
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

4. Shared Memory Parallel Architectures

4.5. Multithreading, Multiprocessors, and GPUs

Contents

• Main features of explicit multithreading architectures

• Relationships with ILP

• Relationships with multiprocessors and multicores

• Relationships with network processors

• GPUs

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

Basic principle

• Concurrently execute instructions of different threads of control within a single
pipelined processor

• Notion of thread in this context:
– NOT “software thread” as in a multithreaded OS,

– Hardware-firmware supported thread: an independent execution sequence of a (general-
purpose or specialized) processor:

• A process

• A compiler generated thread

• A microinstruction execution sequence

• A task scheduled to a processor core in a GPU architecture

• Even an OS thread (e.g. POSIX)

• In a multithreaded architecture, a thread is the unit of instruction scheduling
for ILP
– Neverthless, multithreading can be a powerful mechanism for multiprocessing too (i.e.,

parallelism at process level in multiprocessors architectures)

• (Unfortunately, there is a lot of confusion around the word “thread”, which is used in several
contexts often with very different meanings)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

Basic architecture
• More independent program counters

• Tagging mechanism (unique identifiers) to distinguish instructions of
different threads within the pipeline

• Efficient mechanisms for thread switching: very efficient context
switching, from zero to very few clock cycles

• Multiple register sets
– (not always statically allocated)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

IU

IM

DM

Pipelined EU

ICICICIC

FIXED RG
FIXED RG

FIXED RG

FLOAT RG
FLOAT RG

FLOAT RG

Request
Queue

Request
Queues

Interleave the
execution of
instructions of
different threads in the
same pipeline.

Try “to fill” the
latencies as much as
possible.

Basic goal: latency hiding

• ILP: latencies are sources of performance
degradations because of data dependencies
– Logical dependencies induced by “long” arithmetic instructions

– Memory accesses caused by cache faults

– Idea: interleave instructions of different threads to increase distance

• Multithreading and data-flow: similar principles
– when implemented in a Von Neumann machine, multithreading

requires multiple contexts (program counter, registers, tags),

– while in a data-flow machine every instruction contains its “context”

(i.e., data values),

– the data-flow idea leads to multithtreading when the assembler level is

imperative.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

Basic goal: latency hiding

• Multiprocessors: remote memory access latency (interconnection network,
conflicts) and software lockout

– Idea: instead of waiting idle for the remote access conclusion, the processor switches to

another thread in order to fill the idle times

– Context switching (for threads) is caused by remote memory accesses too

– Exploit multiprogramming of a single processor with a much finer grain

• Context switching for threads is very fast: multiple contexts (program
counter, general registers) are present inside the processor itself (not to be
loaded from higher memory levels), and no other “administrative”
information has to be saved/restored

– Multithreading is NOT under the OS control, instead it is implemented at the firmware

level

• This is compatible with multiprogramming / multiprocessing: process states
still exist (context switching for processes is distinct from context swiching for
threads)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

Taxonomy of multithreaded architectures

[Ungerer, Robic, Silc]: course references

Instructions in a given clock cycle can be issued from

• a single thread

– Interleaved multithreading (IMT)

• an instruction of another thread is fetched and fed into the execution pipeline
(of a scalar processor) at each clock cycle

– Blocked multithreading (BMT)

• the instructions of a thread are executed successively (in pipeline on a scalar
processor) until an event occurs that may cause latency (e.g. remote memory
access); this event induces a context switch

• multiple threads

– Simultaneous multithreading (SMT)

• instructions are simultaneously issued from multiple threads to the execution
units of a superscalar processor, i.e. superscalar instruction issue is combined
with the multiple-context approach

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

Single-issue processors (scalar: pipelined CPU)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

Fine grain Coarse grain

Cray MTA
• Multicore with many “simple” CPUs
• Network processors

Multiple-issue processors (superscalar CPU)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

VLIW IMT VLIW BMT VLIW

b) and/or c):
• Blue Gene
• SUN UltraSPARC
• Intel Xeon

Hyperthreading
• GPU

Simultaneous multithreading vs multicore

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

4 – threaded
8 – issue
SMT
processor

Multiprocessor
with 4
2 – issue
processors

Latency hiding in multiprocessors

• Try to exploit memory hierarchies at best
– Local memories, NUMA

– Cache coherence

• Communication processor
– Interprocess communication latency hiding

• Additional solution: multithreading
– Remote memory access latency hiding

• Fully compatible solutions
e.g. KP is multithreaded in order to “fill” KP latencies for remote memory

accesses,

thus, KP is able to execute more communications concurrently: for each new
communication request, a new KP thread is executed, and more threads share
the KP pipeline,

thus, increased KP bandwidth.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

Which performance improvements?

• Improving CPU (CPUs) efficiency (i.e. utilization, e)

• What about service/completion time for a single process ? Apparently, no
direct advantage,

• but in fact:
– communication / calculation overlapping through KP

– increased KP bandwidth: this leads to an improvement in service time and completion
time of parallel programs,

• and:
– improvement of ILP performance, thus some improvemet of program completion time.

– Best situation: threads belong to the same process, i.e. a process is further parallelized
through threads;

– meaningful improvement in service/completion time, provided that: high parallelism is
exploited between threads of the same process.

– Here we can see the convergence between multithreading and data-flow: exploit data-
flow parallelism between threads of the same process (data-flow multithreading).

– Research issue: multithreading optimizing compilers.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

Excess parallelism

• The idea of multithreading (BMT) for multiprocessors can
have another interpretation:

– Instead of using

1. N single-threaded processors

use

2. N/p processors, each of which is p-threaded

• (Nothing new wrt the old idea of multiprogramming: except
that context switching is no more a meaningful overhead)

• Under which conditions performances (e.g. completion times)
of solutions 1 and 2 are comparable?

Despite the increasing diffusion of multithreaded
architectures: still an open research problem.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Excess parallelism

Rationale:

• A data-parallel program is designed for N virtual processors,
– where the virtual processors are chosen with the goal of achieving the maximum

parallelism for a “perfect” architecture (e.g., zero communication latency).

• Its implementation exploits N/p real processors,
– where p is partition size of the real processors solution wrt the one of the virtual

processors solution.

• In several cases (not always), the order of magnitude of completion
time is not increased:
– this guarantees that the program “scales” well.

• Conceptually, we can consider that the real processors solution
exploits “p excess parallelism”
– actually, the real solution exploits N/ p sequential workers;

– why not N/p parallel workers, each worker with p excess parallelism? i.e. p
parallel threads per worker.

– Example: a map.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

Excess parallelism

From the complexity theory of parallel computations (PRAM), we know
that under general conditions excess parallelism doesn’t increase
the order of magnitude of completion time:

• Context: data-parallel programs executed on a shared memory
architecture with logarithmic network, i.e.

base latency = O(log N)

• “Optimal” parallel algorithms exploits the architecture in such a way
that:

under-load latency = O(log N)

• This can be achieved also with N/p processors, each of which with
excess parallelism p, provided that p is chosen properly according to
the algorithm and the architecture (not greater than O(log N)).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

Multithreading and communication: example

A process working on stream:

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

while true do

 receive (…, a);

b = F (a);

send (…, b)

Let’s assume zero-copy communication: from the performance evaluation viewpoint,

process alternates calculation (latency Tcalc) and communication (latency Tsend).

Without no communication processor nor multithreading:
Tservice = Tcalc + Tsend

In order to achieve (i.e. masking communication latency):
Tservice = Tcalc

we can exploit parallelism between calculation and communication in a proper way.
This can be done by using communication processor and/or multithtreading
according to various solutions.

Example: behiavioural schematizations

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 17

CPU
thread 1

CPU multithreaded (BMT) without KP

In distributed memory machines, a send invocation can cause a thread switching.

If a shared memory machine, the real behaviour is: during a send execution, thread switching occurs

several times, i.e. each time a remote memory requests is done.

Because the majority of send delay is spent in remote memory accesses, equivalently (from the

performance evaluation modeling) we can assume that thread switching occurs, just one time, when

a send is invoked (approximate equivalent behaviour).

In other words, this is the behaviour of the abstract architecture.

thread switching
CPU

thread 2

CPU (IP) and KP

CPU

KP

Tcalc

Tsend

KP delegation

Approximate equivalent behaviour
in multithreaded CPU

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 18

CPU
thread 1

calc

send
local
code

remote
read

calc send
local
code

remote
write

calc
send
local
code

remote
read

CPU
thread 2

CPU
thread 1

Real behaviour: interleaving calculation and send execution

CPU
thread 2

CPU
thread 1

When remote read is completed, send execution

is resumed (a sort of interrupt handling): thread

continuation.

The “interrupted” thread is

resumed: thread continuation.

CPU
thread 1

Equivalent behaviour (cost model) : best case approximation

CPU
thread 2

Tcalc

Tsend

Observations

• Simplified cost model:
– taking into account of the very high degree of nondeterminism and

interleaving, that characterizes multithreaded architectures

– for distributed memory architectures, this cost model has a better

approximation

• Implementation of a thread-suspend / -resume mechanism at
the firmware level
– in addition to the all the other pipeling/superscalar synchronizations

– additional complexity of the hardware-firmware structure

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 19

Example: Tcalc ≥ Tsend

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 20

Tcalc

Tsend

Equivalent service time (Tcalc).

Equivalent parallelism degree per node: two real-parallelism threads, on the same

node, correspond to two non-multithreaded nodes. In fact, many hardware resources

are duplicated in a 2-issue multithreaded node.

In principle, chip area is equivalent (hardware-complexity of the same order of

magnitude). However, in practice … (see slide + 2).

CPU (IP) scalar, KP scalar (1-issue multithreaded)

CPU

KP

CPU
thread 1

CPU 2-issue multithreaded, no KP

CPU
thread 2

Example: Tcalc < Tsend

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 21

Tcalc

Tsend = 4 Tcalc

CPU (IP) scalar, KP 4-issue multithreaded

CPU

KP thread 2

KP thread 1

KP thread 3

KP thread 4

CPU 5-issue multithreaded, no KP

Equivalent service time (Tcalc).

Equivalent parallelism degree

per node:

provided that

memory bandwidth >

(block) accesses per memory

clock cycle.

This is the upper bound to the

parallelism per node that can be

exploited.

Observation: KP or not KP ?

The sevice time and the total parallelism degree per node being equal,

1) solution with CPU (IP) + p-threaded KP

has the same hardware-complexity of

2) solution with (1 + p)-threaded CPU, without KP.

However, in terms of real cost, solution 1) is cheaper,

e.g. it has a simpler hardware-firmware structure (less inter-thread
synchronization in CPU pipelining, lower suspend/resume nesting),
thus it has a lower power dissipation.

Moreover, solution 1 can be seen as just another rationale for
heterogeneous multicore (main CPU + p cores).

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 22

Observation: parallel communications and parallel
program optimization

• Multithreaded CPU, or CPU + multithreaded KP, is a solution
to eliminate / reduce potential bottlenecks in parallel
programs, provided that the memory bandwidth is adequate.

• Example: a farm program where interarrival time TA < Tsend

– Emitter could be a bottleneck (Temitter = Tsend)

• Example: a data-parallel program when the Scatter
functionality could be a bottleneck
– Scatter service time > TA

• In both cases, bottlenecks prevent to exploit the ideal
parallelism solution (Tcalc / TA workers).

• In both cases, parallelization of communications eliminates /
reduces bottlenecks.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 23

Observation: importance of advanced mechanisms for
interprocess communication

• Multithreading = parallelism exploitation and management
(context switching) at firmware level
– Efficient mechanisms for interprocess communication are needed

– User level

– Zero-copy

• Example: multiple processing on target variables are allowed
by the zero-copy communication

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 24

VTG
VTG

VTG
VTGchannel

Multiple threads
fired
by multiple
messages

Network processors and multithreading

• Network processors apply multithreading to bridge latencies
during (remote) memory accesses
– Blocked multithreading (BMT)

– Multithreading applied to cores that perform the data traffic handling

• Hard real-time events (i.e., deadline soluld never be missed)
– Specific instruction scheduling during multithreaded execution

• Examples:
– Intel IXP

– IBM PowerNP

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 25

IBM Wire-Speed Processor (WSP)

• Heterogenous architecture

• 16 general-purpose multithreaded cores: PowerPC, 2.3 GHz
– SMT, 4 simultaneous threads/core

– 16 Kb L1 instruction cache, 16 Kb L1 data cache (8-way set associative), 64-byte
cache blocks

– MMU: 512-entry, variable page size

– 4 L2 caches (2 MB), each L2 cache shared by 4 cores

• Domain-specific co-processors (accelerators)
– targeted toward networking applications: packet processing, security, pattern

matching, compression, XML

• custom hardware-firmware components for optimizations

– networking interconnect: four 10-Gb/s links

• Internal interconnection structure: partial crossbar
– similar to a 4-ring structure, 16-byte links

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 26

WSP

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 27

IBM Journal of Res & Dev, Jan/Feb 2010, pp. 3:1 – 3:11.

WSP

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 28

WSP

Advanced features for programmability + portability + performance:

• Uniform addressability: uniform virtual address space
– Every CPU core, accelerator and I/O unit has a separate MMU

– Shared memory: NUMA architecture, including accelerators and I/O units
(heterogeneous NUMA)

– Coherent (snooping) and noncoherent caching support, also for accelerators and I/O

– Result: accelerators and I/O are not special entities to be controlled through
specialized mechanisms, instead they exploit the same mechanisms of CPU cores

• full process-virtualization of co-processors and I/O

• Special instructions for locking and core-coprocessor synchronization
– Load and Reserve, Store Conditional

– Initiate Coprocessor

• Special instructions for thread synchronization
– wait, resume

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 29

GPUs

• Currently, another application of the multithreading paradigm
is present in GPUs (Graphics Processing Units) and their
attempt to become “general” machines

• GPUs are SIMD machines

• In this context, threads are execution instances of data-
parallel tasks (data-parallel workers)

• Both SMT and multiprocessor + SMT paradigms are applied

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 30

SIMD architecture
• SIMD (Single Instruction Stream Multiple Data Stream)

– Data-parallel (DP) paradigm at the firmware-assembler level

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 31

Instruction & Data Memory

Instruction Unit

Execution
Unit

Execution
Unit

Execution
Unit

Execution
Unit

Local
Memory

Local
Memory

Local
Memory

Local
Memory

. . .

Interconnection structure

DP vector

instructions

(map, stencil)

Instruction issue: multicast

Data distribution (scatter,

multicast) and collection

(gather, reduce)

DP processor cores

(workers)

• Example: IU controls the partitioning of a float vector into the local memories (scatter), and

issues a request of “vector_float_addition” to all EUs

• Pipelined processing IU-EU, pipelined EUs

• Extension: partitioning of EU into disjoint subsets for DP multiprocessing (MIMD + SIMD)

e.g. 2-3 dimension

mesh (k-ary n-cube)

SIMD: parallel, high-performance co-processor

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 32

Cache Memory

.

.

.

Main
Memory

Memory
Management

Unit

Processor
Interrupt
Arbiter

. . .

CPU

Cache
Memory

I/O Bus

DMA Bus

SIMD
co-processor

• SIMD cannot be general-purpose.
• I/O bandwidth and latency for data transfer between Host and SIMD co-processor

could be critical.
• Challenge: proper utilization of central processors and peripheral SIMD co-

processors for designing high-performance parallel programs

Host system

GPU parallel programs

• From specialized coprocessors for real-time, high-quality 3D
graphics rendering (shader), to programmable data-parallel
coprocessors

• Generality vs performance? Programmability ?

• Stream-based SIMD Computing: replication of stream tasks
(shader code) and partitioning of data domain onto processor
cores (EU)

• Thread: execution instance of a stream task scheduled to a
processor core (EU) for execution
– NOT to be confused with a software thread in multithreaded OS

– same meaning of thread in multithreaded architectures.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 33

Example of GPU: AMD

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 34

AMD GPU

RV770

• EU is organized into 10 partitions

• Each EU partition contains 16 EUs

• Each EU is a 5-issue SMT multithreaded superscalar (VLIW)
pipelined processor

• Ideal exploitation: a 800 processor machine

• Internal EU operators include scalar arithmetic operations, as
well as float operations: sin, cos, logarithm, sqrt, etc

RV870

• 20 EU partitions

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 35

Nvidia GPU: GeForce GTX - Fermi

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 36

• MIMD multiprocessor of 10 SIMT processors
• Each SIMT is a SIMD architecture with 3 - 16 EU partitions, 8 EUs (CUDA) per

partition

GPU: programming model

• Current tools (e.g. CUDA) are too elementary and low-level

• Serious problems of programmability
– Programmer is in charge of managing

• data-parallelism at the architectural level

• memory and I/O

• multithreading

• communication

• load balancing

• Trend (?)
– High level programming model (structured parallel programming ?) with

structured and/or compiler-based cooperation between Host (possibly MIMD)

and SIMD coprocessors.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 37

