
YaDT: Yet another Decision Tree builder

Salvatore Ruggieri
Dipartimento di Informatica, Università di Pisa

Via F. Buonarroti 2, 56127 Pisa, Italy
ruggieri@di.unipi.it

http://www.di.unipi.it/∼ruggieri

Abstract

YaDT is a from-scratchmain-memoryimplementation of
the C4.5-like decision tree algorithm. Our presentation will
be focused on the design principles that allowed for ob-
taining an extremely efficient system. Experimental results
are reported comparing YaDT with Weka,dti , Xelopes and
(E)C4.5.

1. Introduction

The C4.5 decision tree algorithm of Quinlan [10] has al-
ways been taken as a reference for the development and
analysis of novel proposals of classification algorithms. The
survey [5] shows that it provides good classification accu-
racy and is the fastest among the comparedmain-memory
classification algorithms. C4.5 has been further improved
in efficiency in [11], where a patch called EC4.5 adds sev-
eral optimizations in the tree construction phase. Unfortu-
nately, C4.5 (and EC4.5) are implemented in the old style
K&R C code. The sources are then hard to understand, pro-
file and extend.

An ANSI C implementation (calleddti) is available in
the Borgelt’s software library [1], while object oriented im-
plementations are provided in Java by the Weka environ-
ment [12] and in C++ by the Xelopes1 library [7].

In this paper, we describe a new from-scratch C++ im-
plementation of a decision tree induction algorithm, which
yields entropy-based decision trees in the style of C4.5. The
implementation is called YaDT, an acronym forYet another
Decision Tree builder.

The intended contribution of this paper is to present the
design principles of the implementation that allowed for ob-
taining a highly efficient system. We discuss our choices

1 At the time of writing, however, only ID3 (the precursor of C4.5) is
available in the Xelopes C++ library.

on memory representation and modelling of data and meta-
data, on the algorithmic optimizations and their effect on
memory and time performances, and on the trade-off be-
tween efficiency and accuracy of pruning heuristics.

2. Meta data representation

A decision tree induction algorithm takes as input a
training setT S, which is a set ofcases, or tuples in the
database terminology. Each case specifies values for a col-
lection ofattributes.

Each attribute has one the followingattribute types: dis-
crete, continuous, weightsor class. The type of an attribute
is concerned with its use in the tree construction algorithm,
as we will see later. In the training set, there must be one
and only one attribute of typeclass(the “target” attribute)
and at most one of typeweights.

The values of an attribute in a case belong to somedata
typeincluding:integer, float, double, string. Also, they may
include a special value (such as’?’ or NULL), which de-
notes unknown values.

Summarizing, in YaDT meta data describing the train-
ing setT S can be structured as a table with columns: at-
tribute name, data type and attribute type. Such a table can
be provided as a database table, or as a text file such as:

outlook,string,discrete
temperature,integer,continuous
humidity,integer,continuous
windy,string,discrete
goodPlaying,float,weights
toPlay,string,class

Here, the classicPlayTennisexample is reported, de-
scribing whether we played tennis or not under some out-
look, temperature, humidity and windy conditions. The at-
tribute goodPlaying is a measure of how good was the
choice.

YaDT abstracts eachdata typeby a C++ classdatatype
reported in Fig. 1. For each data type, it must be provided a
constructor from a string representation of a value, a method

classdatatype{
public:

// Constructor
datatype(conststring& s);
// String representation
string toString()const;
// Hashing function
int hash();
// Equality operator.
bool operator ==(constdatatype& dt);
// Is there a total order among values?
static bool totalOrder();
// Semisum operator (only iftotalOrder())
datatype semisum(constdatatype& dt);
// Comparison operator (only iftotalOrder())
bool operator <(constdatatype& dt);
};

Figure 1. A C++ class modelling data types.

to get back to the string representation, a hashing function,
and an equality operator. Also, if the data type admits a to-
tal ordering (modelled by thetotalOrder() method), then
also a semi-sum operator and a comparison operator should
be provided. ThetotalOrder() method is a link between
the data type and the attribute type. Classes for whichto-
talOrder() returnstrue model data types that can be used
for continuous or weights attributes.

In principle, data types other than the basic ones (inte-
ger, float, strings) can be added to the system, provided that
the interface of Fig. 1 can be designed for them. As an ex-
ample, adatetimedata type readily fits the interface. As
a more interesting example, we could design a variant of
the float data type, let us call itdfloat, that takes into ac-
count a non-uniform distribution of values, e.g. a normal
one. Specifically, thesemisum()operator for thedfloatdata
type does not return the semi-sum of two floats (which is
the float equi-distant from two given ones under the uni-
form distribution), but the float equi-distant from two ones
under the given distribution.

3. Data representation

From a logical point of view, the training set is a ta-
ble whose column names, data types and attribute types are
those described in meta data. Training data can be provided
in YaDT as a database table or as a (possibly compressed)
text file. As an example, training data forPlayTennismay
include the following cases:

sunny,85,85,false,1,Don’t Play
sunny,80,90,true,1,Don’t Play
overcast,83,78,false,1.5,Play

rain,70,96,false,0.8,Play
overcast,64,65,true,2.5,Play
...

Since YaDT is a main-memory algorithm, training data
is loaded into memory. While the choice of a data struc-
ture for storing the training set is not terrifically relevant for
performance as for out-of-core algorithms, it is still impor-
tant to accurately consider memory occupation. Let us re-
view some approaches.

C4.5 models an attribute value by aunion structure to
distinguish discrete from continuous attributes.

typedef union {
short discr;
float cont;

} AttValue;

typedef AttValue ** Table;

Distinct values of discrete attributes are stored in a spe-
cific array and the attribute value actually refers the posi-
tion in such array – let us say that we store theid-value.
Values of continuous attributes are stored directly in the
union structure. A table is represented as a matrix where
the first dimension is thecase numberand the second one
is theattribute number. In other words, the table is stored
by rows. Summarizing, at least|T S| · |A| · sizeof(float)
bytes are required to store the training set, whereA is the set
of attribute names. Also, accessing an attribute value (e.g.,
Table[3][2].cont) requires two accesses in memory
(the one toTable[3] and the one toTable[3][2]).

As C4.5, Weka stores the tableby rows, using id-codes
for discrete attributes. Both id-codes and continuous val-
ues are represented by adouble data type. Since typically
sizeof(double) = 2 ∗ sizeof(float), Weka requires twice
the memory needed by C4.5.

EC4.5 stores continuous values as discrete ones, i.e. it
storesid-values both for continuous and discrete attributes.
While this is useful for algorithmic optimizations, it does
not improve on the memory requirements of C4.5, sinceid’s
range overint and typicallysizeof(int) = sizeof(float).

Xelopes store the tableby columns, i.e. each attribute is
represented as a vector of values (always of typedouble).
As in C4.5, discrete attributes storeid-values and continu-
ous values are represented directly. While the memory re-
quirements are the same of Weka, scanning the values of an
attribute for a set of cases (which will be a common task
of the algorithm) is now faster since each value can be re-
trieved with a single access in memory.

Finally, Borgelt’sdti approach is in the middle between
C4.5 and Xelopes, since it stores the tableby columns(as
Xelopes), but values are represented with theunion struc-
ture (as in C4.5). Therefore, the memory occupation is the
same as C4.5.

Let us present the YaDT solution. As in EC4.5, we store
id-values both for discrete and continuous attributes (and
also for the class attribute). As indti , we store the tableby
columns. Differently from EC4.5 anddti , we can now ob-
serve that forn distinct attribute values (plus, possibly, the
unknownvalue),dlog(n + 1)e bits are sufficient to codeid-
values. Since codingid-values at bit-level compromises ef-
ficiency, YaDT uses the minimal integral data type (bool,
unsigned char, unsigned short, unsigned int) that is rep-
resented with at leastdlog(n + 1)e bits.

The major benefit of the approach is the following. Con-
sider an attribute such asage. Since there are at most256
distinct values for it (actually, much less), we can use an ar-
ray of unsigned char to store the attribute indexes. Since
sizeof(unsigned char) = 1 and – on most machines –
sizeof(float) = 4, this means that storing the attribute
requires1/4 of the space required by (E)C4.5 anddti .
The same reasoning can be done with attributes with only
two values (an array ofbool suffices) and with at most
65536 values (an array ofunsigned short suffices). Im-
plementing such a parametric approach in C++ is quite
natural and efficient by means of templates. As an exam-
ple, let us consider the real world datasetAdult from the
UCI Machine-Learning Repository [2]. It consists of 15 at-
tributes reporting people age, workclass, education, race,
sex, etc. The memory occupation of the dataset is 3Mb for
(E)C4.5, 2.8Mb fordti , 6Mb for Weka and Xelopes, and
only 1.1Mb for YaDT.

As a drawback of the chosen representation, two scans
of the input training set are now required. First pass col-
lects the distinct values of each attribute. These values are
sorted and maintained in memory. Second pass reads val-
ues, lookups their position in the distinct value array and
stores the position as theid-value.

4. Tree induction algorithms

A decision treeis a tree data structure consisting ofdeci-
sion nodesandleaves. A leaf specifies a class value. A de-
cision node specifies atestover one of the attributes, which
is called the attributeselectedat the node. For each possi-
ble outcome of the test, a child node is present. In particu-
lar, the test on a discrete attributeA hash possible outcomes
A = d1, . . . , A = dh, whered1, . . . dh are the known val-
ues for attributeA. The test on a continuous attribute has
two possible outcomes,A ≤ t andA > t, wheret is a value
determined at the node, and called thethreshold.

A decision tree is used toclassifya case, i.e. to assign
a class value to a case depending on the values of the at-
tributes of the case. In fact, a path from the root to a leaf of
the decision tree can be followed based on the attribute val-
ues of the case. The class specified at the leaf is the class
predictedby the decision tree. A performance measure of a

Figure 2. A decision tree built with YaDT.

decision tree over a set of cases is calledclassification er-
ror. It is defined as the percentage ofmis-classifiedcases,
i.e. of cases whose predicted class differs from the actual
class.

A decision tree built with YaDT can be exported in text
format, in an internal binary format, in XML format compli-
ant to the Predictive Modelling Markup Language (PMML)
specification [6]. Also, trees are navigable with a simple
Java graphic user interface as shown in Fig. 2.

4.1. C4.5-like algorithm

The C4.5 algorithm constructs the decision tree with a
divide and conquerstrategy. Each node in a tree isassoci-
ated with a set of cases. Also, cases are assignedweights
to take into account unknown attribute values. At the be-
ginning, only the root is present, with associated the whole
training setT S and with all case weights equal to1.0 (or, if
present, to the value of the attribute with typeweights). The
following divide and conqueralgorithm is executed, trying
to exploit the locally best choice, with no backtracking al-
lowed.

At each node, theinformation gain[10] of each attribute
is calculated with respect to the cases at the node. For dis-
crete attributes, the information gain is relative to the split-
ting of cases inT into sets with distinct attribute values.
For continuous attributes, the information gain is relative to
the splitting ofT into two subsets, namely cases with at-
tribute valuenot greater thanand cases with attribute value
greater thana certainlocal threshold, which is determined
during information gain calculation.

The attribute with the highest information gain is se-
lected for the test at the node. Moreover, in case a contin-

No. of attributes Elapsed time
N T S name |T S| NC Disc. Cont. Tot. Weka dti EC4.5 YaDT
1 Thyroid 3,772 3 15 6 21 0.39s 0.90s 0.08 0.08s
2 Statlog Satel. 4,435 6 36 36 3.4s 2.6s 0.7s 0.5s
3 Musk Clean2 6,598 2 2 166 168 16.8s 33s 4.8s 1.5s
4 Letter 20,000 26 16 16 21s 10s 1.4s 1.1s
5 Adult 48,842 2 8 6 14 36s 11s 4.3s 2.6s
6 St. Shuttle 58,000 7 9 9 17s 12.2s 2.4s 0.6s
7 Forest Cover 581,012 7 44 10 54 ∞ 31m35s 4m53s 1m20s
8 SyD106 1,000,000 2 3 6 9 16m 5m46s 2m10s 1m24s
9 KDD Cup 99 4,898,431 22 7 34 41 ∞ 2h7m 19m05s 4m19s
10 SyD107 10,000,000 2 3 6 9 ∞ 2h26m 24m42s 10m32s

Table 1. Datasets used in experiments and elapsed time for building a decision tree (∞ means out of 1Gb main
memory). Processor: Pentium IV 1.8Ghz. OS: Red Hat Linux 8.1.

uous attribute is selected, thethresholdis computed as the
greatest value of thewholetraining set that is below the lo-
cal threshold. Thedivide and conquerapproach consists of
recursively applying the same operations on a partition of
cases (actually, cases with unknown value of the selected
attribute are replicated in all child nodes) with proportional
weights.

The classification error of a node is calculated as the sum
of the errors of the child nodes. If the result is greater than
the error of classifying all cases at the node as belonging to
the most frequent class, then the node is set to be a leaf, and
all sub-trees are removed.

4.2. YaDT optimizations

EC4.5 [11] implements several optimizations, mainly re-
lated to the efficient computation of information gain. At
each node, EC4.5 evaluates information gain of attributes
by choosing the best among three strategies. All the strate-
gies adopt a binary search of the threshold in the whole
training set starting from the local threshold computed at
a node. The first strategy computes the local threshold us-
ing the algorithm of C4.5, which in particular sort cases
by means of thequicksort method. The second strategy
also uses the algorithm of C4.5, but adopts acounting sort
method. The third strategy calculates the local threshold us-
ing a main-memory version of the RainForest [4] algorithm,
which does not need sorting. The selection of the strategy
to adopt is performed accordingly to an analytic compari-
son of their efficiency. We refer the reader to [11] for fur-
ther details.

YaDT inherits from EC4.5 the same optimizations. In ad-
dition, it implements the approach of Fayyad and Irani [3],
which speeds up finding the local threshold for continuous
attributes by considering splittings atboundaryvalues.v is
a boundary value if there exist two cases at the node with at-

tribute valuev and with distinct class value, or if all cases
with attribute valuev at the node have the same class which
is not the class of all cases with the successor attribute value.

As a further optimization, let us now consider the way
a tree is built. After splitting a node, a (weighted) subset
of cases are “pushed down” to each child node. How to
represent then weighted subsets and the “pushing down”
method?

(E)C4.5 maintains an array of weighted case indexes.
After splitting a node, for each child the cases that must
be pushed down are rearranged at the beginning of the ar-
ray, and their weights updated (by a factor computed at the
node). A depth-first strategy is necessarily adopted to build
the tree. After a child tree has been completely built, the
weights of cases are rolled back.

On the contrary, YaDT builds a weighted array for each
node. On the one hand, the roll-back of weights is not nec-
essary anymore. On the other hand, any building strategy
can be adopted, since each node maintains its own private
data. We experimented both a depth-first and a breadth-first
growing strategy.

The depth-first strategy is slightly faster, since the fol-
lowing optimization can be implemented. Consider a node
with n childs and assume that after building the first child
tree the resulting error is greater than the one of making the
node a leaf. In this case, the algorithm would cut all the child
sub-trees. Therefore, we can prevent building child nodes2
to n at once.

The breadth-first strategy has a better memory occupa-
tion performance, requiring to maintain arrays of weights
and cases indexes for a total of at most2 · |T S| elements,
i.e. for all cases that may appear in at most two levels of the
decision tree. With a depth-first strategy this upper bound
can be much higher, especially when tests do not split cases
uniformly among child nodes. For this reason, the default
strategy in YaDT is the breadth-first one.

YaDT simpl YaDT+C4.5simpl
Time Mem Error Time Mem Error

1 Thyroid 0.07s 181Kb 0.35% 0.07s 181Kb 0.35%
2 Statlog Satel. 0.38s 345Kb 36.7% 0.45s 455Kb 36.7%
3 Musk Clean2 1.2s 3.1Mb 0.45% 1.2s 3.1Mb 0%
4 Letter 0.8s 1.4Mb 14% 1.0s 1.9Mb 13.96%
5 Adult 1.8s 3.6Mb 13.89% 2.1s 5.4Mb 13.86%
6 St. Shuttle 0.46s 2.2Mb 0.057% 0.55s 3.9Mb 0.057%
7 Forest Cover 1m00s 30.9Mb 32.40% 1m29s 91.5Mb 32.71%
8 SyD106 57s 54.4Mb 0.76% 1m05s 59.6Mb 0.75%
9 KDD Cup 99 3m46s 341Mb 14.1% 4m10s 421Mb 14.1%
10 SyD107 8m13s 451Mb 0.31% 9m20s 549Mb 0.307%

Table 2. Time, memory and classification error comparisons between YaDT default simplification and YaDT
with the C4.5 simplification procedures (datasets split into 70% training, 30% test; error is on test set).

4.3. Some experiments on efficiency

The relevant characteristics of the training sets used in
experiments are reported in Table 1. Each row contains the
name of the training set (T S name), the number of cases
(|T S|), the number of class values (NC), the number of
discrete attributes, the number of continuous attributes, and
the total number of attributes. Training sets(1−7) are taken
from the UCI Machine-Learning Repository [2], while(9)
is from theKDD Cup Competition 1999[8] and(8, 10) are
synthetic datasets generated by the Quest Generator [9] us-
ing function 5.

Table 1 reports the elapsed time of building a C4.5-like
decision tree on the mentioned training sets for the Weka,
dti , EC4.5 and YaDT systems. The elapsed time includes
data loading and tree construction, but not tree simplifi-
cation (see next section for this issue). The trees built are
nearly the same, but not exactly the same mainly due to dif-
ferent arithmetical rounding errors. From Table 1, we derive
the following observations:

Weka has critical memory limitations that lead to disk
swapping for datasets (7,9,10). The problem is due to the
use of thedouble data type for representing attribute val-
ues. In most cases, boolean, small integers or integers would
have been sufficient. When not exceeding memory, Weka
performs the worst. Looking inside the Weka source code,
we note that it does linear search of threshold when the se-
lected attribute is continuous. As noted in [11], this is the
main source of C4.5 efficiency limitations and should be re-
placed with a binary search (obviously, this requires main-
taining an ordered list of attribute values or a similar appro-
priate data structure).

The dti system does not run out of memory, due to
the use of thefloat data type for representing attribute val-
ues (instead ofdouble as in Weka). Also, it prevents lin-
ear search of thresholds by setting the threshold equal to the

local threshold. This is somewhat departing from the C4.5
algorithm. Moreover, there is no particular optimization in
computing the information gain of continuous attributes.
As a result, execution times become higher and higher as
the number of continuous attributes increases (training sets
(3,7-10)).

EC4.5 is a patch to C4.5 that performs several optimiza-
tions to the computation of information gain of continuous
attributes. While the memory requirements are the same of
C4.5 anddti , those optimizations allow for speeding up
the execution time up to 75-80% for the medium-large train-
ing sets (9,10).

In addition to the optimizations of EC4.5 (and some fur-
ther ones), YaDT maintains minimal data structures to store
in memory the training set. This allows for building deci-
sion trees on larger training sets. For instance, the memory
required by YaDT for storing the training set (9) in memory
is about 250Mb against 860Mb required by EC4.5. Summa-
rizing, YaDT is at least twice faster than EC4.5 and allows
for reasoning on larger training sets.

5. Pruning decision trees

Decision tree are commonly pruned to alleviate the over
fitting problem. The C4.5 system adopts anerror-based
pruning (EBP), which consists of a bottom-up transversal
of the decision tree. At each decision node a pessimistic es-
timates is calculated of: (1) the error in case the node is
turned into a leaf; (2) the sum of errors of child nodes in
case the node is left as a decision node. If (1) is lower or
equal than (2) then the node is turned into a leaf. In addi-
tion, C4.5 estimates also: (3) the error ofgrafting a child
sub-tree in place of the node. More in detail, given the child
nodeN with the maximum number of cases associated, (3)
is calculated by “moving downwards” the cases associated
to the node towards the childN and its sub-trees.

Figure 3. Memory usage over time for YaDT (left) vs YaDT with the full C4.5 simplification procedure (right) on
the adult dataset. The vertical line denotes the end of the construction phase and the beginning of the pruning
phase. Note that the X, Y scales of the two plots are different.

It turns out that (3) is a time and memory consuming
phase. In fact, (1+2) requires for each node to compute its
error and to pass it upwards to the father node. (1+2+3) re-
quires for each node to compute, in addition, the error of
a whole sub-tree. By default, YaDT does not perform (3) –
yet being an option to include it (as in Weka anddti). Ta-
ble 2 reports the time, memory and error of trees simpli-
fied by default YaDT (i.e., (1+2)) and by YaDT with the
C4.5 pruning procedure (i.e., (1+2+3)). In most cases, the
error rates are the same. However, as the size of dataset in-
creases, including step (3) turns into a much more demand-
ing time and memory requirements.

Even more interesting is Figure 3, showing memory allo-
cation over time. Default YaDT starts requiring memory for
the dataset, then for each node of the tree being built. At the
end of tree construction, the pruning steps (1+2) does not
require significative additional memory or time. In contrast,
steps (1–3) require a considerable amount of total time and
the repeated allocation/release of large amounts of memory.

6. Conclusions

We have presented the design principles of YaDT on
meta-data representation, data representation, algorithmic
optimizations and tree pruning heuristics. We believe that
those principles may be of general help in the design of old
and new algorithms for decision trees induction, and, more
in general, of main-memory divide-and-conquer AI algo-
rithms.

References

[1] C. Borgelt. A decision tree plug-in for DataEngine.
In Proc. 6th European Congress on Intelligent Tech-

niques and Soft Computing, volume 2, pages 1299–1303,
1998. Verlag Mainz. dti version 3.12 fromhttp://-
fuzzy.cs.uni-magdeburg.de/ ∼borgelt .

[2] E. K. C. Blake and C. Merz. UCI repository of machine
learning databases http://www.ics.uci.edu/-
∼mlearn/mlrepository.html , 2003.

[3] U. M. Fayyad and K. B. Irani. On the handling of
continuous-valued attributes in decision tree generation.Ma-
chine Learning, 8:87–102, 1992.

[4] J. E. Gehrke, R. Ramakrishnan, and V. Ganti. RainFor-
est — A framework for fast decision tree construction of
large datasets. Data Mining and Knowledge Discovery,
4(2/4):127–162, 2000.

[5] T. Lim, W. Loh, and Y. Shih. A comparison of prediction ac-
curacy, complexity, and training time of thirthy-tree old and
new classification algorithms.Machine Learning Journal,
40:203–228, 2000.

[6] Predictive Model Markup Language (PMML). Version 2.0.
http://www.dmg.org .

[7] Prudsys AG. The XELOPES library (eXtEnded Library fOr
Prudsys Embedded Solutions) v. 1.1 for C++, May 2003.
http://www.prudsys.com .

[8] KDD Cup Competion Data Sets. On-
line documentation, 1999. http://-
www.epsilon.com/new/1datamining.html .

[9] Quest synthetic data generation code. On-line doc-
umentation, Visited in May 2003. http://-
www.almaden.ibm.com/software/quest .

[10] J. R. Quinlan.C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, San Mateo, CA, 1993.

[11] S. Ruggieri. Efficient C4.5.IEEE Transactions on Knowl-
edge and Data Engineering, 14:438–444, 2002.

[12] I. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan & Kaufmann, 2000. Weka version 3.2.3 from
http://www.cs.waikato.ac.nz/ml/weka .

