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5. Distributed Memory Architectures



Distributed memory architectures

• Processing nodes are not able to share a physical memory space

– a node cannot address the memory of another node

• I/O is the only primitive mechanism for node cooperation

– cooperation by explicit value exchange

– possibly, shared memory can be emulated
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Kinds of distributed memory architectures

• PC/Workstation Cluster

• Multicluster

• Massively Parallel Processor (MPP)

• …

• Grid

• Data Center

• Server Farm

• Cloud

• …
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Dedicated processors
architectures:

static allocation of processes
to processing nodes,

possibly, dynamic
reconfiguration

for load balancing
or fault-tolerance reasons.



Interprocess communication support
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Run-time support exploits
• network communication protocols
• architectural features internal to processing nodes (notably, I/O mechanisms

via shared memory: DMA and/or Memory Mapped I/O)



Communication networks

• Simple cases of network computers: usual network 
architectures (LAN / MAN /WAN) with serial links and 
standard IP protocol

• High performance architecutures: very local interconnection 
network (“Switch”) according to the structures studied for
Shared Memory Architectures:
– multistage Fat Tree, Generalized Fat Tree

– low dimensione cubes

– in the most powerful machines: wormhole flow control
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• Fast Ethernet (100 Mb/s)
• Gigabit Ethernet (1 Gb/s)
• Myrinet (1.28 Gb/s)
• Infiniband (till 10 Gb/s)
• Optical technology, fotonic networks are emerging (10 – 100 Gb/s)



Communication networks and communication
processors

• Example: Myrinet
– KP included in the network, connected as I/O unit to processing node

– used for interprocess communication run-time support and/or Network Interface 
Unit (Network Card)
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Interprocess communication run-time support
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Distributed run-time support

Principles:

• Channel descriptor allocated in destination node Nj

• receive is executed locally by Destination process in Nj

• send call by Source process in Ni: delegated to destination node Nj

• Delegation consists in a firmware message from Ni to Nj via 
communication network, containing:

FW_MSG = (header, channel identifier, message value, Source identifier)

• In Nj, this message is received by the network interface unit (UCj)
and transformed into an interrupt (for CPUj or KPj)

• The interrupt handler executes the send primitive locally, according
to a shared memory implementation
– and possibly returns an outcome to Ni (Source) via communication network: this

action can be avoided according to the detailed implementation scheme
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Implementation

• Channel descriptor
– data structure CHsource allocated in Ni: contains information about the current

number of buffered messages and the sender_wait boolean

– data structure CHdest allocated in Nj: the “real” channel descriptor, with the usual
structure for a shared memory implementation

• Send
– verifies the asynchrony degree saturation and, if buffer_full, suspends the Source 

process

– in any case, the interprocessor message FW_MSG is sent to UCi, then to Nj via 
communication network

– local execution of send on Nj, without checking buffer_full; no outcome is returned
to Ni in this scheme

• Receive
– causes the updating of the number of buffered messages in CHsource (interprocessor

message to Ni)

– In Ni, sender_wait is checked: if true, Source process is waked up.
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send implementation – source node
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send implementation – destination node
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The pipeline trasmission is continued in Nj:  UCj copies FW_MSG, via DMA, in Nj memory directly

(without any intermediate copy)

Running process (or KP) is interrupted by UCj; the interrupt message is the reference (capability) to
FW_MSG

Running process (or KP) acquires FW_MSG, then Chdest and VTG, into its own addressing space. So, 

the local send can be executed (without checking buffer_full).  

Optimization: UC is KP, thus the additional copy of FW_MSG is saved ! (on the fly execution)



send implementation – memory-to-memory copy
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In practice, even in a distributed memory architecture, a memory-to-memory copy can be

implemented (plus additional operations for low level scheduling),

provided that the communication network protocol is the primitive, firmware one.

If IP protocol is adopted, then several additional copies and administrative operations are 

done. IP overhead is prevailing, also compared to the network latency. 



Implementation

• A key point for the local send execution on Nj is the addressing
space of the process executing the interrupt handler.

• Any process should contain all possible channel descriptors, 
all possible target variables and process control blocks for all
processes allocated on Nj.

• In practice, static allocation of such objects is impossible.

• Solution: dynamic allocation by means of Capability
mechanism.
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Interprocess communication cost model

• Base latency: takes into account 
– latency on Ni:

• operations on CHsource, 

• formatting of FW_MSG and delegation to KPj or UCj

• operations in KPj or UCj

– network latency (depending on network kind and dimension, routing and flow 
control strategies, link latency, link size, number of crossed units: SEE Shared
Memory Arch.) 

– latency on Nj: latency of local send execution (SEE Shared Memory Arch.)

• Under-load latency:
– resolution of a client-server model (SEE Shared Memory Arch.), where the 

destination node (thus, any node) is the server and the possible source nodes (thus, 
any node) are the clients

– M/M/1 is a typical (worst-case) assumption

– parameter p: average number of nodes acting as clients, according to the structure of
the parallel program and to the process mapping strategies
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Typical latencies

• The communication network is used with the primitive 
firmware routing and flow-control protocol:
– similar result of shared memory run-time, for systems realized in a rack

Tsetup  103 t, Ttransm  102 t

– otherwise, for long distance networks, the transmission latency dominates, e.g.

Tsetup  103 t, Ttransm  104 t till 106 t

• The communication network is used with the IP protocol, i.e., 
the application is IP-dependent
– The network is exploited in the primitive way, however an additional overhead

is paid due to the protocol actions (e.g., formatting, de-formatting) inside the 

nodes (+ transmission overhead on long distance networks):

Rack:   Tsetup  105 t, Ttransm  104 t

Long distance:   Tsetup  107 t, Ttransm  108 t
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Exercizes

1. Describe the interprocess communication run-time support
in details, in particular the actions inside the source and 
destination nodes.

2. Evaluate the interprocess communication latency in detail, 
according to the implementation scheme of Exercize 1.

3. Study the interprocess communication run-time support for
clusters whose nodes are SMP or NUMA machines.
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