT implementation of the algorithm.

Let T be the set of cases associated at the node. For every c ∈ dom(C), the
weighted frequency freq(c, T) of cases in T whose class is c is computed (§2.2 –
throughout the paper, we use the §M.n to reference line n from the pseudo-code
in Fig. M). If all cases in T belong to the same class or the number of cases
in T is less than a certain value then the node is set to a leaf (§2.3-4). If T
contains cases belonging to two or more classes, then the information gain of
each attribute at the node is calculated (§2.6-7). Since the information gain of
a discrete attribute selected in an ancestor node is necessarily 0, the number of
attributes to be considered at a node is variable (denoted by getNoAtts in §2.6).

For a discrete attribute A, the information gain of splitting T into subsets
T1, . . . , Th, one for each known value of A, is calculated 3. For A continuous,
cases in T with known value for A are first ordered w.r.t. such an attribute. Let
v1, . . . , vk be the ordered values of A for cases in T . Consider for i ∈ [1, k−1] the
value v = (vi + vi+1)/2 and the splitting of T into cases T v

1 whose value for the
attribute A is lower or equal than v, and cases T v

2 whose value is greater than
v. For each value v, the information gain gainv is computed by considering the
splitting above. The value v′ for which gainv′ is maximum is set to be the local
threshold and the information gain for the attribute A is defined as gainv′ .

The attribute A with the highest information gain is selected for the test at
the node (§2.8). When A is continuous, the threshold of the split is computed
(§2.9-10) as the greatest value of A in the whole training set T that is below the
local threshold. Finally, let us consider the generation of the child nodes (§2.12-
14). When the selected attribute A is discrete, a child node for each known value
from dom(A) is created, and cases in T are partitioned over the child nodes on
the basis of the value of attribute A. When A is continuous two child nodes are
created, and cases from T with known value of A are partitioned accordingly to
the boolean result of the test A ≤ t, where t is the threshold of the split. Cases
in T whose value for attribute A is unknown are added to the set of cases of
every child, but their weights are rebalanced.

3.2 From C4.5 to YaDT

The original Quinlan’s implementation of C4.5 maintains the training set as an
array of cases. Each case is an array of attribute values. The decision tree is
grown depth-first. The computation of information gain takes O(r) operations

2 In this paper, we concentrate on the growth phase of the algorithm. The subsequent
prune phase is computationally less expensive.

3 as follows: gain(T, T1, . . . , Th) = info(T)−∑h

i=1

|Ti|
|T | × info(Ti), where info(S) =

−∑NC

j=1

freq(cj ,S)

|S| × log2(
freq(cj ,S)

|S|) is the entropy function.

6 M. Aldinucci, S. Ruggieri, M. Torquati

void node::split () {
2.2 computeFrequencies();

if (onlyOneClass() || fewCases())
2.4 set as leaf () ;

else {
2.6 for(int i=0;i<getNoAtts();++i)

gain[i]= gainCalculation(i) ;
2.8 int best = argmax(gain);

if (attr [best]. isContinuous())
2.10 findThreshold(best);

ns=attr[best]. nSplits () ;
2.12 for(int i=0;i<ns;++i)

childs .push back(
2.14 new node(selectCases(best,i)));

}
2.16 }

Fig. 2: The original YaDT node split-
ting procedure.

bool node::splitPre() {
3.2 computeFrequencies();

if (onlyOneClass() || fewCases()) {
3.4 set as leaf () ;

return true;
3.6 }

return false;
3.8 } void node::splitAtt(i) {

gain[i]= gainCalculation(i) ;
3.10 } void node::splitPost() {

int best = argmax(gain);
3.12 if (attr [best]. isContinuous())

findThreshold(best);
3.14 ns=attr[best]. nSplits () ;

for(int i=0;i<ns;++i)
3.16 childs .push back(

new node(selectCases(best,i)));
3.18 }

Fig. 3: Partitioning of the node::
split method into three steps.

for discrete attributes, where r = |T | is the number of cases at the node; and
O(r log r) operations for continuous attributes, where sorting is the predominant
task. Finally, searching for the threshold of the selected continuous attribute
(§2.10) requires O(|T |) operations, where T is the whole training set. This linear
search prevents the implementation being truly a D&C computation.

Efficient C4.5 (EC4.5) [16] is a patch software improving the efficiency of C4.5
in a number of ways. Continuous attribute values in a case are stored as indexes
to the pre-sorted elements of the attribute domain. This allows for adopting
a binary search of the threshold in the set of domain values at §2.10, with a
computational cost of O(log d) operations where d = maxi|dom(Ai)|. At each
node, EC4.5 calculates the information gain of continuous attributes by choosing
the best among three strategies accordingly to an analytic comparison of their
efficiency: the first strategy adopts quicksort; the second one adopts counting
sort, which exploits the fact that in lower nodes of the tree continuous attributes
ranges tend to be narrow; the third strategy calculates the local threshold using
a main-memory version of the RainForest [7] algorithm, without any sorting.

YaDT [17] is a from scratch C++ implementation of C4.5. It inherits the op-
timisations of EC4.5, and adds further ones, such as searching the local thresh-
old for continuous attributes by splitting at boundary values (Fayyad and Irani
method). Concerning data structures, the training set is now stored by columns,
since most of the computations scan data by attribute values. Most importantly,
the object oriented design of YaDT allows for encapsulating the basic operations
on nodes into a C++ class, with the advantage that the growing strategy of the
decision tree can now be a parameter (depth first, breadth first, or any other
top-down growth). By default, YaDT adopts a breadth first growth – which has
a less demanding memory occupation. Its pseudo-code is shown in Fig. 4 as
method tree::build. Experiments from [16, 17] show that YaDT reaches up to
10× improvement over C4.5 with only 1/3 of its memory occupation.

Porting Decision Tree Algorithms to Multicore using FastFlow 7

void tree :: build() {
4.2 queue<node *> q;

node *root = new node(allCases);
4.4 q.push(root);

while(!q.empty()) {
4.6 node *n = q.front();

q.pop();
4.8 n−>split();

for(int i=0;i<n−>nChilds();++i)
4.10 q.push(n−>getChild(i));

}
4.12 }

Fig. 4: YaDT tree growing procedure.

void tree :: build ff () {
5.2 node *root = new node(allCases);

E=new ff emitter(root,PAR DEGREE);
5.4 std :: vector<ff worker*> w;

for(int i=0;i<PAR DEGREE;++i)
5.6 w.push back(new ff worker());

ff farm<ws scheduler>
5.8 farm(PAR DEGREE*QSIZE);

farm.add workers(w);
5.10 farm.add emitter(E);

farm.wrap around();
5.12 farm.run and wait end();

}

Fig. 5: YaDT-FF D&C setup.

void * ff emitter :: svc(void * task) {
6.2 if (task == NULL) {

task=new ff task(root,BUILD NODE);
6.4 int r = root−>getNoCases();

setWeight(task, r) ;
6.6 return task;

}
6.8 node *n = task−>getNode();

nChilds = n−>nChilds();
6.10 if (noMoreTasks() && !nChilds)

return NULL;
6.12 for(int i=0; i < nChilds; i++) {

node *child = n−>getChild(i);

6.14 ctask=new ff task(child,BUILD NODE);
int r = child−>getNoCases();

6.16 setWeight(ctask, r) ;
ff send out(ctask);

6.18 }
return FF GO ON;

6.20 }

6.22 void * ff worker :: svc(void * task) {
node *n = task−>getNode();

6.24 n−>split();
return task;

6.26 }

Fig. 6: Emitter and Worker definition for the NP strategy.

4 Parallelising YaDT

We propose a parallelisation of YaDT, called YaDT-FF, obtained by stream
parallelism. Each decision node is considered a task that generates a set of sub-
tasks; these tasks are arranged in a stream that flows across a farm-with-feedback
skeleton which implements the D&C paradigm. The FastFlow D&C schema is
shown in the top-right corner of Fig. 1. Tasks in the stream are scheduled by an
emitter thread towards a number of worker threads, which process them in par-
allel and independently, and return the resulting tasks back to the emitter. For
the parallelisation of YaDT, we adopt a two-phases strategy: first, we accelerate
the tree::build method (see Fig. 4) by exploiting task parallelism among node
processing, and we call this strategy Nodes Parallelisation (NP); then, we add
the parallelisation of the node::split method (see Fig. 2) by exploiting par-
allelism also among attributes processing, and we call such a strategy Nodes &
Attributes Parallelisation (NAP). The two strategies share the same basic setup
method, tree::build ff shown in Fig. 5, which creates an emitter object (§5.2-
3) and an array of worker objects (§5.4-6). The size of the array, PAR DEGREE, is
the parallelism degree of the farm. The root node of the decision tree is passed
to the constructor of the emitter object, so that the stream can be initiated from
it. The overall farm parallelisation is managed by the FastFlow layer through
a ff farm object, which creates feedback channels between the emitter and the

8 M. Aldinucci, S. Ruggieri, M. Torquati

void * ff emitter :: svc(void * task) {
7.2 if (task == NULL) {

if (root−>splitPre()) return NULL;
7.4 int r = root−>getNoCases();

int c = root−>getNoAtts();
7.6 for(int i=0;i<c;++i) {

task=new ff task(root,BUILD ATT);
7.8 task−>att = i;

setWeight(task, r) ;
7.10 ff send out(task);

}
7.12 root−>attTasks = c;

return FF GO ON;
7.14 }

node *n = task−>getNode();
7.16 if (task−>isBuildAtt()) {

if (−−n−>attTasks>0)
7.18 return FF GO ON;

n−>splitPost();
7.20 }

nChilds = n−>Childs();
7.22 if (noMoreTasks() && !nChilds)

return NULL;
7.24 for(int i=0; i < nChilds; i++) {

node *child = n−>getChild(i);
7.26 int r = child−>getNoCases();

int c = child−>getNoAtts();
7.28 if (!buildAttTest(r,c)) {

ctask=new ff task(child,BUILD NODE);
7.30 setWeight(ctask, r) ;

ff send out(ctask);
7.32 } else {

if (child−>splitPre()) continue;
7.34 for(int j=0;j<c;++j) {

ctask=new ff task(child,BUILD ATT);
7.36 ctask−>att = j;

setWeight(ctask, r) ;
7.38 ff send out(ctask);

}
7.40 child−>attTasks = c;

}
7.42 return FF GO ON;

}
7.44

void * ff worker :: svc(void * task) {
7.46 node *n = task−>getNode();

if (task−>isBuildAtt())
7.48 n−>splitAtt(task−>att);

else
7.50 n−>split();

return task;
7.52 }

Fig. 7: Emitter and Worker definition for the NAP strategy.

workers (§5.7-11). Parameters of ff farm include: the size QSIZE of each worker
input queue, and the scheduling policy (ws scheduler), which is based on tasks
weights. Basically, such a policy assigns a new task to the worker with the lowest
total weight of tasks in its own input FIFO queue. The emitter class ff emitter
and the worker class ff worker define the behaviour of the farm parallelisation
through the class method svc (short name for service) that is called by the Fast-
Flow run-time to process input tasks. Different parallelisation strategies can be
defined by changing only these two methods. The implementation of the NP and
the NAP strategies are shown in Fig. 6 and Fig. 7 respectively.

NP strategy (Fig. 6). At start-up the ff emitter::svc method is called
by the FastFlow run-time with a NULL parameter (§6.2). In this case, a task for
processing the root node is built, and its weight is set to the number of cases at
the root (§6.3-5). Upon receiving in input a task coming from a worker, the emit-
ter checks the termination conditions (§6.10), and then produces in output the
sub-tasks corresponding to the children of the node (§6.12-18). The ff send out
method of the FastFlow runtime allows for queueing tasks without returning
from the method. Finally, the FF GO ON tag in the return statement (§6.19) tells
the run-time that the computation is not finished (this is stated by returning
NULL), namely further tasks must be waited for from the input channel. The
ff worker::svc method for a generic worker (§6.22-25) merely calls the node
splitting algorithm node::split, and then it immediately returns the computed
task back to the emitter. The overall coding is extremely simple and intuitive
– almost a rewriting of the original tree::build method. Moreover, it is quite
generalisable to any top-down tree-growing algorithm with greedy choice of the
splitting at each node. The weighted scheduling policy is the most specific part;

Porting Decision Tree Algorithms to Multicore using FastFlow 9

in particular, for the use of weights that are linear in the number of cases at the
node. This is motivated by the experimental results of [16, Fig. 1], which show
how the YaDT implementation of node::split exhibits a low-variance elapsed
time per case for the vast majority of nodes.

NAP strategy (Fig. 7). The NAP strategy builds over NP. For a given
decision node, the emitter follows a D&C parallelisation over its children, as in
the case of the NP strategy. In addition, for each child node, the emitter may
decide to parallelise the calculation of the information gains in the node::split
method (§2.6-7). In such a case, the stopping criterion at §2.3 must be evaluated
prior to the parallelisation, and the creation of the child nodes must occur after
all the information gains are computed. This leads to partitioning the code of
node::split into three methods, as shown in Fig. 3.

For the root node, attribute parallelisation is always the case (§7.3-10). A
task with label BUILD ATT is constructed for each attribute, with the field att
recording the attribute identifier (the index i). Tasks are weighted and queued.
The information about how many tasks are still to be completed is maintained
in the attTasks field of the decision node – such a field is added to the original
node class. Upon receiving in input a task coming from a worker, the emitter
checks whether it concerns the processing of an attribute (§7.16). If this is the
case (§7.17-20), the attTasks counter is decremented until the last attribute task
arrives, and then the node::splitPost method is called to evaluate the best
split. At this point, the emitter is given a processed node (either from a worker,
or as the result of the node::splitPost call). Unless the termination conditions
occur (§7.22), the emitter proceeds with outputing tasks. The buildAttTest at
§7.28 controls for each child node whether to generate a single node process-
ing task, or one attribute processing task for each attribute at the child node.
In the former case (§7.29-31), we proceed as in the NP strategy; in the latter
case (§7.33-38), we proceed as for the root node4. Based on the task label, the
ff worker::svc method for a generic worker (§7.46-51) merely calls the node
splitting procedure or the information gain calculation for the involved attribute.

Let us discuss in detail two relevant issues. Let r be the number of cases and
c the number of attributes at the node.

The first issue concerns task weights. Node processing tasks are weighted
with r (§7.30), as in the NP strategy. Although attribute processing tasks have
a finer grain, which suggests a lower weight, there exists a synchronisation point
– all attribute tasks must be processed before the emitter can generate tasks for
the child nodes. By giving a lower weight, we run the risk that all attribute tasks
are assigned to the most unloaded worker, thus obtaining a sequential execution
of the attribute tasks. For these reasons, attribute processing tasks are weighted
with r as well (§7.9,§7.37).

The second issue concerns the test buildAttTest, which decides whether to
perform nodes or attributes parallelisation. We have designed and experimented
three cost models. Attribute parallelisation is chosen respectively when:

4 Notice that tasks for node processing are labelled with BUILD NODE, while tasks for
attribute processing are labelled with BUILD ATT

10 M. Aldinucci, S. Ruggieri, M. Torquati

No. of attributes Tree

T name |T | NC discr. contin. total size depth

Census PUMS 299,285 2 33 7 40 122,306 31
U.S. Census 2,458,285 5 67 0 67 125,621 44
KDD Cup 99 4,898,431 23 7 34 41 2,810 29
Forest Cover 581,012 7 44 10 54 41,775 62
SyD10M9A 10,000,000 2 3 6 9 169,108 22

Table 1: Training sets used in experiments, and size of the induced decision tree.

– (α < r) the number of cases is above some hand-tuned threshold value α;
– (|T | < c r log r) the average grain of node processing (quicksort is r log r on

average) is higher than a threshold that is dependent on the training set.
Intuitively, the threshold should be such that the test is satisfied at the root
node, which is the coarser-grained task, and for nodes whose size is similar.
Since the average grain of processing an attribute at the root is |T | log |T |,
we fix the threshold to a lower bound for such a value, namely to |T |;

– (|T | < c r2) the worst-case grain of node processing (quicksort is r2) is higher
than a threshold that is dependent on the training set. As in the previous
case, the threshold is set to |T |. The higher value cr2, however, leads to
selecting attributes processing more often than the previous case, with the
result of task over-provisioning.

All tests are monotonic in the number r of cases at the node. Hence, if the nodes
parallelisation is chosen for a node, then it will be chosen for all of its descen-
dants. As we will see in Sec. 5, the third cost model shows the best performance.

5 Performance Evaluation

In this section we show the performances obtained by YaDT-FF. The datasets
used in the tests and their characteristics are reported in Table 1. They are
publicly available from the UCI KDD archive, apart from SyD10M9A which
is synthetically generated using function 5 of the QUEST data generator. All
presented experimental results are taken performing 5 runs, excluding the higher
and the lower value obtained and computing the average of the remaining ones.

Experimental framework. All experiments were executed on two different
Intel workstation architectures: Nehalem) a dual quad-core Xeon E5520 Nehalem
(16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main mem-
ory with Linux x86 64. Harpertown) a dual quad-core Xeon E5420 Harpertown
@2.5GHz 6MB L2 cache and 8 GBytes of main memory, with Linux x86 64.
They are a quite standard representative of current and immediately preceding
generation of (low-cost) server boxes. The Nehalem-based machine exploits Si-
multaneous MultiThreading (SMT, a.k.a. HyperThreading) with 2 contexts per
core and the novel Quickpath interconnect equipped with a distributed cache
coherency protocol. SMT technology makes a single physical processor appear
as two logical processors for the operating system, but all execution resources
are shared between the two contexts: caches of all levels, execution units, etc.

Porting Decision Tree Algorithms to Multicore using FastFlow 11

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

FastFlow’s worker threads

ideal
Forest Cover

Census PUMS
KDD Cup 99

SyD10M9A
U.S. Census

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7

S
pe

ed
up

FastFlow’s worker threads

ideal
Forest Cover

Census PUMS
KDD Cup 99

SyD10M9A
U.S. Census

Fig. 8: NP strategy speedup. Nehalem box (left), Harpertown box (right).

Performance. Let us start considering the NP strategy, i.e., the parallelisa-
tion of nodes processing. The obtained speedup is shown in Fig. 8. The maximum
speedup is similar on both architectures, and quite variable from a dataset to
another; it ranges from 1.34 to 3.54 (with an efficiency of 45%). As one would
expect, exploiting inter-nodes parallelism alone is not enough to reach a close
to optimal speedup, because a large fraction of the computing time is spent in
the coarse-grained nodes (those in the higher levels of the tree), thus lacking
parallelism. This phenomenon has been already observed in previous work on
the parallelisation of decision tree construction over distributed memory archi-
tectures [9]. These systems, however, suffer from load balancing problems, which
we will handle later on, and high costs of communications, which in shared mem-
ory architectures do not occur. Summarising, although the NP strategy yields a
modest speedup, it is worth noting that the effort required to port the sequential
code was minimal.

The NAP strategy aims at increasing the available parallelism by exploiting
concurrency also in the computation of the information gain of attributes. This
is particularly effective for nodes with many cases and/or attributes, because
it reduces the sequential fraction of the execution. As presented in Sec. 4, the
emitter relies on a cost model in order to decide whether to adopt attributes
parallelisation. We have tested the three cost models discussed in Sec. 4. Fig. 12
shows that the test |T | < cr2 provides the best performance for almost all
datasets. This is justified by the fact that the test exhibits an higher task over-
provisioning if compared to the test |T | < cr log r, and it is dataset-tailored if
compared to α < r. In all of the remaining experiments, we use that model.

The speedup of YaDT-FF with the NAP strategy is shown in Fig. 9. It
ranges from 4 to 7.5 (with an efficiency of 93%). The speedup gain over the NP
strategy is remarkable. Only for the Census PUMS dataset, the smallest dataset
as for number of cases, the speedup gain is just +12% over NP. Notice that the
SyD10M9A dataset apparently benefits from a super-linear speedup. Actually,
this happens because the speedup is plotted against the number of farm workers.
Hence, the fraction of work done by the emitter thread is not considered, yet
not negligible as shown in Fig. 14.

12 M. Aldinucci, S. Ruggieri, M. Torquati

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

FastFlow’s worker threads

ideal
Forest Cover

Census PUMS
KDD Cup 99

SyD10M9A
U.S. Census

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7

S
pe

ed
up

FastFlow’s worker threads

ideal
Forest Cover

Census PUMS
KDD Cup 99

SyD10M9A
U.S. Census

Fig. 9: NAP strategy speedup. Nehalem box (left), Harpertown box (right).

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

FastFlow’s worker threads

ideal
9 attr.

18 attr.
36 attr.
72 attr.

Fig. 10: Speedup vs no. of attributes
for 1M sample cases from SyD10M9A.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

FastFlow’s worker threads

ideal
T=1M
T=2M
T=4M
T=8M

Fig. 11: Speedup vs no. of sample cases
(T) from SyD10M9A.

YaDT-FF also exhibits a good scalability with respect to both the number of
attributes (Fig. 10) and to the number of cases (Fig. 11) in the training set. The
plots refer to subsets of the SyD10M9A dataset possibly joined with randomly
distributed additional attributes. In the former case, the maximum speedup (7×)
is reached as soon as the number of attributes doubles the available hardware
parallelism (18 attributes for 8 cores). In the latter case, the achieved speedup
increases with the number of cases in the training set.

Load-balancing. The parallelisation of decision tree construction algorithms
may suffer from load balancing issues due to the difficulties in predicting the time
needed for processing a node or a sub-tree. This is exacerbated in the paralleli-
sation of the original C4.5 implementation, because of the linear search of the
threshold (§2.10). Fig. 14 shows that load balancing is not a critical issue for
YaDT-FF with the NAP strategy. We motivate this by two main reasons: 1) the
NAP strategy produces a significant over-provisioning of tasks with respect to
the number of cores; these tasks continuously flow (in a cycle) from the emitter
to the workers and they are subject to online scheduling within the emitter; 2)
FastFlow communications are asynchronous and exhibit very low overhead [1].

Porting Decision Tree Algorithms to Multicore using FastFlow 13

This makes it possible to sustain all the workers with tasks to be processed for
the entire run. This also reduces the dependence of the achieved speedup from
the effectiveness of the scheduling policy. Nevertheless, such dependence exists.

Fig. 13 shows results for three different scheduling policies: 1) Dynamic
Round-Robin (DRR); 2) On-Demand (OD); 3) Weighted Scheduling (WS). The
DRR policy schedules a task to a worker in a round-robin fashion, skipping
workers with full input queue (with size set to 4096). The OD policy is a fully
online scheduling, i.e., a DDR policy where each worker has an input queue of
size 1. The WS policy is a user-defined scheduling that can be set up by assign-
ing weights to tasks through calls to the setWeight method. YaDT-FF adopts
a WS policy, with the weight of a task set to the number r of cases at the node.

It is immediate to observe from Fig. 13 that all the scheduling policies are
fairly efficient. WS exhibits superior performance because it is tailored over the
YaDT-FF algorithm; it actually behaves as a quite efficient online scheduling.
Finally, we show in Fig. 15 how often nodes parallelisation has been chosen by
the emitter against the attributes parallelisation (we recall that the test |T | <
cr2 was fixed). Black stripes lines in the figure denote attributes parallelisation
choices whereas white stripes denote nodes parallelisation ones. As expected, the
former occurs more often when processing the top part of the decision tree (from
left to the right, in the figure).

Simultaneous MultiThreading. We briefly evaluate the benefits achieved
using the Nehalem HyperThreaded box. SMT is essentially a memory latency
hiding technique that is effective when different threads in a core exhibit a shared
working set that induces high cache hit rate. However, even in non-ideal con-
ditions, SMT is able to moderately increase instructions per clock-cycle count,
hence the overall performance, by partially hiding costly memory operations with
threads execution. The comparison between the two graphs in Fig. 9 shows that
several datasets benefit of (about) 30% improvement due to SMT; some others,
such as Census PUMS and KDD Cup, show only a modest benefit (about 12%).
These figures match the expected benefit for this kind of architectures [19]. As
future work, we believe that the effectiveness of SMT can be further improved
by devising a cache-aware weighted scheduling policy.

6 Related Work

Over the last decade, parallel computing aimed at addressing three main classes
of data mining issues: 1) solve inherently distributed problems, e.g., mining of
datasets that are bound to specific sites due to privacy issues; 2) manage larger
datasets by exploiting the aggregate memories of different machines; 3) decrease
the processing time of mining algorithms. In many cases, the latter two issues
have been jointly addressed by trying to bring in-core datasets that are out-of-
core on a single machine. Such an approach, which often requires the redesign
of the algorithms or the introduction of new scalable data structures, is loosing
interest with the ever-increasing availability of main memory space. Our work
distinguishes from this approach, even if it clearly belongs to the third class.

14 M. Aldinucci, S. Ruggieri, M. Torquati

Total Execution Time (sec.)

T name |T | < cr2 α < r |T | < cr log r

Census PUMS 0.85 0.85 0.91
U.S. Census 3.28 3.51 3.35
KDD Cup 99 3.76 3.80 3.77
Forest Cover 2.64 2.66 2.73
SyD10M9A 16.90 16.68 18.16

Effectiveness of buildAttTest(c,r) for different at-
tributes parallelisation cost models. |T | = no. of
cases in the training set, c = no. of attributes at the
node, r = no. of cases at the node, and α = 1000.
Bold figures highlight the best results.

Fig. 12: Attributes parallelisation
tests (Nehalem, 7 worker threads).

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

FastFlow’s worker threads

ideal
on-demand

dyn. round robin
weighted

Fig. 13: Speedup of different schedul-
ing policies over SyD10M9A.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Em
itter

W
orker0

W
orker1

W
orker2

W
orker3

W
orker4

W
orker5

W
orker6

Em
itter

W
orker0

W
orker1

W
orker2

W
orker3

W
orker4

W
orker5

W
orker6

T
im

e
(S

)

work
idle

Forest CoverSyD10M9A

Fig. 14: YaDT-FF execution break-
down (Nehalem, 7 worker threads).

10k 40k 70k 100k 130k 160k

SyD10M9A

10k 40k 70k 100k

U.S Census

10k 40k 70k 100k

Census PUMS

Fig. 15: Nodes (white) vs attributes
(black) parallelisation choices.

Considering the parallelisation methodology, related works can be categorised
as follow: 1) exploiting attributes parallelism by partitioning the training set by
columns and then adopting data parallelism [11, 18]; 2) exploiting nodes par-
allelism by independently building different nodes or sub-trees adopting task
parallelism [6]; 3) combining the two above in various fashions [20, 23]. Several
works focus on distributed-memory machines, including SPRINT [18], ScalParC
[11], pCLOUDS [20], and the approach of [6]. The use of scalable data structures
and of efficient load balancing techniques, trying to minimise costly data redistri-
bution operations, are the most important factors to obtain good performance.
As an example, the earliest SPRINT parallel algorithm adopts scalable SLIQ
data structure for representing the dataset, but it suffers from communication
bottlenecks addressed in the successor system ScalParC. pCLOUDS [20] com-
bines both the data parallel and the task parallel approaches. It exploits data
parallelism for large decision nodes, then it switches to a task parallel approach
as soon as the nodes become small enough. The proposal of [6] categorises tasks
in three different classes: large, intermediate and small ones. Large tasks process
a decision node. Intermediate tasks process a sub-tree up to a given number of

Porting Decision Tree Algorithms to Multicore using FastFlow 15

1E+1W 1E+2W 1E+3W

T name Seq.Time (S) Time (S) Max Boost

Census PUMS 4.46 4.3 2.37 1.69 2.64×
U.S. Census 17.67 17.97 11.17 7.8 2.26×
KDD Cup 99 18.11 17.26 9.12 6.67 2.71×
Forest Cover 16.99 16.97 8.74 5.86 2.90×
SyD10M9A 103.21 93.95 52.34 39.37 2.62×

Table 2: YaDT vs YaDT-FF on a Nehalem quad-core (E= Emitter, W=Worker).

nodes. Small tasks sequentially process the whole sub-tree of a node. YaDT-FF
takes inspiration from the two latter works and distinguish from them for: 1)
it does not need the redesign of the sequential algorithm but rather an easy-
yet-efficient porting of the existing code; 2) it targets multicore rather than
distributed memory machines; 3) it adopts an effective cost model for deciding
whether to parallelise on nodes or on attributes. Few works target data mining
systems on multicore [4, 8, 10, 14], but none specifically decision tree algorithms.

7 Conclusions

Nowadays, and for foreseeable future, the performance improvement of a single
core will no longer satisfy the ever increasing computing power demand. For
this, computer hardware industry shifted to multicore, and thus the extreme
optimisation of sequential algorithms is not longer sufficient to squeeze the real
machine power. Software designers are then required to develop and to port
applications on multicore. In this paper, we have presented the case study of
decision tree algorithms, porting YaDT using the FastFlow parallel programming
framework. The strength of our approach consists in the minimal change of
the original code with, at the same time, a non-trivial parallelisation strategy
(nodes and attributes parallelism plus weighted problem-aware load balancing)
and notable speedup. Eventually, we want to stress the results in the case of a
low cost quad-core architecture that may be currently present in the desktop PC
of any data analyst. Table 2 shows that the parallelisation of YaDT boosts up
to 2.9×, with no additional cost to buy a specific parallel hardware.

References

1. Aldinucci, M., Meneghin, M., Torquati, M.: Efficient Smith-Waterman on multi-
core with FastFlow. In: Proc. of the Euromicro Conf. on Parallel, Distributed and
Network-based Processing (PDP). pp. 195–199. IEEE, Pisa, Italy (2010)

2. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. CACM 52(10), 56–67 (2009)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. Journal of Parallel and Dis-
tributed Computing 37(1), 55–69 (1996)

16 M. Aldinucci, S. Ruggieri, M. Torquati

4. Buehrer, G.T.: Scalable mining on emerging architectures. Phd thesis, Columbus,
OH, USA (2008)

5. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30(3), 389–406 (2004)

6. Coppola, M., Vanneschi, M.: High-performance data mining with skeleton-based
structured parallel programming. Parallel Computing 28(5), 793–813 (2002)

7. Gehrke, J.E., Ramakrishnan, R., Ganti, V.: RainForest — A framework for fast
decision tree construction of large datasets. Data Mining and Knowledge Discovery
4(2/4), 127–162 (2000)

8. Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D., Nguyen, A., Chen, Y.K.,
Dubey, P.: Cache-conscious frequent pattern mining on a modern processor. In:
Proc. of the Intl. Conf. on Very Large Data Bases (VLDB). pp. 577–588 (2005)

9. Han, E., Srivastava, A., Kumar, V.: Parallel formulation of inductive classification
parallel algorithm. Tech. rep., Department Computer and Information Science,
University of Minnesota (1996)

10. Jin, R., Yang, G., Agrawal, G.: Shared memory parallelization of data mining algo-
rithms: Techniques, programming interface, and performance. IEEE Transactions
on Knowledge and Data Engineering 17, 71–89 (2005)

11. Joshi, M., Karypis, G., Kumar, V.: ScalParC: A new scalable and efficient parallel
classification algorithm for mining large datasets. In: Proc. of IPPS/SPDP. pp.
573–579. IEEE (1998)

12. Lim, T., Loh, W., Shih, Y.: A comparison of prediction accuracy, complexity,
and training time of thirthy-tree old and new classification algorithms. Machine
Learning Journal 40, 203–228 (2000)

13. Park, I., Voss, M.J., Kim, S.W., Eigenmann, R.: Parallel programming environment
for OpenMP. Scientific Programming 9, 143–161 (2001)

14. Pisharath, J., Zambreno, J., Ozisikyilmaz, B., Choudhary, A.: Accelerating data
mining workloads: Current approaches and future challenges in system architecture
design. In: Proc. of Workshop on High Performance and Distributed Mining (2006)

15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Ma-
teo, CA (1993)

16. Ruggieri, S.: Efficient C4.5. IEEE Transactions on Knowledge and Data Engineer-
ing 14, 438–444 (2002)

17. Ruggieri, S.: YaDT: Yet another Decision tree Builder. In: 16th IEEE Int. Conf.
on Tools with Artificial Intelligence (ICTAI). pp. 260–265. IEEE (2004)

18. Shafer, J.C., Agrawal, R., Mehta, M.: SPRINT: A scalable parallel classifier for
data mining. In: Proc. of the Intl. Conf. on Very Large Data Bases (VLDB). pp.
544–555 (1996)

19. Sodan, A.C., Machina, J., Deshmeh, A., Macnaughton, K., Esbaugh, B.: Paral-
lelism via multithreaded and multicore CPUs. IEEE Computer 43(3), 24–32 (2010)

20. Sreenivas, M.K., Alsabti, K., Ranka, S.: Parallel out-of-core divide-and-conquer
techniques with application to classification trees. In: Proc. of IPPS/SPDP. pp.
555–562. IEEE (1999)

21. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A language for streaming
applications. In: Proc. of the Intl. Conf. on Compiler Construction (CC). pp. 179–
196. Springer-Verlag, London, UK (2002)

22. Vanneschi, M.: The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing 28(12), 1709-1732 (2002)

23. Zaki, M., Ho, C.T., Agrawal, R.: Parallel classification for data mining on shared-
memory multiprocessors. In: Proc. of the Intl. Conf. on Data Engineering (ICDE).
pp. 198–205. IEEE (1999)

