



Master Program (Laurea Magistrale) in Computer Science and Networking

High Performance Computing Systems and Enabling Platforms

Marco Vanneschi

Course Conclusion

MCSN - M. Vanneschi: High Performance Computing Systems and Enabling Platforms

Lectures given vs Course Syllabus

- Main topics
 - ILP basics, cost model and techniques for programming tools
 - Shared memory architectures, interconnection structure, caching, cost model
 - Interprocess communication run-time support
- Many hours dedicated to prerequisites (over 33%)
- Some topics could have been developed more deeply
 - Implementation of parallel programs on parallel architectures, Compilation and configuration tools
 - ILP: superscalar, implementation of multithreading
 - On chip interconnection networks
 - General-purpose *vs* specialized architectures, networks processors, GPU, Heterogeneous architectures
- Second edition (a.a. 2010-11)
 - SPA at first semester of first year (SPM at second semester)
 - Additional hours for prerequisites ("pre-courses" in PA, ALE and SPA)
 - Integration of parallelism fundamentals (first coat of paint) and architectures
- Feedbacks are welcome

Advanced topics and deepening

- Several topics are available for Master Thesis in the Parallel Architecture Group
 - Project on Autonomic Computing, Pervasive / Mobile Grids: programming model, prototypes, emergency management applications
 - Project on high-performance applications for signal processing on multicore
 - Cost models and programming models for shared memory multicore and GPUs
 - On chip interconnection networks optical networks
 - Network processors: applications and programming tools

- .

- Second year Study Plan
 - Some recommended courses for students interested in these subjects
 - (Study Plans will be individually discussed on next July and September)
 - Possible connection with stages

Course approach

- Structured approach to computer architecture studying
- Methodology to understand existing and new architectures and trends
 - as opposite to mainly technological approach
 - "formalization" of computer architecture
 - motivations and rationals, fundamentals, models
 - "practical" experiences and deepening delegated to complementary courses (Study Plan)
- "Hardware-software" interrelations are fundamental to understand and to apply advanced architectures
- Also: acquiring an attitude to clear explanation is recommended to students (see Exercizes)
- Feedbacks are welcome

Course attendance and exams

- Remarkable participation to lectures
- Few students have discussed Exercizes
- What is the current situation for students?
 - For SPA exam preparation and for all the first-year exams
 - Are advices required ?
- SPA written exam:
 - Questions on studied concepts and techniques, their interrelation
 - Reasoning capacity, synthesis capacity
 - Possibly, small exercizes
 - Fundamental: clear (and readable) explanations of the answer
 - Registration on the Official Course Page
- SPA oral exam:
 - Same approach of written exam, more oriented to deepenings and discussions

Appelli of Academic Year 2009 - 2010 (Fundamental courses)								
	January 2010	February 2010	June 2010	June 2010	July 2010	Sept. 2010	January 2011	February 2011
PA	1	2	3	4	5	6		
ALE	1	2	3	4	5	6		
SPM	1	2	3	4	5	6		
SPA			1	2	3	4	5	6
RMD			1	2	3	4	5	6
тсо			1	2	3	4	5	6

WPPPPPPP)

This is not a multicore system, nor a GPU. It is a Transputer-based architecture, an advanced technology for parallel processing of the 80s.

THURITY