

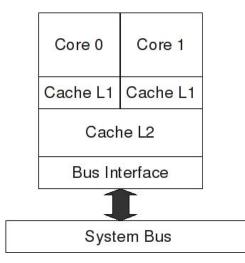
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

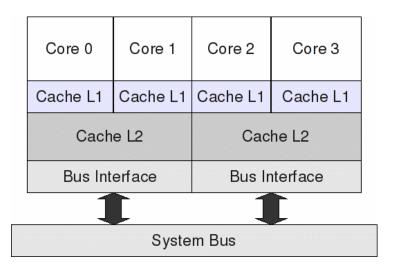
4. Shared Memory Parallel Architectures 4.4. Multicore Architectures

Multicore examples



- General purpose *vs* special purpose
 - Special purpose: Network Processors, DSP
- Homogeneous vs heterogeneous
- SPM vs NUMA
- Low parallelism vs high parallelism
 - Moore law: exponential growth of core number per chip

- X86 based
 - Intel Xeon (Core 2 Duo, Core 2 Quad), Nehalem
 - AMD Athlon, Opteron quad-core (Barcelona)
- Power based
 - IBM Power 5, 6
 - IBM Cell
- UltraSPARC based
 - Sun UltraSparc T1
 - Sun UltraSparc T2
- Except IBM Cell: homogeneous, shared cache (C2 / C3) multiprocessors

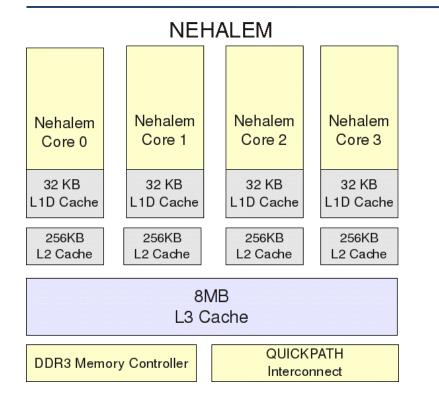

Xeon Core 2 Duo

3 GHz L1: 32Kb + 32Kb

L2: 6Mb

Off-chip main memory interface System bus: 10.6 GB/s

```
One thread per core, 4-superscalar
```



Xeon Core 2 Quad /Harpertown Two Core 2 in the same chip External main memory: shared by both L2 caches

Automatic cache coherence MESI Snooping

Intel SMPs: Nehalem

Evolution of SMP Xeon

Private L2 caches Shared L3 cache, MESIF

Trend: 8, 16 core


Memory interface on chip

Point-to-point interconnection structure, 32 GB/s

Two simultaneous threads per core

AMD Opteron Quad Core

BARCELONA

Shared L3 cache

Possible Cache-coherent NUMA behaviour: access to remote L2 caches, via point-to-point interconnection, with L3 cache acting (also) as a synchronization agent.

DDR2 Memory Controller

Hyper Transport

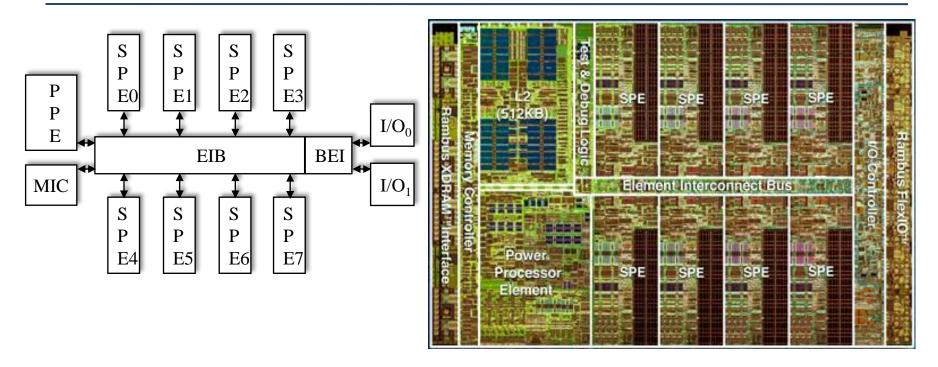
2.0

UltraSPARC T2

SMP, shared L2 cache

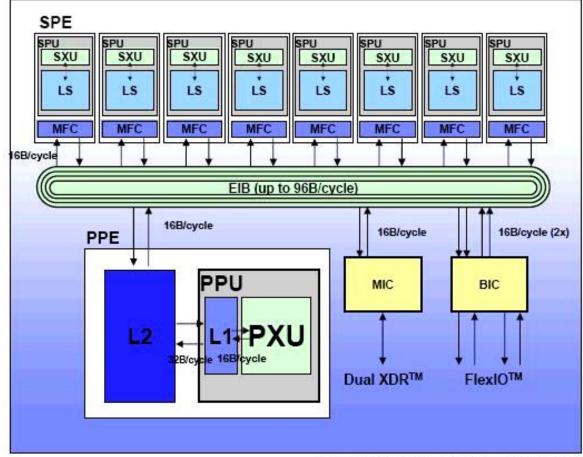
8 simple, pipelined, in-order cores, 1 floating point unit per core 8 simultaneous threads per core

Interconnection: crossbar


IBM BlueGene/P

- PowerPC 32-bit 450 quad-core
- NUMA
- Mesh interconnect
- Automatic cache coherence
- 4 simultaneous floating point operations per clock cycle (850 MHz)
- Significantly less power consumption (16 W) compared to > 65 W of x86 quad-core
- BlueGene massively parallel system: > 75000 quad-core chips (> 290000 cores total).

IBM Cell BE



Evolution of uniprocessor (Power PC Processor Element, PPE) with 8 powerful I/O coprocessors towards a **heterogeneous NUMA** multiprocessor,

Coprocessors evolution towards Processign Cores: Synergistic Processing Element (SPE), with vectorization capabilities

IBM Cell BE

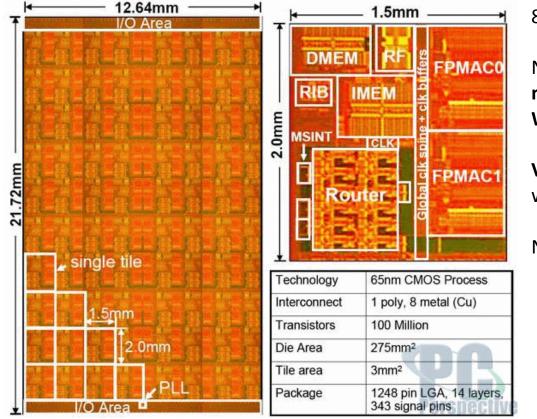
Source: M. Gschwind et al., Hot Chips-17, August 2005

PPE: superscalar, in-order, L2 cache accessible by SPEs

SPE: RISC, 128-bit,pipelined, inorder, vectorized instructions

SPE Local Memory: 256 Kb, NOT cache

SPEs set = **NUMA**, with additional access to the PPE memory (DMA)

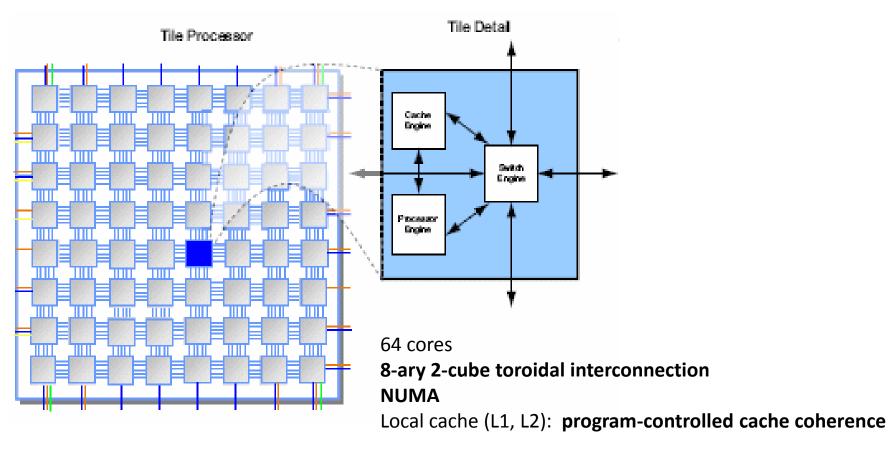

Interconnection structure:

4 bidirectional **Rings**, 16 bytes per ring

Robust cost model for memory access and communication.

Intel Terascale project

80 core


Network on-chip: **bidimensional mesh** (k-ary 2-cube) **Wormohole** routing

VLIW processors: 96 bit instruction word

NOT cache

Tilera Tile 64

No floating-point Oriented to Video encoding, Network Packet processing

Network processors

- Parallel architectures oriented to network processing:
 - Real-time processing of multiple data streams
 - IP protocol packet switching and forwarding capabilities
 - Packet operations
 - Packet queueing
 - Checksum / CRC per packet
 - Pattern matching per packet
 - Tree searches
 - Frame forrwarding
 - Frame filtering
 - Frame alteration
 - Traffic control and statistics
 - QoS control
 - Enhance security
 - Primitive network interfaces on-chip
- Intel, IBM, Ezchip, Xelerated, Agere, Alchemy, AMCC, Cisco, Cognigine, Motorola, ...
- Similar features for DSP multicore processors

Network processors and multithreading

- Network processors apply multithreading to bridge latencies during (remote) memory accesses
 - Blocked multithreading (BMT)
 - Multithreading applied to cores that perform the data traffic handling
- Hard real-time events (i.e., deadline soluld never be missed)
 - Specific instruction scheduling during multithreaded execution
- Examples:
 - Intel IXP
 - IBM PowerNP

Network processors: Intel Internet eXchange Processor (IXP)

8 cores (IXP2400) or 16 cores (IPX2800), specialized for low-level packet processing,

fifty 40-bit instructions

+ one RISC Intel Xscale, 600-700 MHz:

heterogeneous NUMA

Pipelined architecture,

8 threads per core (zero cost context switching thread-thread)

Ring-like core interconnection