Fondamenti dell'Informatica: Semantica

Prova scritta del 20 gennaio 2005

Esercizio 1 (7 punti)

Si dimostri che, per ogni $\sigma, \sigma' \in \Sigma$,

se
$$\langle \mathbf{while} \ x \neq 0 \lor y \neq 0 \ \mathbf{do} \ x := x - 1; \ y := y - 1, \sigma \rangle \to \sigma'$$
 allora $\sigma(x) = \sigma(y) \geq 0 \ \land \ \sigma' = \sigma[0/x, 0/y].$

Esercizio 2 (8 punti)

Sia $(\omega \cup \{\infty\}, \geq)$ il cpo con bottom costituito dai numeri naturali piu' infinito con l'ordinario ordinamento, pero' invertito. Inoltre sia $(\mathcal{P}_f(\omega \cup \{\infty\}), \subseteq)$ l'ordinamento parziale costituito dai sottoinsiemi finiti di $\omega \cup \{\infty\}$ ordinati per inclusione.

- 1. Si dimostri con un controesempio che $(\mathcal{P}_f(\omega \cup \{\infty\}), \subseteq)$ non e' completo.
- 2. Si dimostri che l'ordinamento parziale $(\mathcal{P}_f(\omega \cup \{\infty\}) \cup \{\omega \cup \{\infty\}\}, \subseteq)$ e' completo.
- 3. Si dimostri che la funzione

$$min: (\mathcal{P}_f(\omega \cup \{\infty\}) \cup \{\omega \cup \{\infty\}\}, \subseteq) \to (\omega \cup \{\infty\}, \geq)$$

che calcola il valore minimo di un insieme (con $min(\emptyset) = \infty$) e' monotona, ma si faccia vedere con un controesempio che non e' continua.

Esercizio 3 (7 punti)

Si verifichi se il seguente termine HOFL è tipabile, ed eventualmente se ne fornisca il tipo

rec
$$f$$
. λx . if snd (x) then 1 else $1 + (f \text{ snd}(x))$

Esercizio 4 (8 punti)

Dimostrare che per tutti i termini HOFL t di tipo $\tau_1 * \tau_2$ con $[t] \rho \neq \bot_{(V_{\tau_1 * \tau_2})_{\bot}}$ vale

$$[\![t]\!]\rho \ = \ [\![(fst(t),snd(t))]\!]\rho.$$