
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

4. Shared Memory Parallel Architectures

4.3. Interprocess Communication and Cache Coherence

Run-time support of concurrency mechanisms

• Features of the multiprocessor run-time support:

1. Locking: indivisibility (atomicity) of concurrency mechanims.

2. Low-level scheduling: different versions of process wake-up

procedure for anonymous vs dedicated processors architectures

3. Communication processor: overlapping of interprocess communication

to calculation. send implementation.

4. Cache-coherence: automatic firmware support vs algorithm dependent

approach. send implementation.

5. Interprocess communication cost model, referring to the algorithm-

dependent cache coherence implementation.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

1. LOCKING

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

Locking

• Indivisible (atomic) operation sequences (often on shared data
structures) are executed with disabled interrupts and
implemented as critical sections such as:

lock (X);

< critical section >;

unlock (X)

where X is a lock semaphore associated to the critical section (if the critical
section acts on a single shared data structure D, the X is associated to D).

• Lock, unlock operations are analogous to P, V (Wait, Signal)
primitives, however
– their atomicity is implemented by mechanisms at the hardware-firmware

level,

– they synchronize processors (not processes), thus imply busy waiting in the
lock operation.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

Simplified locking operations

The simplest (though inefficient) implementation of locking
operations is the following, where X is a boolean lock
semaphore:

lock (X):: indivisible_sequence wait until X; X = false

unlock (X) :: X = true

The lock sequence (at the assembler or firmware level) is of the kind:

Lock: read X into register R;

if (R = 0) then goto Lock else write 1 into X

This read-write sequence must be implemented in an indivisible way, i.e. if processor Pi

performs thefirst (read) operation of the sequence, no other Pj (j ≠ i) can start the

sequence (can read location X) until Pi completes the sequence.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

Indivisible sequences of memory accesses

• The atomic implementation of locking mechanisms at the hardware-firmware level
consists in the primitive implementation of indivisible sequences of memory read-write
operations, e.g. (the sequences inside lock and unlock are examples)

read (a)

read (b)

read (c)

write (a, val)

• Assume that a, b, c are locations of the same memory module M. If the sequence is
initiated by processor Pi, the module unit

(or an arbiter of M, or an interface unit, or a switching unit connected to M)

prevents any other Pj (j ≠i) from executing read-write operation on M until the
sequence is completed.

• Note: it could be sufficient that any other Pj is prevented to access the data structure
containing a. However, because we are interested in short sequences, the “block of
memory module” solution is simpler and more efficient.

• Note: if a, b, c are not in the same module, it is sufficient to block the module of a,
provided that there is no possibility to access b, c independently before accessing a.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

Indivisible sequences of memory accesses

• In the firmware interpreter, an indivisibility bit (indiv) is associated
to every memory access request, to denote (indiv = 1) the
beginning of an indivisible sequence. It is mantained at indiv = 1 in
all the successive requests of the sequence, except the last request
in which indiv = 0.

• Often, the assembler level provides instructions like Test and Set,
Atomic exchange, Add to Memory, etc.

• More flexible and efficient mechanism: directly control the
indivisibility bit. For example, in D-RISC:
– special instructions: SET_INDIV, RESET_INDIV

– annotations (setindiv, resetindiv) in LOAD, STORE instructions.

• For very short lock sequences (1-2 memory accesses), lock/unlock
can be replaced directly by set_indiv /reset_indiv . Lock/unlock are
used for longer sequences.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

Architectural implications

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

M

P0 P1 P2 P3

1) M (or an interface/arbiter unit in front of M) has a non-
deterministic behaviour when no indivisible sequence is in progress.

If a request from Pi with indiv = 1 is selected, then M enters a
deterministic behaviour, during which M “listens” only the Pi

requests, i.e. M doesn’t test RDYs of the other interfaces.
When indiv = 0, M resumes the non-deterministic behaviour.

M

P0 P1 P2 P3

2) M (or an interface/arbiter unit in front of M) listens the only input
link. A Request contains the name of the requesting processor.

If a request from Pi with indiv = 1 is selected, then M remember
the name of Pi, and continues to listen any request. Requests from Pi

are served, requests from the others processors are buffered into an
internal FIFO queue.

When indiv = 0, M serves the queued requests and/or new input
requests.

Two extreme situations, according to which all the architectures with the known
interconnection structures can be studied.

Exercize

According to the two extreme situations above, solve the
problem of management of memory accesses indivisible
sequences, for the following architectures:

a. SMP whose interconnection network is composed of m trees, one for each

shared memory module (root in the memory module)

b. SMP with k-ary n-fly network

c. NUMA with Fat Tree network

d. NUMA with k-ary n-cube network

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

Locking with periodic retry

• In order to reduce the continuos accesses to shared memory of the
simplified algorithm, the lock test is re-executed after a given time
interval. The algorithm is “unfair” (potential infinite waiting).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

lock (semlock)::
ok = false;
while not ok do  set indiv;

if semlock then semlock = false; reset indiv; ok = true 

else  reset indiv;
wait for a given time-out 



unlock (semlock)::
semlock = true

Writing: set indiv; S (x); reset indiv means: sequence S, on shared data x, is executed

with indiv = 1 for all the memory accesses to x except the last one.

Fair locking with queueing

• Lock semaphore is a data structure containing the value (boolean)
and a FIFO queue of processor names.

• In case of red semaphore in lock operation, processor waits an
explicit “unblocking communication” by any processor executing
the unlock operation.

• This communication is a direct communication one, on the
processor-to-processor network if distinct from the processor-to-
memory network. If they coincide (e.g. Generalized Fat Tree),
distinct message types are used for different usages.

• An I/O unit, called Communication Unit (UC) is provided for this
purpose.

• In the waiting node, the unblocking communication is transformed
into an interrupt from UC to the processor. In fact, the processor
was waiting for an interrupt (see special instruction in D-RISC).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

Direct inter-processor communications

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

…

Interconnection Structure

W0

CPU0
UC0

Wn-1

CPUn-1
UCn-1

Fair locking with queueing

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Initialization:: semlock.val = true; semlock.queue = empty.

lock (semlock)::

set indiv;

if semlock.val then  semlock.val = false; reset indiv 

else put (processor_name, semlock.queue) ; reset indiv;

wait for an unblocking interrupt from UC

unlock (semlock)::

set indiv;

if empty (semlock.queue) then  semlock.val = true; reset indiv 

else processor_name = get (semlock.queue); reset indiv;

send to UC an ublocking message

to be sent to processor_name 

Locking and caching

• Because of cache coherence reasons, the lock/unlock
algorithms could also contain actions for the correcty
management of memory hierarchy.

• See the Cache Coherence section.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

Exercize

Implement in detail (in D-RISC) the lock operation according to
the fair algorithm.

Evaluate its latency in case of green semaphore.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

Technological remark

• In principle, locking operations are very efficient.

• They can be executed in few clock cycles (except remote
accesses) if proper assembler instructions exist, and are
executed in user mode.

• Again: inefficiencies are introduced when locking is a OS
mechanism executed in kernel mode.

• Alternative: lock-free algorithms for synchronizations (e.g.,
ad-hoc solutions for the various concurrency problems),
which, on the other hand, can be expensive from the
computational viewpoint.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

Run-time support of send primitive

• Let’s modify the uniprocessor version of send run-time
support, including locking.

• Channel Descriptor is a linear sequence of words containing a
lock semaphore:
– X: lock semaphore;

– WAIT: boolean;

– Message_length: integer;

– Buffer: FIFO queue of (k + 1) positions (reference to target variable, validity
bit)

– PCB_ref: reference to PCB

• The Channel descriptor address is the logical address of X.

• Note: the algorithm is the same for every multiprocessor
architecture, except for the low-level scheduling procedure.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

Run-time support of send primitive

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18

send (ch_id, msg_address) ::

CH address =TAB_CH (ch_id);

lock (X);

if (CH_Buffer [Insertion_Pointer].validity_bit = 0) then

 wait = true;

copy reference to Sender_PCB into CH.PCB_ref ;

unlock (X);

process transition into WAIT state: context switching ;

copy message value into the target variable referred by

CH_Buffer [Insertion_Pointer].reference_to_target_variable ;

modify CH_Buffer. Insertion_Pointer and CH_Buffer_Current_Size;

if wait then

 wait = false;

wake_up partner process (CH.PCB_ref) ;

if buffer_full then

 wait = true;

copy reference to Sender_PCB into CH.PCB_ref ;

unlock (X);

process transition into WAIT state: context switching 

else unlock (X)

Exercize

Find an alternative implementation of send primitive, able to
reduce the locking critical section duration.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 19

2. LOW-LEVEL SCHEDULING

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 20

Process wake-up procedure

• This procedure is different for anonymous processors and
dedicated processors architectures.

• This is another opportunity for direct interprocessor
communications:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 21

…

Interconnection Structure

W0

CPU0
UC0

Wn-1

CPUn-1
UCn-1

Preemptive wake-up in anonymous processors
architectures

• An anonymous processors architecture
– is a direct extension of a uniprocessor

– aims to load balance processors.

• These features require a distributed strategy for preemptive
wake-up scheduling (processes with priority).

• Assume that process B is WAITing and process A, running on
Pi, wakes-up B.

• If  Pj executing process C : priority (B) > priority (C) then B
preempts C, i.e. B passes in Execution on Pj and C becomes
Ready.

• Otherwise, A put PCBB into the Ready List.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 22

Preemptive wake-up in anonymous processors
architectures
• A is in charge of consulting a Cental Table, where the correspondence (processor-

process in execution-priority) is mantained.

• A selects the minimum priority entry (Pj, C, priority) of Central Table.

• If preemption can be applied, if C  A, then A performs preemtion on Pi directly.

• Otherwise, A sends to Pj an interprocessor message (preemption, reference to B,
priority of B).

• It is possible that, in the meantime, Pj has performed a context-switch , or C has
changed priority. The UC associated to Pj can detect this situation and, usind DMA,
can try to perform a preemtion onto a different processor, i.e., try to “bounce” the
preemption message to another processor, without interrrupting Pj.

• This potentially infinite procedure can be stopped after a (very) limited number of
“bounces”.

• Notice that, in order to avoid this problem (not so serious, nor leading to
inconsistent state), a complex locking procedure should be implemented:

– which data structures should have been locked, and when unlocked ?

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 23

Exercize

Preemptive wake-up in SMP. Answer the previous question:

… Notice that, in order to avoid this problem (…), a complex locking procedure
should be implemented:

– which data structures should have been locked, and when unlocked ?

i.e., implement the preemptive wake-up procedure in such a way
that the situation detected by A doesn’t change until the wake-up
has been completed (with preemption or not, on A’s node or not).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 24

Shared I/O

• In a UMA anonymous processors architecture, in principle I/O
units are anonymous themselves, i.e. an I/O unit is not
statically associated to a specific processor.

• An interrupts can be sent to, and served by, any processor.

• The most interruptable processor can be chosen, according to
the same technique for preemptive wake-up.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 25

Process wake-up in dedicated processors architectures

• In a dedicated processors architecture, every node has full
responsibility of the low-level scheduling of its processes.

• Assume process A, running on Pi, wishes to wake-up process
B, running on Pj.

• A replicated table contains the mapping correspondence
(process, processor).

• If i = j, then A wakes-up B using the Ready List of Pi.

• Otherwise, A sends to Pj an interprocessor message (wake-up,
reference to B). On Pj, the running process executes the wake-
up procedure according to the local rules (with/without
preemtion).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 26

Exercize

Describe in detail the implementation of process wake-up
procedure for SMP and NUMA machines, including the UC
behaviour and the interrupt handling actions.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 27

3. COMMUNICATION PROCESSOR

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 28

Principle

• Every processing node contains a second CPU (KP) dedicated
to the implementation of the run-time support of
interprocessor communication.

• The main CPU (IP) delegates to KP the execution of (the most
expensive part of) the send primitive.

• If communication is asynchronous, and IP has work to do after
a send, then communication is overlapped (at least in part).

• KP executes just one process permanently (a “demon”), i.e.
the process consisting in the send interpreter.

• KP may be either a specialized co-processor, or identical to IP.

• receive primitive is executed by IP.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 29

Examples

while … do  y = F(x, y); send (ch, y)

Calculation is correctly overlapped to communication if the message value is not
modified by calculation during the send execution.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 30

while … do  y2 = F(x, y1); send (ch, y2); y1 = F(x, y2); send (ch, y1) 

A partial loop-unfolding solves the problem easily (“double buffering”)

while … do  receive (ch1, x); y = F(x, y); send (ch2, y)

receive is executed by IP, thus it is overlapped to send (and, with zero-copy
communication, receive latency is relatively low);

apply loop-unfolding if necessary.

Processing node structure

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 31

IP

MI

KP

MK

Interconnection Structure

uc uc

IP, KP share local
memories inside the
node;
processing node is a
small NUMA.

KP has access to the
whole shared memory of
the system.

Delegation of send execution from IP to KP: IP transmits to KP a reference (e.g.
capability) to the send parameters (ch_id, message value), via direct interprocessor
communication (uc – uc).

The send execution by KP exploits KP resources, in particular KP cache.

Exercizes

1. Describe the detailed scheme of a processing node with
communication processor, for an SMP and for a NUMA
architecture, using the D-RISC Pipelined CPU as off-the-shelf
building block.

2. Assuming KP identical to IP, a multiprocessor with N
processing nodes has a total of 2N CPUs. Thus the problem
arises: why not exploiting 2N processing nodes without
communication processors?

Discuss this problem, individuating pros and cons of the
communication processor solution.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 32

send implementation with KP

• send semantics:
– copy the message and, if the asynchrony degree becomes saturated

(buffer_full), suspend the Sender process.

• Of course, this condition must by verified in presence of KP
too.

• If IP delegates to KP the send execution entirely, then some
complications are introduced in the send implementation
because of the management of the WAIT state (versions of
this kind exist).
– more than one communication should be delegated to KP:

calculation …;

send …;

send …;

send …;

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 33

send implementation with KP

• Simple and efficient solution, though at the expense of a (small)
reduction of overlapping:

– IP verifies the saturation of channel asynchrony degree (i.e. IP performs the

buffer_full test);

– IP delegates to KP the send continuation;

– if (buffer_size = k) IP suspends the Sender process (k = asynchrony degree, k + 1 =

number of queue elements);

– otherwise IP delegates to KP the send continuation, and Sender goes on.

• KP doesn’t perform the buffer_full test.

• Channel Descriptor is locked by IP and unlocked by KP.

• Zero-copy communication: IP controls the validity bit too.

• Optimization: mantain a consistent copy of Buffer_Size and validity
bit in local memory of IP (avoid the remote channel access).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 34

send implementation with KP

• Latency of the buffer_full and validity bit verification in IP has
to be added to Tcalc (not Tsetup).

• In some advanced architectures, KPs are built into to the
interconnection structure, and are connected to the nodes via
interface units (W).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 35

4. CACHE COHERENCE

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 36

Cache coherence problem

• If the a shared data (block) is loaded into more than one cache, all
the copies must be identical (consistent) each other and identical to
the value in shared Main Memory (or in further shared levels of the
memory hierarchy).

• Abstract scheme, for our purpose : shared memory M and
(processor P, primary data cache C) nodes

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 37

M

Pi Ci Pj Cj

.

S

S S

S (block) is loaded into Ci

and Cj.

No consistency problem if

S is used in a read-only

mode by Pi and Pj.

If Pi modifies its S copy,

then the copy in Cj is

inconsistent (in general).

Cache coherence problem

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 38

M

Pi Ci Pj Cj
.

S

S S

Write-Through cache: S copy in M is consistent
• When ? Updating actions of S in Ci and in M are not simultaneous (if they were

simultaneous: what about the Write Through performance ?)
• There is a time interval during which S in M is inconsistent.
• Other processors (and Pj itself) could find a consistent value of S in M, when they

need to transfer S in their cache, provided that they are informed in time by Pi.

• Again: in some way, they need the help of Pi.

Write-Back cache: S copy in M (main copy) is inconsistent
• Other processors find a inconsistent value of S in M, when they transfer S in their

cache
• Pj can not rely on the copy of S when it need to read it again
• The only way to acquire a consistent value of S is with the help of Pi

Pi be the first processor that modifies S in
its cache Ci.

Automatic cache coherence

• Cache coherence solution at the firmware level: it is guaranteed
that a processor always work on a consistent copy, in a seemless
way.

• Two main techniques:

1. Invalidation: only one cached copy is valid, i.e. the last
modified, all the other copies are/become invalid

2. Update: all the cached copies are mantained consistent
(broadcasted value)

• In both cases, an accurate (often, heavy) synchronization
mechanism has to be adopted, e.g.

1. Invalidation: how can a Pj understand that its copy has been invalidated or not yet
invalidated?

2. Update: how can a Pj understand that its copy has been updated or not yet
updated?

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 39

Synchronization in automatic cache coherence

• Analogy: Pipelined CPU: General Registers copies in IU and EU

• Update-like solution: EU sends the updated value to IU

• Synchronization through a semaphoric solution in IU
– Each reading operation of a register in IU can be executed if and only if the

associated semaphore is green, otherwise IU must wait.

• Efficient solution in Pipelined CPU:
– synchronization per se has zero cost, also because there is only one secondary

copy,

– but, what about the cost of the synchronization mechanism in a cache coherent
multiprocessor?

• Invalidation-like solution in the IU-EU analogy: not
meaningful, since IU doesn’t modify registers.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 40

Invalidation

• When a processor Pi modifies a block S in Ci, all the other copies of
S (if any) are invalidated
– An invalidated copy is de-allocated

– Invalidation is communicated by Pi, with a broadcast message to all processors, or a
multicast message to those processors having S in their cache

– Write-Back or Write-Through: the valid, acquired copy can be read from M

– Potential “ping – pong” effect.

• Synchronization:
– for each cache access, every Pj waits for a possible invalidation communication (S)

– Time-dependent solution ? (e.g., synchronized logical clocks)

– Otherwise: complexity, and performance degradation, increases rapidly

• Centralization point at the firmware architecture level:
– Snoopy bus in many commercial SMP multiprocessors with low parallelism (4

processors) and bus interconnection structure.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 41

Snooping architectures (SMP)

• e.g. MESI protocol (see: [Drepper], section 3.3.4; other
protocols and formal treatment in [Pong-Dubois])

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 42

M

Pi Ci Pj Cj

.

Snoopy bus: to communicate invalidation events
Also: a centralization point for synchronization: bus arbiter
Before accessing its cache, a processor has to listen the bus

Analogous consideration for Update technique, in which the bus supports a
synchronized multicast too.

Snooping: optimizations

E.g. MESIF protocol

• For each block descriptor: bit_mask[N], where bit i-th
corresponds to processor Pi

– in shared memory

• if, for block p,
– bit_mask[j] = 0: processor Pj can not have block p in cache Cj;

– bit_mask[j] = 1: it is possible (but not sure) that processor Pj has block p in

cache Cj;

• For each p, automatic coherence is applied to processors
having bit_mask = 1.

• This technique limits the number of invalidation messages.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 43

Directory-based architectures

• For higher parallelism systems, SMP and NUMA: avoiding
centralization points, like buses

• High-parallelism interconnection structures can be used

• Synchronization through shared variables (directories) in local
memories, containing all the information about cached and shared
objects:
– firmware support to mantain consistent these variables too: at a cost much lower

than the cost of cache coherence itself for any information block (specialized
firmware for directories).

• The directory-based solution can be implemented by program too:
see the algorithm-dependent caching, i.e
– exploit the knowledge of the computation semantics to implement cache coherence

without automatic support

– explicit utilization of locking synchronizations.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 44

“False sharing”

Distinct processors modify different locations of the same cache
block:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 45

M

Pi Ci Pj Cj

.

……..
……..
……..
……..

modifies
location 3

only of
shared
block S

……..
……..
……..
……..

modifies
location 2

only of
shared
block S

S

No real sharing of information,
thus no real problem of cache
coherence.

However, this situation is
considered as true sharing if
automatic coherence is applied
(cache block is the elementary
unit of consistency),

thus the invalidation / update
traffic is executed.

“Padding” techniques (data alignment to block size) in order to put words modified
by distinct processors in distinct blocks.

• effective when recognizable (knowledge of program semantics)

Automatic solutions: alternatives

• Automatic solutions - Pros: no visibility at the program level

• Cons: inefficiency and high overhead, especially in high
parallelism multiprocessors, or low parallelism architectures
(even with meaningful overhead too)

• The key point for alternative solutions is:
– Processors adopt synchronization mechanisms at the hardware-

firmware level: locking, indivisible bit, architectural supports in
interconnection networks

– Can these mechanisms help to solve the cache coherence problem
without additional automatic mechanisms?

– In which cases these alternative solutions are applicable, provided that
the synchronization mechanisms (locking) are efficient (user mode) ?

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 46

Cache coherence in presence of locking

• Consider a system with automatic cache coherence

• Consider a process, running on Pi (cache Ci), and a process, running on Pj
(cache Cj), sharing a structure S with lock semaphore X.

• S is accessed in lock state (mutual exclusion with busy waiting).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 47

M

Pi Ci Pj Cj

Arbitration – interconnection with
indivisibility bit management

X S X belongs to the first block of S, or is
allocated in an separate block.

Locking is supported, at the HW-FW level, by the indivisibility bit mechanism.
This mechanism represent a logically centralized, very efficient synchronization
point.
This mechanism prevents that both processors are able to load the lock semaphore
X in their respectives caches simultaneously.

Cache coherence and locking

• Assume the worst case for our purposes: Pi and Pj try to access X
simultaneously.

• Both request for X reading are associated indiv = 1.

• Assume Pi is able to copy X in Ci. Pj’s request is pending (queued) in
the proper unit for the indivisibility bit management.

• Pi executes lock (X), modifying X; at the end, executes reset_indiv. Pj

is now able to access shared memory for copying X in Cj.

• The X copy in Ci is invalidated. This has no particular effect: Pi has
already utilized X (has executed lock (X)).

• Pj executes lock (X) on its X copy: X is red, thus Pj enters busy
waiting.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 48

Cache coherence and locking (cont.)

• When Pi executes unlock (X), it loads X in Ci and invalidates X copy in
Cj. This has no particukar effect on Pj, which was not using X (busy
waiting), provided that lock (X) is implemented efficiently (better
solution: fair lock with queue).

• The unlock (X) provides to unblock Pj, which loads X in Cj and
invalides X copy in Ci. This has no particular effect on Pi, which
doesn’t need X any more.

• Conclusion: cache coherence per se is not computationally
inefficient, e.g. invalidation doesn’t introduce “ping-pong” effects,
owing to the locking synchronization and indivisibility bit
mechanism.

• Consequence: try to avoid the inefficiencies of automatic solutions
(mechanism overhead, low parallelism), relying entirely to the
locking synchronization mechanisms.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 49

Algorithm-dependent cache coherence

• Cache coherence is implemented by program, relying on the locking
synchronization mechanisms and knowing the computation
semantics.

• This requires to individuate a proper algorithm.

• Explicit management of memory hierarchy is required. This is
rendered efficient by suitable assembler supports, through
LOAD/STORE instruction annotations.

• In D-RISC:
– STORE …., block_rewrite : explicit re-writing of a block, independently of

Write-Back or Write-Through cache

– STORE …, don’t_modify : even for Write-Through cache, a writing
operation is executed in cache only.

– STORE …, single_word : even for Write-Back cache, modify a single word
in shared memory directly, instead of an entire block

– LOAD/STORE …, deallocate : explicit cache deallocation of a block.

– LOAD/STORE …, don’t_deallocate : same annotation exploited for reuse

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 50

Algorithm-dependent cache coherence

• When it is a meaningful approach:

– in the design of run-time support mechanisms, e.g. for interprocess communication

• In this way, in a structured approach to parallel programs, there is
no other needs of cache coherence mechanisms,

– i.e., the only situations in which we need to implement cache coherence on shared

data structures in the the run-time support design.

• This leads to a good trade-off between programmability and
performance.

• Many recent CPU and multicore products expose annotations and
special instructions for explicit management of memory hierarchy,
and the absence of automatic cache coherence or the possibility to
disable the automatic cache coherence facility.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 51

Send run-time support with algorithm-dependent
cache coherence

• The send run-time algorithm is modified according to the
principles of algorithm-dependent cache coherence
(relationship between cache cohernce and locking, explicit
annotations).

• Consider any send algorithm, e.g. zero-copy

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 52

Channel Descriptor ::
X: lock semaphore
WAIT
Message_length
Buffer
PCB_ref

Algorithm overview:
lock (X);

Utilize and modify CH blocks
Copy message
…

unlock (X);
Procedure return or context-switching

Send run-time support with algorithm-dependent
cache coherence

• lock (X) provides to load the first CH block in Sender cache, to
modify X, to re-write explicitly X in shared memory (entire
block, or only the X words), and to leave X block in cache
(don’t deallocate).
– in the meantime, it is possible that the node, executing the Receiver process, is

blocked: initially because of the indivisibility bit, then because of red X.

• All the other CH blocks are loaded in Sender cache and
possibly modified. When a block utilization ends, it is explicitly
dellocated and, if modified, explicitly re-written in shared
memory.

• The unlock (X) execution finds X still in cache, modifies X,
explicitly re-writes X in shared memory, and explicitly
deallocates X.

• Note: no overhead is paid for cache coherence.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 53

Exercizes

1. Evaluate the difference between the latencies of two send
implementations: with automatic cache coherence, with
algorithm-dependent cache coherence.

2. Study algorithm-dependent solutions to cache coherence
applied at the secondary caches in SMP architectures with D-
RISC nodes.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 54

5. INTERPROCESS COMMUNICATION
COST MODEL

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 55

Approximate evaluation of Tsend

• Tsend = Tsetup + L  Ttransm

• Algorithm-dependent cache coherent version of send run-
time support

• Zero-copy implementation

• SMP architecture, without communication processor

• Let’s evaluate only the memory access latencies for reading
and writing operations on CH blocks and target variable
blocks
– rough approximation of Tsend ,

– to be increased by a 20 – 30% to take into account the instruction execution on

local (cached) objects and registers, and low-level scheduling.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 56

Assumptions

• It is reasonable to assume that (most probable situation) the
following objects have been already loaded into the local cache:
– Channel Table

– Relocation Table

– Sender Process PCB

• while the following objects are not supposed to be in local cache:
– Message value

– Channel descriptor

– Target variable

– Ready List

• Channel descriptor is composed of 3 “padded” blocks containing
– lock semaphore

– WAIT, Message Length, Pointers and Current_Size of Buffer, PCB_ref

– Buffer: Vector of target variable references

• Assumption: asynchrony degree  block size.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 57

send latency

• According to the algorithm-dependent cache-coherent send
implementation of Section 4, the following block transfers
from/to remote shared memory are performed:
– Reading first block (lock semaphore)

– Re-writing first block

– Reading second block (in particular: Buffer Pointers and Current_Size)

– Re-writing second block

– L/s readings of message blocks (L = message length, s = block size)

– L/s writings into target variable.

• We can assume:

Tblock-read = Tblock-write = RQ (under-load)
(see Section 4.2 on memory access latency evaluation).

Assuming L multiple of s, we obtain:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 58

send latency

Tsetup = 4 RQ

Ttransm = 2 RQ / s

From Section 4.2, we can evaluate the following orders of
magnitude:

Tsetup  (103 – 104) t

Ttransm  (102 – 103) t

where the variability range depends on the various parameters:
p, Tp, tM, etc.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 59

Exercizes

1. Evaluate Tsend for a NUMA architecture, assuming the
message value in local memory of the node.

2. Evaluate the impact of instruction executions and low-level
scheduling on Tsend for D-RISC Pipelined CPU nodes.

3. Evaluate Tsend for a zero-copy implementation with
communication processor.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 60

