
Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

5. Distributed Memory Architectures

Distributed memory architectures

• Processing nodes are not able to share a physical memory space

– a node cannot address the memory of another node

• I/O is the only primitive mechanism for node cooperation

– cooperation by explicit value exchange

– possibly, shared memory can be emulated

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 2

Communication Network

. . .

CPU

Processing
Node

Bus DMA

Bus I/O

M

CPU

UC

CPU

Processing
Node

Bus DMA

Bus I/O

M

CPU

UC

I/O unit(s) dedicated

to node interfacing

(UC):

Communication

Unit,

Network Interface

Unit,

Network Card,

…

Any architecture for

Processing Nodes,

e.g. multiprocessor

Kinds of distributed memory architectures

• PC/Workstation Cluster

• Multicluster

• Massively Parallel Processor (MPP)

• …

• Grid

• Data Center

• Server Farm

• Cloud

• …

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 3

Dedicated processors
architectures:

static allocation of processes
to processing nodes,

possibly, dynamic
reconfiguration

for load balancing
or fault-tolerance reasons.

Interprocess communication support

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 4

. . .

Internode communication
channels

Interprocess communication
channels

Physical communication network

Executable version of parallel application:

collection of communicating processes

Run-time support of
communication

primitives

Network communication
protocols

Run-time support of
communication

primitives

Network communication
protocols

Processing node Processing node

Run-time support exploits
• network communication protocols
• architectural features internal to processing nodes (notably, I/O mechanisms

via shared memory: DMA and/or Memory Mapped I/O)

Communication networks

• Simple cases of network computers: usual network
architectures (LAN / MAN /WAN) with serial links and
standard IP protocol

• High performance architecutures: very local interconnection
network (“Switch”) according to the structures studied for
Shared Memory Architectures:
– multistage Fat Tree, Generalized Fat Tree

– low dimensione cubes

– in the most powerful machines: wormhole flow control

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 5

• Fast Ethernet (100 Mb/s)
• Gigabit Ethernet (1 Gb/s)
• Myrinet (1.28 Gb/s)
• Infiniband (till 10 Gb/s)
• Optical technology, fotonic networks are emerging (10 – 100 Gb/s)

Communication networks and communication
processors

• Example: Myrinet
– KP included in the network, connected as I/O unit to processing node

– used for interprocess communication run-time support and/or Network Interface
Unit (Network Card)

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 6

PCI-DMA chip

Communication
Processor

PCI

bridge

DMA
controller

Node
Interface

Processor Network
interface

Local memory

To/from
Swiching unit of
communication

network

PCI bus (32-64 bit)

Interprocess communication run-time support

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 7

Source process
Destination processChannel of

type T

send (channel_identifier, message_value)

receive (channel_identifier, target_variable)

allocated to processing node
Ni

allocated to processing node
Nj

Communication Network

. . .

CPU

Processing
Node

Bus DMA

Bus I/O

M

CPU

UC

CPU

Processing
Node

Bus DMA

Bus I/O

M

CPU

UC
Message

copy

+

scheduling

actions

Distributed run-time support

Principles:

• Channel descriptor allocated in destination node Nj

• receive is executed locally by Destination process in Nj

• send call by Source process in Ni: delegated to destination node Nj

• Delegation consists in a firmware message from Ni to Nj via
communication network, containing:

FW_MSG = (header, channel identifier, message value, Source identifier)

• In Nj, this message is received by the network interface unit (UCj)
and transformed into an interrupt (for CPUj or KPj)

• The interrupt handler executes the send primitive locally, according
to a shared memory implementation
– and possibly returns an outcome to Ni (Source) via communication network: this

action can be avoided according to the detailed implementation scheme

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 8

Implementation

• Channel descriptor
– data structure CHsource allocated in Ni: contains information about the current

number of buffered messages and the sender_wait boolean

– data structure CHdest allocated in Nj: the “real” channel descriptor, with the usual
structure for a shared memory implementation

• Send
– verifies the asynchrony degree saturation and, if buffer_full, suspends the Source

process

– in any case, the interprocessor message FW_MSG is sent to UCi, then to Nj via
communication network

– local execution of send on Nj, without checking buffer_full; no outcome is returned
to Ni in this scheme

• Receive
– causes the updating of the number of buffered messages in CHsource (interprocessor

message to Ni)

– In Ni, sender_wait is checked: if true, Source process is waked up.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 9

send implementation – source node

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 10

Communication Network

. . .

CPU

Processing Node
Ni

Bus DMA

Bus I/O

M

CPU

UC

CPU

Processing Node
Nj

Bus DMA

Bus I/O

M

CPU

UC

msg CHs
CHd

vtg

verifies the asynchrony degree saturation and, if buffer_full, suspends the Source process

UCi exploits DMA and transmits FW_MSG to UCj, via network, directly in pipeline (flit by flit,

without any intermediate copy in UCi)

in any case, the interprocessor message FW_MSG
(header, channel identifier, message value, Source process identifier)

is produced and passed to UCi by reference

msg

...

msg

...

msg

...

send implementation – destination node

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 11

Communication Network

. . .

CPU

Processing Node
Ni

Bus DMA

Bus I/O

M

CPU

UC

CPU

Processing Node
Nj

Bus DMA

Bus I/O

M

CPU

UC

msg
CHs CHd

vtgmsg

...

The pipeline trasmission is continued in Nj: UCj copies FW_MSG, via DMA, in Nj memory directly

(without any intermediate copy)

Running process (or KP) is interrupted by UCj; the interrupt message is the reference (capability) to
FW_MSG

Running process (or KP) acquires FW_MSG, then Chdest and VTG, into its own addressing space. So,

the local send can be executed (without checking buffer_full).

Optimization: UC is KP, thus the additional copy of FW_MSG is saved ! (on the fly execution)

send implementation – memory-to-memory copy

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 12

Communication Network

. . .

CPU

Processing Node
Ni

Bus DMA

Bus I/O

M

CPU

UC

CPU

Processing Node
Nj

Bus DMA

Bus I/O

M

CPU

UC

msg
CHs CHd

vtg

In practice, even in a distributed memory architecture, a memory-to-memory copy can be

implemented (plus additional operations for low level scheduling),

provided that the communication network protocol is the primitive, firmware one.

If IP protocol is adopted, then several additional copies and administrative operations are

done. IP overhead is prevailing, also compared to the network latency.

Implementation

• A key point for the local send execution on Nj is the addressing
space of the process executing the interrupt handler.

• Any process should contain all possible channel descriptors,
all possible target variables and process control blocks for all
processes allocated on Nj.

• In practice, static allocation of such objects is impossible.

• Solution: dynamic allocation by means of Capability
mechanism.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 13

Interprocess communication cost model

• Base latency: takes into account
– latency on Ni:

• operations on CHsource,

• formatting of FW_MSG and delegation to KPj or UCj

• operations in KPj or UCj

– network latency (depending on network kind and dimension, routing and flow
control strategies, link latency, link size, number of crossed units: SEE Shared
Memory Arch.)

– latency on Nj: latency of local send execution (SEE Shared Memory Arch.)

• Under-load latency:
– resolution of a client-server model (SEE Shared Memory Arch.), where the

destination node (thus, any node) is the server and the possible source nodes (thus,
any node) are the clients

– M/M/1 is a typical (worst-case) assumption

– parameter p: average number of nodes acting as clients, according to the structure of
the parallel program and to the process mapping strategies

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 14

Typical latencies

• The communication network is used with the primitive
firmware routing and flow-control protocol:
– similar result of shared memory run-time, for systems realized in a rack

Tsetup  103 t, Ttransm  102 t

– otherwise, for long distance networks, the transmission latency dominates, e.g.

Tsetup  103 t, Ttransm  104 t till 106 t

• The communication network is used with the IP protocol, i.e.,
the application is IP-dependent
– The network is exploited in the primitive way, however an additional overhead

is paid due to the protocol actions (e.g., formatting, de-formatting) inside the

nodes (+ transmission overhead on long distance networks):

Rack: Tsetup  105 t, Ttransm  104 t

Long distance: Tsetup  107 t, Ttransm  108 t

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 15

Exercizes

1. Describe the interprocess communication run-time support
in details, in particular the actions inside the source and
destination nodes.

2. Evaluate the interprocess communication latency in detail,
according to the implementation scheme of Exercize 1.

3. Study the interprocess communication run-time support for
clusters whose nodes are SMP or NUMA machines.

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms 16

