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Basic principle

• Concurrently execute instructions of different threads of control within a single
pipelined processor

• Notion of thread in this context: 
– NOT “software thread” as in a multithreaded OS,

– Hardware-firmware supported thread: an independent execution sequence of a (general-
purpose or specialized) processor:

• A process

• A compiler generated thread

• A microinstruction execution sequence

• A task scheduled to a processor core in a GPU architecture

• Even an OS thread (e.g. POSIX)

• In a multithreaded architecture, a thread is the unit of instruction scheduling
for ILP 
– Neverthless, multithreading can be a powerful mechanism for multiprocessing too (i.e., 

parallelism at process level in multiprocessors architectures)

• (Unfortunately, there is a lot of confusion around the word “thread”, which is used in several
contexts often with very different meanings)
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Basic architecture
• More independent program counters

• Tagging mechanism (unique identifiers) to distinguish instructions of
different threads within the pipeline

• Efficient mechanisms for thread switching: very efficient context
switching, from zero to very few clock cycles

• Multiple register sets
– (not always statically allocated)
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Basic goal: latency hiding

• ILP: latencies are sources of performance 
degradations because of data dependencies
– Logical dependencies induced by “long” arithmetic instructions

– Memory accesses caused by cache faults

– Idea: interleave instructions of different threads to increase distance

• Multithreading and data-flow: similar principles
– when implemented in a Von Neumann machine, multithreading 

requires multiple contexts (program counter, registers, tags),

– while in a data-flow machine every instruction contains its “context” 

(i.e., data values),

– the data-flow idea leads to multithtreading when the assembler level is

imperative.
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Basic goal: latency hiding

• Multiprocessors: remote memory access latency (interconnection network, 
conflicts) and software lockout

– Idea: instead of waiting idle for the remote access conclusion, the processor switches to

another thread in order to fill the idle times

– Context switching (for threads) is caused by remote memory accesses too

– Exploit multiprogramming of a single processor with a much finer grain

• Context switching for threads is very fast: multiple contexts (program
counter, general registers) are present inside the processor itself (not to be
loaded from higher memory levels), and no other “administrative” 
information has to be saved/restored

– Multithreading is NOT under the OS control, instead it is implemented at the firmware

level

• This is compatible with multiprogramming / multiprocessing: process states
still exist (context switching for processes is distinct from context swiching for
threads) 
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Taxonomy of multithreaded architectures

[Ungerer, Robic, Silc]: course references

Instructions in a given clock cycle can be issued from

• a single thread

– Interleaved multithreading (IMT)

• an instruction of another thread is fetched and fed into the execution pipeline 
(of a scalar processor) at each clock cycle

– Blocked multithreading (BMT)

• the instructions of a thread are executed successively (in pipeline on a scalar
processor) until an event occurs that may cause latency (e.g. remote memory
access); this event induces a context switch

• multiple threads

– Simultaneous multithreading (SMT)

• instructions are simultaneously issued from multiple threads to the execution
units of a superscalar processor, i.e. superscalar instruction issue is combined
with the multiple-context approach
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Single-issue processors (scalar: pipelined CPU)
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Cray MTA
• Multicore with many “simple” CPUs
• Network processors



Multiple-issue processors (superscalar CPU)
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b) and/or c):
• Blue Gene
• SUN UltraSPARC
• Intel Xeon

Hyperthreading
• GPU



Simultaneous multithreading vs multicore
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Latency hiding in multiprocessors

• Try to exploit memory hierarchies at best 
– Local memories, NUMA

– Cache coherence

• Communication processor
– Interprocess communication latency hiding

• Additional solution: multithreading
– Remote memory access latency hiding

• Fully compatible solutions
e.g. KP is multithreaded in order to “fill” KP latencies for remote memory

accesses,

thus, KP is able to execute more communications concurrently: for each new
communication request, a new KP thread is executed, and more threads share 
the KP pipeline, 

thus, increased KP bandwidth.
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Which performance improvements?

• Improving CPU (CPUs) efficiency (i.e. utilization, e)

• What about service/completion time for a single process ? Apparently, no 
direct advantage, 

• but in fact:
– communication / calculation overlapping through KP

– increased KP bandwidth: this leads to an improvement in service time and completion
time of parallel programs,

• and:
– improvement of ILP performance, thus some improvemet of program completion time.

– Best situation: threads belong to the same process, i.e. a process is further parallelized
through threads;

– meaningful improvement in service/completion time, provided that: high parallelism is
exploited between threads of the same process.

– Here we can see the convergence between multithreading and data-flow: exploit data-
flow parallelism between threads of the same process (data-flow multithreading).

– Research issue: multithreading optimizing compilers.
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Excess parallelism

• The idea of multithreading (BMT) for multiprocessors can 
have another interpretation:

– Instead of using

1. N single-threaded processors

use

2. N/p processors, each of which is p-threaded

• (Nothing new wrt the old idea of multiprogramming: except
that context switching is no more a meaningful overhead)

• Under which conditions performances (e.g. completion times) 
of solutions 1 and 2 are comparable?

Despite the increasing diffusion of multithreaded
architectures: still an open research problem.
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Excess parallelism

Rationale:

• A data-parallel program is designed for N virtual processors,
– where the virtual processors are chosen with the goal of achieving the maximum

parallelism for a “perfect” architecture (e.g., zero communication latency).

• Its implementation exploits N/p real processors, 
– where p is partition size of the real processors solution wrt the one of the virtual

processors solution.

• In several cases (not always), the order of magnitude of completion
time is not increased: 
– this guarantees that the program “scales” well.

• Conceptually, we can consider that the real processors solution
exploits “p excess parallelism”
– actually, the real solution exploits N/ p sequential workers;

– why not N/p parallel workers, each worker with p excess parallelism?  i.e. p
parallel threads per worker.

– Example: a map.
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Excess parallelism

From the complexity theory of parallel computations (PRAM), we know
that under general conditions excess parallelism doesn’t increase
the order of magnitude of completion time:

• Context: data-parallel programs executed on a shared memory
architecture with logarithmic network, i.e.

base latency = O(log N)

• “Optimal” parallel algorithms exploits the architecture in such a way
that:

under-load latency = O(log N)

• This can be achieved also with N/p processors, each of which with
excess parallelism p, provided that p is chosen properly according to
the algorithm and the architecture (not greater than O(log N)).
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Multithreading and communication: example

A process working on stream:
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while true do

 receive (…, a);

b = F (a);

send ( …, b)



Let’s assume zero-copy communication: from the performance evaluation viewpoint, 

process alternates calculation (latency Tcalc) and communication (latency Tsend).

Without no communication processor nor multithreading:
Tservice = Tcalc + Tsend

In order to achieve (i.e. masking communication latency):
Tservice = Tcalc

we can exploit parallelism between calculation and communication in a proper way. 
This can be done by using communication processor and/or multithtreading
according to various solutions.   



Example: behiavioural schematizations
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If a shared memory machine, the real behaviour is: during a send execution, thread switching occurs

several times, i.e. each time a remote memory requests is done.
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Approximate equivalent behaviour
in multithreaded CPU
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Observations

• Simplified cost model: 
– taking into account of the very high degree of nondeterminism and 

interleaving, that characterizes multithreaded architectures

– for distributed memory architectures, this cost model has a better

approximation

• Implementation of a thread-suspend / -resume mechanism at 
the firmware level
– in addition to the all the other pipeling/superscalar synchronizations

– additional complexity of the hardware-firmware structure
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Example: Tcalc ≥ Tsend
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Equivalent service time (Tcalc). 

Equivalent parallelism degree per node: two real-parallelism threads, on the same

node, correspond to two non-multithreaded nodes. In fact, many hardware resources

are duplicated in a 2-issue multithreaded node.

In principle, chip area is equivalent (hardware-complexity of the same order of

magnitude). However, in practice … (see slide + 2).
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Example: Tcalc < Tsend
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Observation: KP or not KP ?

The sevice time and the total parallelism degree per node being equal,

1) solution with CPU (IP) + p-threaded KP

has the same hardware-complexity of

2) solution with (1 + p)-threaded CPU, without KP.

However, in terms of real cost, solution 1) is cheaper,

e.g. it has a simpler hardware-firmware structure (less inter-thread
synchronization in CPU pipelining, lower suspend/resume nesting), 
thus it has a lower power dissipation.

Moreover, solution 1 can be seen as just another rationale for
heterogeneous multicore (main CPU + p cores).
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Observation: parallel communications and parallel
program optimization

• Multithreaded CPU, or CPU + multithreaded KP, is a solution
to eliminate / reduce potential bottlenecks in parallel
programs, provided that the memory bandwidth is adequate.

• Example: a farm program where interarrival time TA < Tsend

– Emitter could be a bottleneck (Temitter = Tsend)

• Example: a data-parallel program when the Scatter
functionality could be a bottleneck
– Scatter service time > TA

• In both cases, bottlenecks prevent to exploit the ideal
parallelism solution (Tcalc / TA workers).

• In both cases, parallelization of communications eliminates / 
reduces bottlenecks.
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Observation: importance of advanced mechanisms for
interprocess communication

• Multithreading = parallelism exploitation and management 
(context switching) at firmware level
– Efficient mechanisms for interprocess communication are needed

– User level

– Zero-copy

• Example: multiple processing on target variables are allowed
by the zero-copy communication
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Network processors and multithreading

• Network processors apply multithreading to bridge latencies
during (remote) memory accesses
– Blocked multithreading (BMT)

– Multithreading applied to cores that perform the data traffic handling

• Hard real-time events (i.e., deadline soluld never be missed)
– Specific instruction scheduling during multithreaded execution

• Examples:
– Intel IXP

– IBM PowerNP
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IBM Wire-Speed Processor (WSP)

• Heterogenous architecture

• 16 general-purpose multithreaded cores: PowerPC, 2.3 GHz
– SMT, 4 simultaneous threads/core

– 16 Kb L1 instruction cache, 16 Kb L1 data cache (8-way set associative), 64-byte 
cache blocks

– MMU: 512-entry, variable page size

– 4 L2 caches (2 MB), each L2 cache shared by 4 cores

• Domain-specific co-processors (accelerators)
– targeted toward networking applications: packet processing, security, pattern 

matching, compression, XML

• custom hardware-firmware components for optimizations

– networking interconnect: four 10-Gb/s links

• Internal interconnection structure: partial crossbar
– similar to a 4-ring structure, 16-byte links
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WSP
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IBM Journal of Res & Dev, Jan/Feb 2010, pp. 3:1 – 3:11.  



WSP
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WSP

Advanced features for programmability + portability + performance:

• Uniform addressability: uniform virtual address space
– Every CPU core, accelerator and I/O unit has a separate MMU

– Shared memory: NUMA architecture, including accelerators and I/O units
(heterogeneous NUMA)

– Coherent (snooping) and noncoherent caching support, also for accelerators and I/O

– Result: accelerators and I/O are not special entities to be controlled through
specialized mechanisms, instead they exploit the same mechanisms of CPU cores

• full process-virtualization of co-processors and I/O

• Special instructions for locking and core-coprocessor synchronization
– Load and Reserve, Store Conditional

– Initiate Coprocessor

• Special instructions for thread synchronization
– wait, resume
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GPUs

• Currently, another application of the multithreading paradigm
is present in GPUs (Graphics Processing Units) and their
attempt to become “general” machines

• GPUs are SIMD machines

• In this context, threads are execution instances of data-
parallel tasks (data-parallel workers)

• Both SMT and multiprocessor + SMT paradigms are applied

MCSN   - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 30



SIMD architecture
• SIMD (Single Instruction Stream Multiple Data Stream)

– Data-parallel (DP) paradigm at the firmware-assembler level
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• Extension: partitioning of EU into disjoint subsets for DP multiprocessing (MIMD + SIMD)

e.g. 2-3 dimension

mesh (k-ary n-cube)



SIMD: parallel, high-performance co-processor
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GPU parallel programs

• From specialized coprocessors for real-time, high-quality 3D 
graphics rendering (shader), to programmable data-parallel
coprocessors

• Generality vs performance? Programmability ?

• Stream-based SIMD Computing: replication of stream tasks
(shader code) and partitioning of data domain onto processor
cores (EU)

• Thread: execution instance of a stream task scheduled to a 
processor core (EU) for execution
– NOT to be confused with a software thread in multithreaded OS

– same meaning of thread in multithreaded architectures.
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Example of GPU: AMD
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AMD GPU

RV770

• EU is organized into 10 partitions

• Each EU partition contains 16 EUs

• Each EU is a 5-issue SMT multithreaded superscalar (VLIW) 
pipelined processor

• Ideal exploitation: a 800 processor machine

• Internal EU operators include scalar arithmetic operations, as
well as float operations: sin, cos, logarithm, sqrt, etc

RV870

• 20 EU partitions
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Nvidia GPU: GeForce GTX - Fermi
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• MIMD multiprocessor of 10 SIMT processors
• Each SIMT is a SIMD architecture with 3 - 16 EU partitions, 8  EUs (CUDA) per 

partition



GPU: programming model

• Current tools (e.g. CUDA) are too elementary and low-level

• Serious problems of programmability
– Programmer is in charge of managing

• data-parallelism at the architectural level

• memory and I/O

• multithreading

• communication

• load balancing

• Trend (?)
– High level programming model (structured parallel programming ?) with

structured and/or compiler-based cooperation between Host (possibly MIMD) 

and SIMD coprocessors.
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